Fixed include statements such that double precision version of genborn.c
[gromacs/rigid-bodies.git] / src / mdlib / shellfc.c
blob96b9461683ddc09ad39b15954e40d71a5ad86598
1 /*
2 *
3 * This source code is part of
4 *
5 * G R O M A C S
6 *
7 * GROningen MAchine for Chemical Simulations
8 *
9 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
10 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
11 * Copyright (c) 2001-2008, The GROMACS development team,
12 * check out http://www.gromacs.org for more information.
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version 2
17 * of the License, or (at your option) any later version.
19 * If you want to redistribute modifications, please consider that
20 * scientific software is very special. Version control is crucial -
21 * bugs must be traceable. We will be happy to consider code for
22 * inclusion in the official distribution, but derived work must not
23 * be called official GROMACS. Details are found in the README & COPYING
24 * files - if they are missing, get the official version at www.gromacs.org.
26 * To help us fund GROMACS development, we humbly ask that you cite
27 * the papers on the package - you can find them in the top README file.
29 * For more info, check our website at http://www.gromacs.org
31 * And Hey:
32 * Gallium Rubidium Oxygen Manganese Argon Carbon Silicon
34 #ifdef HAVE_CONFIG_H
35 #include <config.h>
36 #endif
38 #include <string.h>
39 #include "typedefs.h"
40 #include "smalloc.h"
41 #include "gmx_fatal.h"
42 #include "vec.h"
43 #include "txtdump.h"
44 #include "mdrun.h"
45 #include "partdec.h"
46 #include "mdatoms.h"
47 #include "vsite.h"
48 #include "network.h"
49 #include "names.h"
50 #include "constr.h"
51 #include "domdec.h"
52 #include "partdec.h"
53 #include "physics.h"
54 #include "copyrite.h"
55 #include "shellfc.h"
56 #include "mtop_util.h"
57 #include "chargegroup.h"
60 typedef struct {
61 int nnucl;
62 atom_id shell; /* The shell id */
63 atom_id nucl1,nucl2,nucl3; /* The nuclei connected to the shell */
64 /* bool bInterCG; */ /* Coupled to nuclei outside cg? */
65 real k; /* force constant */
66 real k_1; /* 1 over force constant */
67 rvec xold;
68 rvec fold;
69 rvec step;
70 } t_shell;
72 typedef struct gmx_shellfc {
73 int nshell_gl; /* The number of shells in the system */
74 t_shell *shell_gl; /* All the shells (for DD only) */
75 int *shell_index_gl; /* Global shell index (for DD only) */
76 bool bInterCG; /* Are there inter charge-group shells? */
77 int nshell; /* The number of local shells */
78 t_shell *shell; /* The local shells */
79 int shell_nalloc; /* The allocation size of shell */
80 bool bPredict; /* Predict shell positions */
81 bool bForceInit; /* Force initialization of shell positions */
82 int nflexcon; /* The number of flexible constraints */
83 rvec *x[2]; /* Array for iterative minimization */
84 rvec *f[2]; /* Array for iterative minimization */
85 int x_nalloc; /* The allocation size of x and f */
86 rvec *acc_dir; /* Acceleration direction for flexcon */
87 rvec *x_old; /* Old coordinates for flexcon */
88 int flex_nalloc; /* The allocation size of acc_dir and x_old */
89 rvec *adir_xnold; /* Work space for init_adir */
90 rvec *adir_xnew; /* Work space for init_adir */
91 int adir_nalloc; /* Work space for init_adir */
92 } t_gmx_shellfc;
95 static void pr_shell(FILE *fplog,int ns,t_shell s[])
97 int i;
99 fprintf(fplog,"SHELL DATA\n");
100 fprintf(fplog,"%5s %8s %5s %5s %5s\n",
101 "Shell","Force k","Nucl1","Nucl2","Nucl3");
102 for(i=0; (i<ns); i++) {
103 fprintf(fplog,"%5d %8.3f %5d",s[i].shell,1.0/s[i].k_1,s[i].nucl1);
104 if (s[i].nnucl == 2)
105 fprintf(fplog," %5d\n",s[i].nucl2);
106 else if (s[i].nnucl == 3)
107 fprintf(fplog," %5d %5d\n",s[i].nucl2,s[i].nucl3);
108 else
109 fprintf(fplog,"\n");
113 static void predict_shells(FILE *fplog,rvec x[],rvec v[],real dt,
114 int ns,t_shell s[],
115 real mass[],gmx_mtop_t *mtop,bool bInit)
117 int i,m,s1,n1,n2,n3;
118 real dt_1,dt_2,dt_3,fudge,tm,m1,m2,m3;
119 rvec *ptr;
120 t_atom *atom;
122 /* We introduce a fudge factor for performance reasons: with this choice
123 * the initial force on the shells is about a factor of two lower than
124 * without
126 fudge = 1.0;
128 if (bInit) {
129 if (fplog)
130 fprintf(fplog,"RELAX: Using prediction for initial shell placement\n");
131 ptr = x;
132 dt_1 = 1;
134 else {
135 ptr = v;
136 dt_1 = fudge*dt;
139 for(i=0; (i<ns); i++) {
140 s1 = s[i].shell;
141 if (bInit)
142 clear_rvec(x[s1]);
143 switch (s[i].nnucl) {
144 case 1:
145 n1 = s[i].nucl1;
146 for(m=0; (m<DIM); m++)
147 x[s1][m]+=ptr[n1][m]*dt_1;
148 break;
149 case 2:
150 n1 = s[i].nucl1;
151 n2 = s[i].nucl2;
152 if (mass) {
153 m1 = mass[n1];
154 m2 = mass[n2];
155 } else {
156 /* Not the correct masses with FE, but it is just a prediction... */
157 m1 = atom[n1].m;
158 m2 = atom[n2].m;
160 tm = dt_1/(m1+m2);
161 for(m=0; (m<DIM); m++)
162 x[s1][m]+=(m1*ptr[n1][m]+m2*ptr[n2][m])*tm;
163 break;
164 case 3:
165 n1 = s[i].nucl1;
166 n2 = s[i].nucl2;
167 n3 = s[i].nucl3;
168 if (mass) {
169 m1 = mass[n1];
170 m2 = mass[n2];
171 m3 = mass[n3];
172 } else {
173 /* Not the correct masses with FE, but it is just a prediction... */
174 gmx_mtop_atomnr_to_atom(mtop,n1,&atom);
175 m1 = atom->m;
176 gmx_mtop_atomnr_to_atom(mtop,n2,&atom);
177 m2 = atom->m;
178 gmx_mtop_atomnr_to_atom(mtop,n3,&atom);
179 m3 = atom->m;
181 tm = dt_1/(m1+m2+m3);
182 for(m=0; (m<DIM); m++)
183 x[s1][m]+=(m1*ptr[n1][m]+m2*ptr[n2][m]+m3*ptr[n3][m])*tm;
184 break;
185 default:
186 gmx_fatal(FARGS,"Shell %d has %d nuclei!",i,s[i].nnucl);
191 gmx_shellfc_t init_shell_flexcon(FILE *fplog,
192 gmx_mtop_t *mtop,int nflexcon,
193 rvec *x)
195 struct gmx_shellfc *shfc;
196 t_shell *shell;
197 int *shell_index,*at2cg;
198 t_atom *atom;
199 int n[eptNR],ns,nshell,nsi;
200 int i,j,nmol,type,mb,mt,a_offset,cg,mol,ftype,nra;
201 real qS,alpha;
202 int aS,aN=0; /* Shell and nucleus */
203 int bondtypes[] = { F_BONDS, F_HARMONIC, F_CUBICBONDS, F_POLARIZATION, F_WATER_POL };
204 #define NBT asize(bondtypes)
205 t_iatom *ia;
206 gmx_mtop_atomloop_all_t aloop;
207 gmx_ffparams_t *ffparams;
208 gmx_molblock_t *molb;
209 gmx_moltype_t *molt;
210 t_block *cgs;
212 /* Count number of shells, and find their indices */
213 for(i=0; (i<eptNR); i++) {
214 n[i] = 0;
216 snew(shell_index,mtop->natoms);
218 aloop = gmx_mtop_atomloop_all_init(mtop);
219 while (gmx_mtop_atomloop_all_next(aloop,&i,&atom)) {
220 if (atom->ptype == eptShell) {
221 shell_index[i] = n[atom->ptype];
223 n[atom->ptype]++;
227 snew(shell_index,end-start);
228 snew(at2cg,end-start);
229 nsi = 0;
230 for(cg=cg0; (cg<cg1); cg++) {
231 for(i=cgindex[cg]; i<cgindex[cg+1]; i++) {
232 n[atom[i].ptype]++;
233 if (atom[i].ptype == eptShell)
234 shell_index[i-start] = nsi++;
235 at2cg[i-start] = cg;
240 if (fplog) {
241 /* Print the number of each particle type */
242 for(i=0; (i<eptNR); i++) {
243 if (n[i] != 0) {
244 fprintf(fplog,"There are: %d %ss\n",n[i],ptype_str[i]);
249 nshell = n[eptShell];
251 if (nshell == 0 && nflexcon == 0) {
252 sfree(shell_index);
254 return NULL;
257 snew(shfc,1);
258 shfc->nflexcon = nflexcon;
260 if (nshell == 0) {
261 sfree(shell_index);
263 return shfc;
266 snew(shell,nshell);
267 shfc->nflexcon = nflexcon;
269 /* Initiate the shell structures */
270 for(i=0; (i<nshell); i++) {
271 shell[i].shell = NO_ATID;
272 shell[i].nnucl = 0;
273 shell[i].nucl1 = NO_ATID;
274 shell[i].nucl2 = NO_ATID;
275 shell[i].nucl3 = NO_ATID;
276 /* shell[i].bInterCG=FALSE; */
277 shell[i].k_1 = 0;
278 shell[i].k = 0;
281 ffparams = &mtop->ffparams;
283 /* Now fill the structures */
284 shfc->bInterCG = FALSE;
285 ns = 0;
286 a_offset = 0;
287 for(mb=0; mb<mtop->nmolblock; mb++) {
288 molb = &mtop->molblock[mb];
289 molt = &mtop->moltype[molb->type];
291 cgs = &molt->cgs;
292 snew(at2cg,molt->atoms.nr);
293 for(cg=0; cg<cgs->nr; cg++) {
294 for(i=cgs->index[cg]; i<cgs->index[cg+1]; i++) {
295 at2cg[i] = cg;
299 atom = molt->atoms.atom;
300 for(mol=0; mol<molb->nmol; mol++) {
301 for(j=0; (j<NBT); j++) {
302 ia = molt->ilist[bondtypes[j]].iatoms;
303 for(i=0; (i<molt->ilist[bondtypes[j]].nr); ) {
304 type = ia[0];
305 ftype = ffparams->functype[type];
306 nra = interaction_function[ftype].nratoms;
308 /* Check whether we have a bond with a shell */
309 aS = NO_ATID;
311 switch (bondtypes[j]) {
312 case F_BONDS:
313 case F_HARMONIC:
314 case F_CUBICBONDS:
315 case F_POLARIZATION:
316 if (atom[ia[1]].ptype == eptShell) {
317 aS = ia[1];
318 aN = ia[2];
320 else if (atom[ia[2]].ptype == eptShell) {
321 aS = ia[2];
322 aN = ia[1];
324 break;
325 case F_WATER_POL:
326 aN = ia[4]; /* Dummy */
327 aS = ia[5]; /* Shell */
328 break;
329 default:
330 gmx_fatal(FARGS,"Death Horror: %s, %d",__FILE__,__LINE__);
333 if (aS != NO_ATID) {
334 qS = atom[aS].q;
336 /* Check whether one of the particles is a shell... */
337 nsi = shell_index[a_offset+aS];
338 if ((nsi < 0) || (nsi >= nshell))
339 gmx_fatal(FARGS,"nsi is %d should be within 0 - %d. aS = %d",
340 nsi,nshell,aS);
341 if (shell[nsi].shell == NO_ATID) {
342 shell[nsi].shell = a_offset + aS;
343 ns ++;
345 else if (shell[nsi].shell != a_offset+aS)
346 gmx_fatal(FARGS,"Weird stuff in %s, %d",__FILE__,__LINE__);
348 if (shell[nsi].nucl1 == NO_ATID) {
349 shell[nsi].nucl1 = a_offset + aN;
350 } else if (shell[nsi].nucl2 == NO_ATID) {
351 shell[nsi].nucl2 = a_offset + aN;
352 } else if (shell[nsi].nucl3 == NO_ATID) {
353 shell[nsi].nucl3 = a_offset + aN;
354 } else {
355 if (fplog)
356 pr_shell(fplog,ns,shell);
357 gmx_fatal(FARGS,"Can not handle more than three bonds per shell\n");
359 if (at2cg[aS] != at2cg[aN]) {
360 /* shell[nsi].bInterCG = TRUE; */
361 shfc->bInterCG = TRUE;
364 switch (bondtypes[j]) {
365 case F_BONDS:
366 case F_HARMONIC:
367 shell[nsi].k += ffparams->iparams[type].harmonic.krA;
368 break;
369 case F_CUBICBONDS:
370 shell[nsi].k += ffparams->iparams[type].cubic.kb;
371 break;
372 case F_POLARIZATION:
373 if (qS != atom[aS].qB)
374 gmx_fatal(FARGS,"polarize can not be used with qA != qB");
375 shell[nsi].k += sqr(qS)*ONE_4PI_EPS0/
376 ffparams->iparams[type].polarize.alpha;
377 break;
378 case F_WATER_POL:
379 if (qS != atom[aS].qB)
380 gmx_fatal(FARGS,"water_pol can not be used with qA != qB");
381 alpha = (ffparams->iparams[type].wpol.al_x+
382 ffparams->iparams[type].wpol.al_y+
383 ffparams->iparams[type].wpol.al_z)/3.0;
384 shell[nsi].k += sqr(qS)*ONE_4PI_EPS0/alpha;
385 break;
386 default:
387 gmx_fatal(FARGS,"Death Horror: %s, %d",__FILE__,__LINE__);
389 shell[nsi].nnucl++;
391 ia += nra+1;
392 i += nra+1;
395 a_offset += molt->atoms.nr;
397 /* Done with this molecule type */
398 sfree(at2cg);
401 /* Verify whether it's all correct */
402 if (ns != nshell)
403 gmx_fatal(FARGS,"Something weird with shells. They may not be bonded to something");
405 for(i=0; (i<ns); i++)
406 shell[i].k_1 = 1.0/shell[i].k;
408 if (debug)
409 pr_shell(debug,ns,shell);
412 shfc->nshell_gl = ns;
413 shfc->shell_gl = shell;
414 shfc->shell_index_gl = shell_index;
416 shfc->bPredict = (getenv("GMX_NOPREDICT") == NULL);
417 shfc->bForceInit = FALSE;
418 if (!shfc->bPredict) {
419 if (fplog)
420 fprintf(fplog,"\nWill never predict shell positions\n");
421 } else {
422 shfc->bForceInit = (getenv("GMX_FORCEINIT") != NULL);
423 if (shfc->bForceInit && fplog)
424 fprintf(fplog,"\nWill always initiate shell positions\n");
427 if (shfc->bPredict) {
428 if (x) {
429 predict_shells(fplog,x,NULL,0,shfc->nshell_gl,shfc->shell_gl,
430 NULL,mtop,TRUE);
433 if (shfc->bInterCG) {
434 if (fplog)
435 fprintf(fplog,"\nNOTE: there all shells that are connected to particles outside thier own charge group, will not predict shells positions during the run\n\n");
436 shfc->bPredict = FALSE;
440 return shfc;
443 void make_local_shells(t_commrec *cr,t_mdatoms *md,
444 struct gmx_shellfc *shfc)
446 t_shell *shell;
447 int a0,a1,*ind,nshell,i;
448 gmx_domdec_t *dd=NULL;
450 if (PAR(cr)) {
451 if (DOMAINDECOMP(cr)) {
452 dd = cr->dd;
453 a0 = 0;
454 a1 = dd->nat_home;
455 } else {
456 pd_at_range(cr,&a0,&a1);
458 } else {
459 /* Single node: we need all shells, just copy the pointer */
460 shfc->nshell = shfc->nshell_gl;
461 shfc->shell = shfc->shell_gl;
463 return;
466 ind = shfc->shell_index_gl;
468 nshell = 0;
469 shell = shfc->shell;
470 for(i=a0; i<a1; i++) {
471 if (md->ptype[i] == eptShell) {
472 if (nshell+1 > shfc->shell_nalloc) {
473 shfc->shell_nalloc = over_alloc_dd(nshell+1);
474 srenew(shell,shfc->shell_nalloc);
476 if (dd) {
477 shell[nshell] = shfc->shell_gl[ind[dd->gatindex[i]]];
478 } else {
479 shell[nshell] = shfc->shell_gl[ind[i]];
481 /* With inter-cg shells we can no do shell prediction,
482 * so we do not need the nuclei numbers.
484 if (!shfc->bInterCG) {
485 shell[nshell].nucl1 = i + shell[nshell].nucl1 - shell[nshell].shell;
486 if (shell[nshell].nnucl > 1)
487 shell[nshell].nucl2 = i + shell[nshell].nucl2 - shell[nshell].shell;
488 if (shell[nshell].nnucl > 2)
489 shell[nshell].nucl3 = i + shell[nshell].nucl3 - shell[nshell].shell;
491 shell[nshell].shell = i;
492 nshell++;
496 shfc->nshell = nshell;
497 shfc->shell = shell;
500 static void do_1pos(rvec xnew,rvec xold,rvec f,real step)
502 real xo,yo,zo;
503 real dx,dy,dz;
505 xo=xold[XX];
506 yo=xold[YY];
507 zo=xold[ZZ];
509 dx=f[XX]*step;
510 dy=f[YY]*step;
511 dz=f[ZZ]*step;
513 xnew[XX]=xo+dx;
514 xnew[YY]=yo+dy;
515 xnew[ZZ]=zo+dz;
518 static void do_1pos3(rvec xnew,rvec xold,rvec f,rvec step)
520 real xo,yo,zo;
521 real dx,dy,dz;
523 xo=xold[XX];
524 yo=xold[YY];
525 zo=xold[ZZ];
527 dx=f[XX]*step[XX];
528 dy=f[YY]*step[YY];
529 dz=f[ZZ]*step[ZZ];
531 xnew[XX]=xo+dx;
532 xnew[YY]=yo+dy;
533 xnew[ZZ]=zo+dz;
536 static void directional_sd(FILE *log,rvec xold[],rvec xnew[],rvec acc_dir[],
537 int start,int homenr,real step)
539 int i;
541 for(i=start; i<homenr; i++)
542 do_1pos(xnew[i],xold[i],acc_dir[i],step);
545 static void shell_pos_sd(FILE *log,rvec xcur[],rvec xnew[],rvec f[],
546 int ns,t_shell s[],int count)
548 int i,shell,d;
549 real dx,df,k_est;
550 #ifdef PRINT_STEP
551 real step_min,step_max;
553 step_min = 1e30;
554 step_max = 0;
555 #endif
556 for(i=0; (i<ns); i++) {
557 shell = s[i].shell;
558 if (count == 1) {
559 for(d=0; d<DIM; d++) {
560 s[i].step[d] = s[i].k_1;
561 #ifdef PRINT_STEP
562 step_min = min(step_min,s[i].step[d]);
563 step_max = max(step_max,s[i].step[d]);
564 #endif
566 } else {
567 for(d=0; d<DIM; d++) {
568 dx = xcur[shell][d] - s[i].xold[d];
569 df = f[shell][d] - s[i].fold[d];
570 if (dx != 0 && df != 0) {
571 k_est = -dx/df;
572 if (k_est >= 2*s[i].step[d]) {
573 s[i].step[d] *= 1.2;
574 } else if (k_est <= 0) {
575 s[i].step[d] *= 0.8;
576 } else {
577 s[i].step[d] = 0.8*s[i].step[d] + 0.2*k_est;
579 } else if (dx != 0) {
580 s[i].step[d] *= 1.2;
582 #ifdef PRINT_STEP
583 step_min = min(step_min,s[i].step[d]);
584 step_max = max(step_max,s[i].step[d]);
585 #endif
588 copy_rvec(xcur[shell],s[i].xold);
589 copy_rvec(f[shell], s[i].fold);
591 do_1pos3(xnew[shell],xcur[shell],f[shell],s[i].step);
593 if (gmx_debug_at) {
594 fprintf(debug,"shell[%d] = %d\n",i,shell);
595 pr_rvec(debug,0,"fshell",f[shell],DIM,TRUE);
596 pr_rvec(debug,0,"xold",xcur[shell],DIM,TRUE);
597 pr_rvec(debug,0,"step",s[i].step,DIM,TRUE);
598 pr_rvec(debug,0,"xnew",xnew[shell],DIM,TRUE);
601 #ifdef PRINT_STEP
602 printf("step %.3e %.3e\n",step_min,step_max);
603 #endif
606 static void decrease_step_size(int nshell,t_shell s[])
608 int i;
610 for(i=0; i<nshell; i++)
611 svmul(0.8,s[i].step,s[i].step);
614 static void print_epot(FILE *fp,gmx_large_int_t mdstep,int count,real epot,real df,
615 int ndir,real sf_dir)
617 char buf[22];
619 fprintf(fp,"MDStep=%5s/%2d EPot: %12.8e, rmsF: %6.2e",
620 gmx_step_str(mdstep,buf),count,epot,df);
621 if (ndir)
622 fprintf(fp,", dir. rmsF: %6.2e\n",sqrt(sf_dir/ndir));
623 else
624 fprintf(fp,"\n");
628 static real rms_force(t_commrec *cr,rvec f[],int ns,t_shell s[],
629 int ndir,real *sf_dir,real *Epot)
631 int i,shell,ntot;
632 double buf[4];
634 buf[0] = *sf_dir;
635 for(i=0; i<ns; i++) {
636 shell = s[i].shell;
637 buf[0] += norm2(f[shell]);
639 ntot = ns;
641 if (PAR(cr)) {
642 buf[1] = ntot;
643 buf[2] = *sf_dir;
644 buf[3] = *Epot;
645 gmx_sumd(4,buf,cr);
646 ntot = (int)(buf[1] + 0.5);
647 *sf_dir = buf[2];
648 *Epot = buf[3];
650 ntot += ndir;
652 return (ntot ? sqrt(buf[0]/ntot) : 0);
655 static void check_pbc(FILE *fp,rvec x[],int shell)
657 int m,now;
659 now = shell-4;
660 for(m=0; (m<DIM); m++)
661 if (fabs(x[shell][m]-x[now][m]) > 0.3) {
662 pr_rvecs(fp,0,"SHELL-X",x+now,5);
663 break;
667 static void dump_shells(FILE *fp,rvec x[],rvec f[],real ftol,int ns,t_shell s[])
669 int i,shell;
670 real ft2,ff2;
672 ft2 = sqr(ftol);
674 for(i=0; (i<ns); i++) {
675 shell = s[i].shell;
676 ff2 = iprod(f[shell],f[shell]);
677 if (ff2 > ft2)
678 fprintf(fp,"SHELL %5d, force %10.5f %10.5f %10.5f, |f| %10.5f\n",
679 shell,f[shell][XX],f[shell][YY],f[shell][ZZ],sqrt(ff2));
680 check_pbc(fp,x,shell);
684 static void init_adir(FILE *log,gmx_shellfc_t shfc,
685 gmx_constr_t constr,t_idef *idef,t_inputrec *ir,
686 t_commrec *cr,int dd_ac1,
687 gmx_large_int_t step,t_mdatoms *md,int start,int end,
688 rvec *x_old,rvec *x_init,rvec *x,
689 rvec *f,rvec *acc_dir,matrix box,
690 real lambda,real *dvdlambda,t_nrnb *nrnb)
692 rvec *xnold,*xnew;
693 double w_dt;
694 int gf,ga,gt;
695 real dt,scale;
696 int n,d;
697 unsigned short *ptype;
698 rvec p,dx;
700 if (DOMAINDECOMP(cr))
701 n = dd_ac1;
702 else
703 n = end - start;
704 if (n > shfc->adir_nalloc) {
705 shfc->adir_nalloc = over_alloc_dd(n);
706 srenew(shfc->adir_xnold,shfc->adir_nalloc);
707 srenew(shfc->adir_xnew ,shfc->adir_nalloc);
709 xnold = shfc->adir_xnold;
710 xnew = shfc->adir_xnew;
712 ptype = md->ptype;
714 dt = ir->delta_t;
716 /* Does NOT work with freeze or acceleration groups (yet) */
717 for (n=start; n<end; n++) {
718 w_dt = md->invmass[n]*dt;
720 for (d=0; d<DIM; d++) {
721 if ((ptype[n] != eptVSite) && (ptype[n] != eptShell)) {
722 xnold[n-start][d] = x[n][d] - (x_init[n][d] - x_old[n][d]);
723 xnew[n-start][d] = 2*x[n][d] - x_old[n][d] + f[n][d]*w_dt*dt;
724 } else {
725 xnold[n-start][d] = x[n][d];
726 xnew[n-start][d] = x[n][d];
730 constrain(log,FALSE,FALSE,constr,idef,ir,NULL,cr,step,0,md,
731 x,xnold-start,NULL,box,
732 lambda,dvdlambda,NULL,NULL,nrnb,econqCoord,FALSE,0,0);
733 constrain(log,FALSE,FALSE,constr,idef,ir,NULL,cr,step,0,md,
734 x,xnew-start,NULL,box,
735 lambda,dvdlambda,NULL,NULL,nrnb,econqCoord,FALSE,0,0);
737 /* Set xnew to minus the acceleration */
738 for (n=start; n<end; n++) {
739 for(d=0; d<DIM; d++)
740 xnew[n-start][d] =
741 -(2*x[n][d]-xnold[n-start][d]-xnew[n-start][d])/sqr(dt)
742 - f[n][d]*md->invmass[n];
743 clear_rvec(acc_dir[n]);
746 /* Project the acceleration on the old bond directions */
747 constrain(log,FALSE,FALSE,constr,idef,ir,NULL,cr,step,0,md,
748 x_old,xnew-start,acc_dir,box,
749 lambda,dvdlambda,NULL,NULL,nrnb,econqDeriv_FlexCon,FALSE,0,0);
752 int relax_shell_flexcon(FILE *fplog,t_commrec *cr,bool bVerbose,
753 gmx_large_int_t mdstep,t_inputrec *inputrec,
754 bool bDoNS,int force_flags,
755 bool bStopCM,
756 gmx_localtop_t *top,
757 gmx_mtop_t* mtop,
758 gmx_constr_t constr,
759 gmx_enerdata_t *enerd,t_fcdata *fcd,
760 t_state *state,rvec f[],
761 tensor force_vir,
762 t_mdatoms *md,
763 t_nrnb *nrnb,gmx_wallcycle_t wcycle,
764 t_graph *graph,
765 gmx_groups_t *groups,
766 struct gmx_shellfc *shfc,
767 t_forcerec *fr,
768 bool bBornRadii,
769 double t,rvec mu_tot,
770 int natoms,bool *bConverged,
771 gmx_vsite_t *vsite,
772 FILE *fp_field)
774 int nshell;
775 t_shell *shell;
776 t_idef *idef;
777 rvec *pos[2],*force[2],*acc_dir=NULL,*x_old=NULL;
778 real Epot[2],df[2];
779 rvec dx;
780 real sf_dir,invdt;
781 real ftol,xiH,xiS,dum=0;
782 char sbuf[22];
783 bool bCont,bInit;
784 int nat,dd_ac0,dd_ac1=0,i;
785 int start=md->start,homenr=md->homenr,end=start+homenr,cg0,cg1;
786 int nflexcon,g,number_steps,d,Min=0,count=0;
787 #define Try (1-Min) /* At start Try = 1 */
789 bCont = (mdstep == inputrec->init_step) && inputrec->bContinuation;
790 bInit = (mdstep == inputrec->init_step) || shfc->bForceInit;
791 ftol = inputrec->em_tol;
792 number_steps = inputrec->niter;
793 nshell = shfc->nshell;
794 shell = shfc->shell;
795 nflexcon = shfc->nflexcon;
797 idef = &top->idef;
799 if (DOMAINDECOMP(cr)) {
800 nat = dd_natoms_vsite(cr->dd);
801 if (nflexcon > 0) {
802 dd_get_constraint_range(cr->dd,&dd_ac0,&dd_ac1);
803 nat = max(nat,dd_ac1);
805 } else {
806 nat = state->natoms;
809 if (nat > shfc->x_nalloc) {
810 /* Allocate local arrays */
811 shfc->x_nalloc = over_alloc_dd(nat);
812 for(i=0; (i<2); i++) {
813 srenew(shfc->x[i],shfc->x_nalloc);
814 srenew(shfc->f[i],shfc->x_nalloc);
817 for(i=0; (i<2); i++) {
818 pos[i] = shfc->x[i];
819 force[i] = shfc->f[i];
822 /* With particle decomposition this code only works
823 * when all particles involved with each shell are in the same cg.
826 if (bDoNS && inputrec->ePBC != epbcNONE && !DOMAINDECOMP(cr)) {
827 /* This is the only time where the coordinates are used
828 * before do_force is called, which normally puts all
829 * charge groups in the box.
831 if (PARTDECOMP(cr)) {
832 pd_cg_range(cr,&cg0,&cg1);
833 } else {
834 cg0 = 0;
835 cg1 = top->cgs.nr;
837 put_charge_groups_in_box(fplog,cg0,cg1,fr->ePBC,state->box,
838 &(top->cgs),state->x,fr->cg_cm);
839 if (graph)
840 mk_mshift(fplog,graph,fr->ePBC,state->box,state->x);
843 /* After this all coordinate arrays will contain whole molecules */
844 if (graph)
845 shift_self(graph,state->box,state->x);
847 if (nflexcon) {
848 if (nat > shfc->flex_nalloc) {
849 shfc->flex_nalloc = over_alloc_dd(nat);
850 srenew(shfc->acc_dir,shfc->flex_nalloc);
851 srenew(shfc->x_old,shfc->flex_nalloc);
853 acc_dir = shfc->acc_dir;
854 x_old = shfc->x_old;
855 for(i=0; i<homenr; i++) {
856 for(d=0; d<DIM; d++)
857 shfc->x_old[i][d] =
858 state->x[start+i][d] - state->v[start+i][d]*inputrec->delta_t;
862 /* Do a prediction of the shell positions */
863 if (shfc->bPredict && !bCont) {
864 predict_shells(fplog,state->x,state->v,inputrec->delta_t,nshell,shell,
865 md->massT,NULL,bInit);
868 /* do_force expected the charge groups to be in the box */
869 if (graph)
870 unshift_self(graph,state->box,state->x);
872 /* Calculate the forces first time around */
873 if (gmx_debug_at) {
874 pr_rvecs(debug,0,"x b4 do_force",state->x + start,homenr);
876 do_force(fplog,cr,inputrec,mdstep,nrnb,wcycle,top,mtop,groups,
877 state->box,state->x,&state->hist,
878 force[Min],force_vir,md,enerd,fcd,
879 state->lambda,graph,
880 fr,vsite,mu_tot,t,fp_field,NULL,bBornRadii,
881 (bDoNS ? GMX_FORCE_NS : 0) | force_flags);
883 sf_dir = 0;
884 if (nflexcon) {
885 init_adir(fplog,shfc,
886 constr,idef,inputrec,cr,dd_ac1,mdstep,md,start,end,
887 shfc->x_old-start,state->x,state->x,force[Min],
888 shfc->acc_dir-start,state->box,state->lambda,&dum,nrnb);
890 for(i=start; i<end; i++)
891 sf_dir += md->massT[i]*norm2(shfc->acc_dir[i-start]);
894 Epot[Min] = enerd->term[F_EPOT];
896 df[Min]=rms_force(cr,shfc->f[Min],nshell,shell,nflexcon,&sf_dir,&Epot[Min]);
897 df[Try]=0;
898 if (debug) {
899 fprintf(debug,"df = %g %g\n",df[Min],df[Try]);
902 if (gmx_debug_at) {
903 pr_rvecs(debug,0,"force0",force[Min],md->nr);
906 if (nshell+nflexcon > 0) {
907 /* Copy x to pos[Min] & pos[Try]: during minimization only the
908 * shell positions are updated, therefore the other particles must
909 * be set here.
911 memcpy(pos[Min],state->x,nat*sizeof(state->x[0]));
912 memcpy(pos[Try],state->x,nat*sizeof(state->x[0]));
915 if (bVerbose && MASTER(cr))
916 print_epot(stdout,mdstep,0,Epot[Min],df[Min],nflexcon,sf_dir);
918 if (debug) {
919 fprintf(debug,"%17s: %14.10e\n",
920 interaction_function[F_EKIN].longname,enerd->term[F_EKIN]);
921 fprintf(debug,"%17s: %14.10e\n",
922 interaction_function[F_EPOT].longname,enerd->term[F_EPOT]);
923 fprintf(debug,"%17s: %14.10e\n",
924 interaction_function[F_ETOT].longname,enerd->term[F_ETOT]);
925 fprintf(debug,"SHELLSTEP %s\n",gmx_step_str(mdstep,sbuf));
928 /* First check whether we should do shells, or whether the force is
929 * low enough even without minimization.
931 *bConverged = (df[Min] < ftol);
933 for(count=1; (!(*bConverged) && (count < number_steps)); count++) {
934 if (vsite)
935 construct_vsites(fplog,vsite,pos[Min],nrnb,inputrec->delta_t,state->v,
936 idef->iparams,idef->il,
937 fr->ePBC,fr->bMolPBC,graph,cr,state->box);
939 if (nflexcon) {
940 init_adir(fplog,shfc,
941 constr,idef,inputrec,cr,dd_ac1,mdstep,md,start,end,
942 x_old-start,state->x,pos[Min],force[Min],acc_dir-start,
943 state->box,state->lambda,&dum,nrnb);
945 directional_sd(fplog,pos[Min],pos[Try],acc_dir-start,start,end,
946 fr->fc_stepsize);
949 /* New positions, Steepest descent */
950 shell_pos_sd(fplog,pos[Min],pos[Try],force[Min],nshell,shell,count);
952 /* do_force expected the charge groups to be in the box */
953 if (graph)
954 unshift_self(graph,state->box,pos[Try]);
956 if (gmx_debug_at) {
957 pr_rvecs(debug,0,"RELAX: pos[Min] ",pos[Min] + start,homenr);
958 pr_rvecs(debug,0,"RELAX: pos[Try] ",pos[Try] + start,homenr);
960 /* Try the new positions */
961 do_force(fplog,cr,inputrec,1,nrnb,wcycle,
962 top,mtop,groups,state->box,pos[Try],&state->hist,
963 force[Try],force_vir,
964 md,enerd,fcd,state->lambda,graph,
965 fr,vsite,mu_tot,t,fp_field,NULL,bBornRadii,
966 force_flags);
968 if (gmx_debug_at) {
969 pr_rvecs(debug,0,"RELAX: force[Min]",force[Min] + start,homenr);
970 pr_rvecs(debug,0,"RELAX: force[Try]",force[Try] + start,homenr);
972 sf_dir = 0;
973 if (nflexcon) {
974 init_adir(fplog,shfc,
975 constr,idef,inputrec,cr,dd_ac1,mdstep,md,start,end,
976 x_old-start,state->x,pos[Try],force[Try],acc_dir-start,
977 state->box,state->lambda,&dum,nrnb);
979 for(i=start; i<end; i++)
980 sf_dir += md->massT[i]*norm2(acc_dir[i-start]);
983 Epot[Try] = enerd->term[F_EPOT];
985 df[Try]=rms_force(cr,force[Try],nshell,shell,nflexcon,&sf_dir,&Epot[Try]);
987 if (debug)
988 fprintf(debug,"df = %g %g\n",df[Min],df[Try]);
990 if (debug) {
991 if (gmx_debug_at)
992 pr_rvecs(debug,0,"F na do_force",force[Try] + start,homenr);
993 if (gmx_debug_at) {
994 fprintf(debug,"SHELL ITER %d\n",count);
995 dump_shells(debug,pos[Try],force[Try],ftol,nshell,shell);
999 if (bVerbose && MASTER(cr))
1000 print_epot(stdout,mdstep,count,Epot[Try],df[Try],nflexcon,sf_dir);
1002 *bConverged = (df[Try] < ftol);
1004 if ((df[Try] < df[Min])) {
1005 if (debug)
1006 fprintf(debug,"Swapping Min and Try\n");
1007 if (nflexcon) {
1008 /* Correct the velocities for the flexible constraints */
1009 invdt = 1/inputrec->delta_t;
1010 for(i=start; i<end; i++) {
1011 for(d=0; d<DIM; d++)
1012 state->v[i][d] += (pos[Try][i][d] - pos[Min][i][d])*invdt;
1015 Min = Try;
1016 } else {
1017 decrease_step_size(nshell,shell);
1020 if (MASTER(cr) && !(*bConverged)) {
1021 /* Note that the energies and virial are incorrect when not converged */
1022 if (fplog)
1023 fprintf(fplog,
1024 "step %s: EM did not converge in %d iterations, RMS force %.3f\n",
1025 gmx_step_str(mdstep,sbuf),number_steps,df[Min]);
1026 fprintf(stderr,
1027 "step %s: EM did not converge in %d iterations, RMS force %.3f\n",
1028 gmx_step_str(mdstep,sbuf),number_steps,df[Min]);
1031 /* Copy back the coordinates and the forces */
1032 memcpy(state->x,pos[Min],nat*sizeof(state->x[0]));
1033 memcpy(f,force[Min],nat*sizeof(f[0]));
1035 return count;