lib/gssapi/krb5: implement GSS_C_CHANNEL_BOUND_FLAG for gss_init_sec_context()
[heimdal.git] / lib / hcrypto / rand-fortuna.c
blob31f72330245b6debc7ffa26bc30f328b6203b102
1 /*
2 * fortuna.c
3 * Fortuna-like PRNG.
5 * Copyright (c) 2005 Marko Kreen
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $PostgreSQL: pgsql/contrib/pgcrypto/fortuna.c,v 1.8 2006/10/04 00:29:46 momjian Exp $
32 #include <config.h>
33 #include <roken.h>
34 #include <rand.h>
35 #include <heim_threads.h>
37 #ifdef KRB5
38 #include <krb5-types.h>
39 #endif
41 #include "randi.h"
42 #include "aes.h"
43 #include "sha.h"
46 * Why Fortuna-like: There does not seem to be any definitive reference
47 * on Fortuna in the net. Instead this implementation is based on
48 * following references:
50 * http://en.wikipedia.org/wiki/Fortuna_(PRNG)
51 * - Wikipedia article
52 * http://jlcooke.ca/random/
53 * - Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.
57 * There is some confusion about whether and how to carry forward
58 * the state of the pools. Seems like original Fortuna does not
59 * do it, resetting hash after each request. I guess expecting
60 * feeding to happen more often that requesting. This is absolutely
61 * unsuitable for pgcrypto, as nothing asynchronous happens here.
63 * J.L. Cooke fixed this by feeding previous hash to new re-initialized
64 * hash context.
66 * Fortuna predecessor Yarrow requires ability to query intermediate
67 * 'final result' from hash, without affecting it.
69 * This implementation uses the Yarrow method - asking intermediate
70 * results, but continuing with old state.
75 * Algorithm parameters
78 #define NUM_POOLS 32
80 /* in microseconds */
81 #define RESEED_INTERVAL 100000 /* 0.1 sec */
83 /* for one big request, reseed after this many bytes */
84 #define RESEED_BYTES (1024*1024)
87 * Skip reseed if pool 0 has less than this many
88 * bytes added since last reseed.
90 #define POOL0_FILL (256/8)
93 * Algorithm constants
96 /* Both cipher key size and hash result size */
97 #define BLOCK 32
99 /* cipher block size */
100 #define CIPH_BLOCK 16
102 /* for internal wrappers */
103 #define MD_CTX SHA256_CTX
104 #define CIPH_CTX AES_KEY
106 struct fortuna_state
108 unsigned char counter[CIPH_BLOCK];
109 unsigned char result[CIPH_BLOCK];
110 unsigned char key[BLOCK];
111 MD_CTX pool[NUM_POOLS];
112 CIPH_CTX ciph;
113 unsigned reseed_count;
114 struct timeval last_reseed_time;
115 unsigned pool0_bytes;
116 unsigned rnd_pos;
117 int tricks_done;
118 pid_t pid;
120 typedef struct fortuna_state FState;
124 * Use our own wrappers here.
125 * - Need to get intermediate result from digest, without affecting it.
126 * - Need re-set key on a cipher context.
127 * - Algorithms are guaranteed to exist.
128 * - No memory allocations.
131 static void
132 ciph_init(CIPH_CTX * ctx, const unsigned char *key, int klen)
134 AES_set_encrypt_key(key, klen * 8, ctx);
137 static void
138 ciph_encrypt(CIPH_CTX * ctx, const unsigned char *in, unsigned char *out)
140 AES_encrypt(in, out, ctx);
143 static void
144 md_init(MD_CTX * ctx)
146 SHA256_Init(ctx);
149 static void
150 md_update(MD_CTX * ctx, const unsigned char *data, int len)
152 SHA256_Update(ctx, data, len);
155 static void
156 md_result(MD_CTX * ctx, unsigned char *dst)
158 SHA256_CTX tmp;
160 memcpy(&tmp, ctx, sizeof(*ctx));
161 SHA256_Final(dst, &tmp);
162 memset_s(&tmp, sizeof(tmp), 0, sizeof(tmp));
166 * initialize state
168 static void
169 init_state(FState * st)
171 int i;
173 memset(st, 0, sizeof(*st));
174 for (i = 0; i < NUM_POOLS; i++)
175 md_init(&st->pool[i]);
176 st->pid = getpid();
180 * Endianess does not matter.
181 * It just needs to change without repeating.
183 static void
184 inc_counter(FState * st)
186 uint32_t *val = (uint32_t *) st->counter;
188 if (++val[0])
189 return;
190 if (++val[1])
191 return;
192 if (++val[2])
193 return;
194 ++val[3];
198 * This is called 'cipher in counter mode'.
200 static void
201 encrypt_counter(FState * st, unsigned char *dst)
203 ciph_encrypt(&st->ciph, st->counter, dst);
204 inc_counter(st);
209 * The time between reseed must be at least RESEED_INTERVAL
210 * microseconds.
212 static int
213 enough_time_passed(FState * st)
215 int ok;
216 struct timeval tv;
217 struct timeval *last = &st->last_reseed_time;
219 gettimeofday(&tv, NULL);
221 /* check how much time has passed */
222 ok = 0;
223 if (tv.tv_sec > last->tv_sec + 1)
224 ok = 1;
225 else if (tv.tv_sec == last->tv_sec + 1)
227 if (1000000 + tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
228 ok = 1;
230 else if (tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
231 ok = 1;
233 /* reseed will happen, update last_reseed_time */
234 if (ok)
235 memcpy(last, &tv, sizeof(tv));
237 memset_s(&tv, sizeof(tv), 0, sizeof(tv));
239 return ok;
243 * generate new key from all the pools
245 static void
246 reseed(FState * st)
248 unsigned k;
249 unsigned n;
250 MD_CTX key_md;
251 unsigned char buf[BLOCK];
253 /* set pool as empty */
254 st->pool0_bytes = 0;
257 * Both #0 and #1 reseed would use only pool 0. Just skip #0 then.
259 n = ++st->reseed_count;
262 * The goal: use k-th pool only 1/(2^k) of the time.
264 md_init(&key_md);
265 for (k = 0; k < NUM_POOLS; k++)
267 md_result(&st->pool[k], buf);
268 md_update(&key_md, buf, BLOCK);
270 if (n & 1 || !n)
271 break;
272 n >>= 1;
275 /* add old key into mix too */
276 md_update(&key_md, st->key, BLOCK);
278 /* add pid to make output diverse after fork() */
279 md_update(&key_md, (const unsigned char *)&st->pid, sizeof(st->pid));
281 /* now we have new key */
282 md_result(&key_md, st->key);
284 /* use new key */
285 ciph_init(&st->ciph, st->key, BLOCK);
287 memset_s(&key_md, sizeof(key_md), 0, sizeof(key_md));
288 memset_s(buf, sizeof(buf), 0, sizeof(buf));
292 * Pick a random pool. This uses key bytes as random source.
294 static unsigned
295 get_rand_pool(FState * st)
297 unsigned rnd;
300 * This slightly prefers lower pools - thats OK.
302 rnd = st->key[st->rnd_pos] % NUM_POOLS;
304 st->rnd_pos++;
305 if (st->rnd_pos >= BLOCK)
306 st->rnd_pos = 0;
308 return rnd;
312 * update pools
314 static void
315 add_entropy(FState * st, const unsigned char *data, unsigned len)
317 unsigned pos;
318 unsigned char hash[BLOCK];
319 MD_CTX md;
321 /* hash given data */
322 md_init(&md);
323 md_update(&md, data, len);
324 md_result(&md, hash);
327 * Make sure the pool 0 is initialized, then update randomly.
329 if (st->reseed_count == 0)
330 pos = 0;
331 else
332 pos = get_rand_pool(st);
333 md_update(&st->pool[pos], hash, BLOCK);
335 if (pos == 0)
336 st->pool0_bytes += len;
338 memset_s(hash, sizeof(hash), 0, sizeof(hash));
339 memset_s(&md, sizeof(md), 0, sizeof(md));
343 * Just take 2 next blocks as new key
345 static void
346 rekey(FState * st)
348 encrypt_counter(st, st->key);
349 encrypt_counter(st, st->key + CIPH_BLOCK);
350 ciph_init(&st->ciph, st->key, BLOCK);
354 * Hide public constants. (counter, pools > 0)
356 * This can also be viewed as spreading the startup
357 * entropy over all of the components.
359 static void
360 startup_tricks(FState * st)
362 int i;
363 unsigned char buf[BLOCK];
365 /* Use next block as counter. */
366 encrypt_counter(st, st->counter);
368 /* Now shuffle pools, excluding #0 */
369 for (i = 1; i < NUM_POOLS; i++)
371 encrypt_counter(st, buf);
372 encrypt_counter(st, buf + CIPH_BLOCK);
373 md_update(&st->pool[i], buf, BLOCK);
375 memset_s(buf, sizeof(buf), 0, sizeof(buf));
377 /* Hide the key. */
378 rekey(st);
380 /* This can be done only once. */
381 st->tricks_done = 1;
384 static void
385 extract_data(FState * st, unsigned count, unsigned char *dst)
387 unsigned n;
388 unsigned block_nr = 0;
389 pid_t pid = getpid();
391 /* Should we reseed? */
392 if (st->pool0_bytes >= POOL0_FILL || st->reseed_count == 0)
393 if (enough_time_passed(st))
394 reseed(st);
396 /* Do some randomization on first call */
397 if (!st->tricks_done)
398 startup_tricks(st);
400 /* If we forked, force a reseed again */
401 if (pid != st->pid) {
402 st->pid = pid;
403 reseed(st);
406 while (count > 0)
408 /* produce bytes */
409 encrypt_counter(st, st->result);
411 /* copy result */
412 if (count > CIPH_BLOCK)
413 n = CIPH_BLOCK;
414 else
415 n = count;
416 memcpy(dst, st->result, n);
417 dst += n;
418 count -= n;
420 /* must not give out too many bytes with one key */
421 block_nr++;
422 if (block_nr > (RESEED_BYTES / CIPH_BLOCK))
424 rekey(st);
425 block_nr = 0;
428 /* Set new key for next request. */
429 rekey(st);
433 * public interface
436 static FState main_state;
437 static int init_done;
438 static int have_entropy;
439 #define FORTUNA_RESEED_BYTE 10000
440 static unsigned resend_bytes;
443 * This mutex protects all of the above static elements from concurrent
444 * access by multiple threads
446 static HEIMDAL_MUTEX fortuna_mutex = HEIMDAL_MUTEX_INITIALIZER;
449 * Try our best to do an initial seed
451 #define INIT_BYTES 128
454 * fortuna_mutex must be held across calls to this function
457 static int
458 fortuna_reseed(void)
460 int entropy_p = 0;
462 if (!init_done)
463 abort();
465 #ifndef NO_RAND_UNIX_METHOD
467 unsigned char buf[INIT_BYTES];
468 if ((*hc_rand_unix_method.bytes)(buf, sizeof(buf)) == 1) {
469 add_entropy(&main_state, buf, sizeof(buf));
470 entropy_p = 1;
471 memset_s(buf, sizeof(buf), 0, sizeof(buf));
474 #endif
475 #ifdef HAVE_ARC4RANDOM
477 uint32_t buf[INIT_BYTES / sizeof(uint32_t)];
478 int i;
480 for (i = 0; i < sizeof(buf)/sizeof(buf[0]); i++)
481 buf[i] = arc4random();
482 add_entropy(&main_state, (void *)buf, sizeof(buf));
483 entropy_p = 1;
485 #endif
487 * Fall back to gattering data from timer and secret files, this
488 * is really the last resort.
490 if (!entropy_p) {
491 /* to save stackspace */
492 union {
493 unsigned char buf[INIT_BYTES];
494 unsigned char shad[1001];
495 } u;
496 int fd;
498 /* add timer info */
499 if ((*hc_rand_timer_method.bytes)(u.buf, sizeof(u.buf)) == 1)
500 add_entropy(&main_state, u.buf, sizeof(u.buf));
501 /* add /etc/shadow */
502 fd = open("/etc/shadow", O_RDONLY, 0);
503 if (fd >= 0) {
504 rk_cloexec(fd);
505 /* add_entropy will hash the buf */
506 while (read(fd, (char *)u.shad, sizeof(u.shad)) > 0)
507 add_entropy(&main_state, u.shad, sizeof(u.shad));
508 close(fd);
511 memset_s(&u, sizeof(u), 0, sizeof(u));
513 entropy_p = 1; /* sure about this ? */
516 pid_t pid = getpid();
517 add_entropy(&main_state, (void *)&pid, sizeof(pid));
520 struct timeval tv;
521 gettimeofday(&tv, NULL);
522 add_entropy(&main_state, (void *)&tv, sizeof(tv));
524 #ifdef HAVE_GETUID
526 uid_t u = getuid();
527 add_entropy(&main_state, (void *)&u, sizeof(u));
529 #endif
530 return entropy_p;
534 * fortuna_mutex must be held by callers of this function
536 static int
537 fortuna_init(void)
539 if (!init_done)
541 init_state(&main_state);
542 init_done = 1;
544 if (!have_entropy)
545 have_entropy = fortuna_reseed();
546 return (init_done && have_entropy);
551 static void
552 fortuna_seed(const void *indata, int size)
554 HEIMDAL_MUTEX_lock(&fortuna_mutex);
556 fortuna_init();
557 add_entropy(&main_state, indata, size);
558 if (size >= INIT_BYTES)
559 have_entropy = 1;
561 HEIMDAL_MUTEX_unlock(&fortuna_mutex);
564 static int
565 fortuna_bytes(unsigned char *outdata, int size)
567 int ret = 0;
569 HEIMDAL_MUTEX_lock(&fortuna_mutex);
571 if (!fortuna_init())
572 goto out;
574 resend_bytes += size;
575 if (resend_bytes > FORTUNA_RESEED_BYTE || resend_bytes < size) {
576 resend_bytes = 0;
577 fortuna_reseed();
579 extract_data(&main_state, size, outdata);
580 ret = 1;
582 out:
583 HEIMDAL_MUTEX_unlock(&fortuna_mutex);
585 return ret;
588 static void
589 fortuna_cleanup(void)
591 HEIMDAL_MUTEX_lock(&fortuna_mutex);
593 init_done = 0;
594 have_entropy = 0;
595 memset_s(&main_state, sizeof(main_state), 0, sizeof(main_state));
597 HEIMDAL_MUTEX_unlock(&fortuna_mutex);
600 static void
601 fortuna_add(const void *indata, int size, double entropi)
603 fortuna_seed(indata, size);
606 static int
607 fortuna_pseudorand(unsigned char *outdata, int size)
609 return fortuna_bytes(outdata, size);
612 static int
613 fortuna_status(void)
615 int result;
617 HEIMDAL_MUTEX_lock(&fortuna_mutex);
618 result = fortuna_init();
619 HEIMDAL_MUTEX_unlock(&fortuna_mutex);
621 return result ? 1 : 0;
624 #if defined(__GNUC__) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901)
625 const RAND_METHOD hc_rand_fortuna_method = {
626 .seed = fortuna_seed,
627 .bytes = fortuna_bytes,
628 .cleanup = fortuna_cleanup,
629 .add = fortuna_add,
630 .pseudorand = fortuna_pseudorand,
631 .status = fortuna_status
633 #else
634 const RAND_METHOD hc_rand_fortuna_method = {
635 fortuna_seed,
636 fortuna_bytes,
637 fortuna_cleanup,
638 fortuna_add,
639 fortuna_pseudorand,
640 fortuna_status
642 #endif
644 const RAND_METHOD *
645 RAND_fortuna_method(void)
647 return &hc_rand_fortuna_method;