Fixed include statements such that double precision version of genborn.c
[gromacs/rigid-bodies.git] / src / mdlib / force.c
blobd512b7402e9e7abd412281f8636ad81fbdb7b7c0
1 /* -*- mode: c; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; c-file-style: "stroustrup"; -*-
3 *
4 * This source code is part of
5 *
6 * G R O M A C S
7 *
8 * GROningen MAchine for Chemical Simulations
9 *
10 * VERSION 3.2.0
11 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
12 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
13 * Copyright (c) 2001-2004, The GROMACS development team,
14 * check out http://www.gromacs.org for more information.
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version 2
19 * of the License, or (at your option) any later version.
21 * If you want to redistribute modifications, please consider that
22 * scientific software is very special. Version control is crucial -
23 * bugs must be traceable. We will be happy to consider code for
24 * inclusion in the official distribution, but derived work must not
25 * be called official GROMACS. Details are found in the README & COPYING
26 * files - if they are missing, get the official version at www.gromacs.org.
28 * To help us fund GROMACS development, we humbly ask that you cite
29 * the papers on the package - you can find them in the top README file.
31 * For more info, check our website at http://www.gromacs.org
33 * And Hey:
34 * GROwing Monsters And Cloning Shrimps
36 #ifdef HAVE_CONFIG_H
37 #include <config.h>
38 #endif
40 #include <math.h>
41 #include <string.h>
42 #include "sysstuff.h"
43 #include "typedefs.h"
44 #include "macros.h"
45 #include "smalloc.h"
46 #include "macros.h"
47 #include "physics.h"
48 #include "force.h"
49 #include "nonbonded.h"
50 #include "names.h"
51 #include "network.h"
52 #include "pbc.h"
53 #include "ns.h"
54 #include "nrnb.h"
55 #include "bondf.h"
56 #include "mshift.h"
57 #include "txtdump.h"
58 #include "coulomb.h"
59 #include "pppm.h"
60 #include "pme.h"
61 #include "mdrun.h"
62 #include "domdec.h"
63 #include "partdec.h"
64 #include "qmmm.h"
65 #include "mpelogging.h"
68 void ns(FILE *fp,
69 t_forcerec *fr,
70 rvec x[],
71 matrix box,
72 gmx_groups_t *groups,
73 t_grpopts *opts,
74 gmx_localtop_t *top,
75 t_mdatoms *md,
76 t_commrec *cr,
77 t_nrnb *nrnb,
78 real lambda,
79 real *dvdlambda,
80 gmx_grppairener_t *grppener,
81 bool bFillGrid,
82 bool bDoLongRange,
83 bool bDoForces,
84 rvec *f)
86 char *ptr;
87 int nsearch;
89 GMX_MPE_LOG(ev_ns_start);
90 if (!fr->ns.nblist_initialized)
92 init_neighbor_list(fp, fr, md->homenr);
95 if (fr->bTwinRange)
96 fr->nlr=0;
98 nsearch = search_neighbours(fp,fr,x,box,top,groups,cr,nrnb,md,
99 lambda,dvdlambda,grppener,
100 bFillGrid,bDoLongRange,
101 bDoForces,f);
102 if (debug)
103 fprintf(debug,"nsearch = %d\n",nsearch);
105 /* Check whether we have to do dynamic load balancing */
106 /*if ((nsb->nstDlb > 0) && (mod(step,nsb->nstDlb) == 0))
107 count_nb(cr,nsb,&(top->blocks[ebCGS]),nns,fr->nlr,
108 &(top->idef),opts->ngener);
110 if (fr->ns.dump_nl > 0)
111 dump_nblist(fp,cr,fr,fr->ns.dump_nl);
113 GMX_MPE_LOG(ev_ns_finish);
116 void do_force_lowlevel(FILE *fplog, gmx_large_int_t step,
117 t_forcerec *fr, t_inputrec *ir,
118 t_idef *idef, t_commrec *cr,
119 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
120 t_mdatoms *md,
121 t_grpopts *opts,
122 rvec x[], history_t *hist,
123 rvec f[],
124 gmx_enerdata_t *enerd,
125 t_fcdata *fcd,
126 gmx_mtop_t *mtop,
127 gmx_localtop_t *top,
128 gmx_genborn_t *born,
129 t_atomtypes *atype,
130 bool bBornRadii,
131 matrix box,
132 real lambda,
133 t_graph *graph,
134 t_blocka *excl,
135 rvec mu_tot[],
136 int flags,
137 float *cycles_pme)
139 int i,status;
140 int donb_flags;
141 bool bDoEpot,bSepDVDL,bSB;
142 int pme_flags;
143 matrix boxs;
144 rvec box_size;
145 real dvdlambda,Vsr,Vlr,Vcorr=0,vdip,vcharge;
146 t_pbc pbc;
147 real dvdgb;
148 char buf[22];
149 gmx_enerdata_t ed_lam;
150 double lam_i;
151 real dvdl_dum;
153 #ifdef GMX_MPI
154 double t0=0.0,t1,t2,t3; /* time measurement for coarse load balancing */
155 #endif
157 #define PRINT_SEPDVDL(s,v,dvdl) if (bSepDVDL) fprintf(fplog,sepdvdlformat,s,v,dvdl);
159 GMX_MPE_LOG(ev_force_start);
161 /* Reset box */
162 for(i=0; (i<DIM); i++)
164 box_size[i]=box[i][i];
167 bSepDVDL=(fr->bSepDVDL && do_per_step(step,ir->nstlog));
168 debug_gmx();
170 /* do QMMM first if requested */
171 if(fr->bQMMM)
173 enerd->term[F_EQM] = calculate_QMMM(cr,x,f,fr,md);
176 if (bSepDVDL)
178 fprintf(fplog,"Step %s: non-bonded V and dVdl for node %d:\n",
179 gmx_step_str(step,buf),cr->nodeid);
182 /* Call the short range functions all in one go. */
183 GMX_MPE_LOG(ev_do_fnbf_start);
185 dvdlambda = 0;
187 #ifdef GMX_MPI
188 /*#define TAKETIME ((cr->npmenodes) && (fr->timesteps < 12))*/
189 #define TAKETIME FALSE
190 if (TAKETIME)
192 MPI_Barrier(cr->mpi_comm_mygroup);
193 t0=MPI_Wtime();
195 #endif
197 if (ir->nwall)
199 dvdlambda = do_walls(ir,fr,box,md,x,f,lambda,
200 enerd->grpp.ener[egLJSR],nrnb);
201 PRINT_SEPDVDL("Walls",0.0,dvdlambda);
202 enerd->dvdl_lin += dvdlambda;
205 /* If doing GB, reset dvda and calculate the Born radii */
206 if (ir->implicit_solvent)
208 /* wallcycle_start(wcycle,ewcGB); */
210 for(i=0;i<born->nr;i++)
212 fr->dvda[i]=0;
215 if(bBornRadii)
217 calc_gb_rad(cr,fr,ir,top,atype,x,&(fr->gblist),born,md,nrnb);
220 /* wallcycle_stop(wcycle, ewcGB); */
223 where();
224 donb_flags = 0;
225 if (flags & GMX_FORCE_FORCES)
227 donb_flags |= GMX_DONB_FORCES;
229 do_nonbonded(cr,fr,x,f,md,excl,
230 fr->bBHAM ?
231 enerd->grpp.ener[egBHAMSR] :
232 enerd->grpp.ener[egLJSR],
233 enerd->grpp.ener[egCOULSR],
234 enerd->grpp.ener[egGB],box_size,nrnb,
235 lambda,&dvdlambda,-1,-1,donb_flags);
236 /* If we do foreign lambda and we have soft-core interactions
237 * we have to recalculate the (non-linear) energies contributions.
239 if (ir->n_flambda > 0 && (flags & GMX_FORCE_DHDL) && ir->sc_alpha != 0)
241 init_enerdata(mtop->groups.grps[egcENER].nr,ir->n_flambda,&ed_lam);
243 for(i=0; i<enerd->n_lambda; i++)
245 lam_i = (i==0 ? lambda : ir->flambda[i-1]);
246 dvdl_dum = 0;
247 reset_enerdata(&ir->opts,fr,TRUE,&ed_lam,FALSE);
248 do_nonbonded(cr,fr,x,f,md,excl,
249 fr->bBHAM ?
250 ed_lam.grpp.ener[egBHAMSR] :
251 ed_lam.grpp.ener[egLJSR],
252 ed_lam.grpp.ener[egCOULSR],
253 enerd->grpp.ener[egGB], box_size,nrnb,
254 lam_i,&dvdl_dum,-1,-1,
255 GMX_DONB_FOREIGNLAMBDA);
256 sum_epot(&ir->opts,&ed_lam);
257 enerd->enerpart_lambda[i] += ed_lam.term[F_EPOT];
259 destroy_enerdata(&ed_lam);
261 where();
263 /* If we are doing GB, calculate bonded forces and apply corrections
264 * to the solvation forces */
265 if (ir->implicit_solvent) {
266 dvdgb = calc_gb_forces(cr,md,born,top,atype,x,f,fr,idef,
267 ir->gb_algorithm,nrnb,bBornRadii,&pbc,graph);
269 enerd->term[F_GB12]+=dvdgb;
271 /* Also add the nonbonded GB potential energy (only from one energy group currently) */
272 enerd->term[F_GB12]+=enerd->grpp.ener[egGB][0];
275 #ifdef GMX_MPI
276 if (TAKETIME)
278 t1=MPI_Wtime();
279 fr->t_fnbf += t1-t0;
281 #endif
283 if (ir->sc_alpha != 0)
285 enerd->dvdl_nonlin += dvdlambda;
287 else
289 enerd->dvdl_lin += dvdlambda;
291 Vsr = 0;
292 if (bSepDVDL)
294 for(i=0; i<enerd->grpp.nener; i++)
296 Vsr +=
297 (fr->bBHAM ?
298 enerd->grpp.ener[egBHAMSR][i] :
299 enerd->grpp.ener[egLJSR][i])
300 + enerd->grpp.ener[egCOULSR][i];
303 PRINT_SEPDVDL("VdW and Coulomb SR particle-p.",Vsr,dvdlambda);
304 debug_gmx();
306 GMX_MPE_LOG(ev_do_fnbf_finish);
308 if (debug)
310 pr_rvecs(debug,0,"fshift after SR",fr->fshift,SHIFTS);
313 /* Shift the coordinates. Must be done before bonded forces and PPPM,
314 * but is also necessary for SHAKE and update, therefore it can NOT
315 * go when no bonded forces have to be evaluated.
318 /* Here sometimes we would not need to shift with NBFonly,
319 * but we do so anyhow for consistency of the returned coordinates.
321 if (graph)
323 shift_self(graph,box,x);
324 if (TRICLINIC(box))
326 inc_nrnb(nrnb,eNR_SHIFTX,2*graph->nnodes);
328 else
330 inc_nrnb(nrnb,eNR_SHIFTX,graph->nnodes);
333 /* Check whether we need to do bondeds or correct for exclusions */
334 if (fr->bMolPBC &&
335 ((flags & GMX_FORCE_BONDED)
336 || EEL_RF(fr->eeltype) || EEL_FULL(fr->eeltype)))
338 /* Since all atoms are in the rectangular or triclinic unit-cell,
339 * only single box vector shifts (2 in x) are required.
341 set_pbc_dd(&pbc,fr->ePBC,cr->dd,TRUE,box);
343 debug_gmx();
345 if (flags & GMX_FORCE_BONDED)
347 GMX_MPE_LOG(ev_calc_bonds_start);
348 calc_bonds(fplog,cr->ms,
349 idef,x,hist,f,fr,&pbc,graph,enerd,nrnb,lambda,md,fcd,
350 DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL, atype, born,
351 fr->bSepDVDL && do_per_step(step,ir->nstlog),step);
353 /* Check if we have to determine energy differences
354 * at foreign lambda's.
356 if (ir->n_flambda > 0 && (flags & GMX_FORCE_DHDL) &&
357 idef->ilsort != ilsortNO_FE)
359 if (idef->ilsort != ilsortFE_SORTED)
361 gmx_incons("The bonded interactions are not sorted for free energy");
363 init_enerdata(mtop->groups.grps[egcENER].nr,ir->n_flambda,&ed_lam);
365 for(i=0; i<enerd->n_lambda; i++)
367 lam_i = (i==0 ? lambda : ir->flambda[i-1]);
368 dvdl_dum = 0;
369 reset_enerdata(&ir->opts,fr,TRUE,&ed_lam,FALSE);
370 calc_bonds_lambda(fplog,
371 idef,x,fr,&pbc,graph,&ed_lam,nrnb,lam_i,md,
372 fcd,
373 DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL);
374 sum_epot(&ir->opts,&ed_lam);
375 enerd->enerpart_lambda[i] += ed_lam.term[F_EPOT];
377 destroy_enerdata(&ed_lam);
379 debug_gmx();
380 GMX_MPE_LOG(ev_calc_bonds_finish);
383 where();
385 *cycles_pme = 0;
386 if (EEL_FULL(fr->eeltype))
388 bSB = (ir->nwall == 2);
389 if (bSB)
391 copy_mat(box,boxs);
392 svmul(ir->wall_ewald_zfac,boxs[ZZ],boxs[ZZ]);
393 box_size[ZZ] *= ir->wall_ewald_zfac;
396 clear_mat(fr->vir_el_recip);
398 if (fr->bEwald)
400 if (fr->n_tpi == 0)
402 dvdlambda = 0;
403 Vcorr = ewald_LRcorrection(fplog,md->start,md->start+md->homenr,
404 cr,fr,
405 md->chargeA,
406 md->nChargePerturbed ? md->chargeB : NULL,
407 excl,x,bSB ? boxs : box,mu_tot,
408 ir->ewald_geometry,
409 ir->epsilon_surface,
410 lambda,&dvdlambda,&vdip,&vcharge);
411 PRINT_SEPDVDL("Ewald excl./charge/dip. corr.",Vcorr,dvdlambda);
412 enerd->dvdl_lin += dvdlambda;
414 else
416 if (ir->ewald_geometry != eewg3D || ir->epsilon_surface != 0)
418 gmx_fatal(FARGS,"TPI with PME currently only works in a 3D geometry with tin-foil boundary conditions");
420 /* The TPI molecule does not have exclusions with the rest
421 * of the system and no intra-molecular PME grid contributions
422 * will be calculated in gmx_pme_calc_energy.
424 Vcorr = 0;
427 else
429 Vcorr = shift_LRcorrection(fplog,md->start,md->homenr,cr,fr,
430 md->chargeA,excl,x,TRUE,box,
431 fr->vir_el_recip);
434 dvdlambda = 0;
435 status = 0;
436 switch (fr->eeltype)
438 case eelPPPM:
439 status = gmx_pppm_do(fplog,fr->pmedata,FALSE,x,fr->f_novirsum,
440 md->chargeA,
441 box_size,fr->phi,cr,md->start,md->homenr,
442 nrnb,ir->pme_order,&Vlr);
443 break;
444 case eelPME:
445 case eelPMESWITCH:
446 case eelPMEUSER:
447 if (cr->duty & DUTY_PME)
449 if (fr->n_tpi == 0 || (flags & GMX_FORCE_STATECHANGED))
451 pme_flags = GMX_PME_SPREAD_Q | GMX_PME_SOLVE;
452 if (flags & GMX_FORCE_FORCES)
454 pme_flags |= GMX_PME_CALC_F;
456 if (flags & GMX_FORCE_VIRIAL)
458 pme_flags |= GMX_PME_CALC_ENER_VIR;
460 wallcycle_start(wcycle,ewcPMEMESH);
461 status = gmx_pme_do(fr->pmedata,
462 md->start,md->homenr - fr->n_tpi,
463 x,fr->f_novirsum,
464 md->chargeA,md->chargeB,
465 bSB ? boxs : box,cr,
466 DOMAINDECOMP(cr) ? dd_pme_maxshift0(cr->dd) : 0,
467 DOMAINDECOMP(cr) ? dd_pme_maxshift1(cr->dd) : 0,
468 nrnb,wcycle,
469 fr->vir_el_recip,fr->ewaldcoeff,
470 &Vlr,lambda,&dvdlambda,
471 pme_flags);
472 *cycles_pme = wallcycle_stop(wcycle,ewcPMEMESH);
474 /* We should try to do as little computation after
475 * this as possible, because parallel PME synchronizes
476 * the nodes, so we want all load imbalance of the rest
477 * of the force calculation to be before the PME call.
478 * DD load balancing is done on the whole time of
479 * the force call (without PME).
482 if (fr->n_tpi > 0)
484 /* Determine the PME grid energy of the test molecule
485 * with the PME grid potential of the other charges.
487 gmx_pme_calc_energy(fr->pmedata,fr->n_tpi,
488 x + md->homenr - fr->n_tpi,
489 md->chargeA + md->homenr - fr->n_tpi,
490 &Vlr);
492 PRINT_SEPDVDL("PME mesh",Vlr,dvdlambda);
494 else
496 /* Energies and virial are obtained later from the PME nodes */
497 /* but values have to be zeroed out here */
498 Vlr=0.0;
500 break;
501 case eelEWALD:
502 Vlr = do_ewald(fplog,FALSE,ir,x,fr->f_novirsum,
503 md->chargeA,md->chargeB,
504 box_size,cr,md->homenr,
505 fr->vir_el_recip,fr->ewaldcoeff,
506 lambda,&dvdlambda,fr->ewald_table);
507 PRINT_SEPDVDL("Ewald long-range",Vlr,dvdlambda);
508 break;
509 default:
510 Vlr = 0;
511 gmx_fatal(FARGS,"No such electrostatics method implemented %s",
512 eel_names[fr->eeltype]);
514 if (status != 0)
516 gmx_fatal(FARGS,"Error %d in long range electrostatics routine %s",
517 status,EELTYPE(fr->eeltype));
519 enerd->dvdl_lin += dvdlambda;
520 enerd->term[F_COUL_RECIP] = Vlr + Vcorr;
521 if (debug)
523 fprintf(debug,"Vlr = %g, Vcorr = %g, Vlr_corr = %g\n",
524 Vlr,Vcorr,enerd->term[F_COUL_RECIP]);
525 pr_rvecs(debug,0,"vir_el_recip after corr",fr->vir_el_recip,DIM);
526 pr_rvecs(debug,0,"fshift after LR Corrections",fr->fshift,SHIFTS);
529 else
531 if (EEL_RF(fr->eeltype))
533 dvdlambda = 0;
535 if (fr->eeltype != eelRF_NEC)
537 enerd->term[F_RF_EXCL] =
538 RF_excl_correction(fplog,fr,graph,md,excl,x,f,
539 fr->fshift,&pbc,lambda,&dvdlambda);
542 enerd->dvdl_lin += dvdlambda;
543 PRINT_SEPDVDL("RF exclusion correction",
544 enerd->term[F_RF_EXCL],dvdlambda);
547 where();
548 debug_gmx();
550 if (debug)
552 print_nrnb(debug,nrnb);
554 debug_gmx();
556 #ifdef GMX_MPI
557 if (TAKETIME)
559 t2=MPI_Wtime();
560 MPI_Barrier(cr->mpi_comm_mygroup);
561 t3=MPI_Wtime();
562 fr->t_wait += t3-t2;
563 if (fr->timesteps == 11)
565 fprintf(stderr,"* PP load balancing info: node %d, step %s, rel wait time=%3.0f%% , load string value: %7.2f\n",
566 cr->nodeid, gmx_step_str(fr->timesteps,buf),
567 100*fr->t_wait/(fr->t_wait+fr->t_fnbf),
568 (fr->t_fnbf+fr->t_wait)/fr->t_fnbf);
570 fr->timesteps++;
572 #endif
574 if (debug)
576 pr_rvecs(debug,0,"fshift after bondeds",fr->fshift,SHIFTS);
579 GMX_MPE_LOG(ev_force_finish);
583 void init_enerdata(int ngener,int n_flambda,gmx_enerdata_t *enerd)
585 int i,n2;
587 for(i=0; i<F_NRE; i++)
589 enerd->term[i] = 0;
592 n2=ngener*ngener;
593 if (debug)
595 fprintf(debug,"Creating %d sized group matrix for energies\n",n2);
597 enerd->grpp.nener = n2;
598 for(i=0; (i<egNR); i++)
600 snew(enerd->grpp.ener[i],n2);
603 if (n_flambda)
605 enerd->n_lambda = 1 + n_flambda;
606 snew(enerd->enerpart_lambda,enerd->n_lambda);
608 else
610 enerd->n_lambda = 0;
614 void destroy_enerdata(gmx_enerdata_t *enerd)
616 int i;
618 for(i=0; (i<egNR); i++)
620 sfree(enerd->grpp.ener[i]);
623 if (enerd->n_lambda)
625 sfree(enerd->enerpart_lambda);
629 static real sum_v(int n,real v[])
631 real t;
632 int i;
634 t = 0.0;
635 for(i=0; (i<n); i++)
636 t = t + v[i];
638 return t;
641 void sum_epot(t_grpopts *opts,gmx_enerdata_t *enerd)
643 gmx_grppairener_t *grpp;
644 real *epot;
645 int i;
647 grpp = &enerd->grpp;
648 epot = enerd->term;
650 /* Accumulate energies */
651 epot[F_COUL_SR] = sum_v(grpp->nener,grpp->ener[egCOULSR]);
652 epot[F_LJ] = sum_v(grpp->nener,grpp->ener[egLJSR]);
653 epot[F_LJ14] = sum_v(grpp->nener,grpp->ener[egLJ14]);
654 epot[F_COUL14] = sum_v(grpp->nener,grpp->ener[egCOUL14]);
655 epot[F_COUL_LR] = sum_v(grpp->nener,grpp->ener[egCOULLR]);
656 epot[F_LJ_LR] = sum_v(grpp->nener,grpp->ener[egLJLR]);
657 /* lattice part of LR doesnt belong to any group
658 * and has been added earlier
660 epot[F_BHAM] = sum_v(grpp->nener,grpp->ener[egBHAMSR]);
661 epot[F_BHAM_LR] = sum_v(grpp->nener,grpp->ener[egBHAMLR]);
663 epot[F_EPOT] = 0;
664 for(i=0; (i<F_EPOT); i++)
665 if (i != F_DISRESVIOL && i != F_ORIRESDEV && i != F_DIHRESVIOL)
666 epot[F_EPOT] += epot[i];
669 void sum_dhdl(gmx_enerdata_t *enerd,double lambda,t_inputrec *ir)
671 int i;
672 double dlam,dhdl_lin;
674 enerd->term[F_DVDL] = enerd->dvdl_lin + enerd->dvdl_nonlin;
676 if (debug)
678 fprintf(debug,"dvdl: %f, non-linear %f + linear %f\n",
679 enerd->term[F_DVDL],enerd->dvdl_nonlin,enerd->dvdl_lin);
682 /* Notes on the foreign lambda free energy difference evaluation:
683 * Adding the potential and ekin terms that depend linearly on lambda
684 * as delta lam * dvdl to the energy differences is exact.
685 * For the constraint dvdl this is not exact, but we have no other option.
686 * For the non-bonded LR term we assume that the soft-core (if present)
687 * no longer affects the energy beyond the short-range cut-off,
688 * which is a very good approximation (except for exotic settings).
690 for(i=1; i<enerd->n_lambda; i++)
692 dlam = (ir->flambda[i-1] - lambda);
693 dhdl_lin =
694 enerd->dvdl_lin + enerd->term[F_DKDL] + enerd->term[F_DHDL_CON];
695 if (debug)
697 fprintf(debug,"enerdiff lam %g: non-linear %f linear %f*%f\n",
698 ir->flambda[i-1],
699 enerd->enerpart_lambda[i] - enerd->enerpart_lambda[0],
700 dlam,dhdl_lin);
702 enerd->enerpart_lambda[i] += dlam*dhdl_lin;
707 void reset_enerdata(t_grpopts *opts,
708 t_forcerec *fr,bool bNS,
709 gmx_enerdata_t *enerd,
710 bool bMaster)
712 bool bKeepLR;
713 int i,j;
715 /* First reset all energy components, except for the long range terms
716 * on the master at non neighbor search steps, since the long range
717 * terms have already been summed at the last neighbor search step.
719 bKeepLR = (fr->bTwinRange && !bNS);
720 for(i=0; (i<egNR); i++) {
721 if (!(bKeepLR && bMaster && (i == egCOULLR || i == egLJLR))) {
722 for(j=0; (j<enerd->grpp.nener); j++)
723 enerd->grpp.ener[i][j] = 0.0;
726 enerd->dvdl_lin = 0.0;
727 enerd->dvdl_nonlin = 0.0;
729 /* Normal potential energy components */
730 for(i=0; (i<=F_EPOT); i++) {
731 enerd->term[i] = 0.0;
733 /* Initialize the dVdlambda term with the long range contribution */
734 enerd->term[F_DVDL] = 0.0;
735 enerd->term[F_DKDL] = 0.0;
736 enerd->term[F_DHDL_CON] = 0.0;
737 if (enerd->n_lambda > 0)
739 for(i=0; i<enerd->n_lambda; i++)
741 enerd->enerpart_lambda[i] = 0.0;