A freeze group can now be allowed to move rigidly in some dimension by using "freezed...
[gromacs/rigid-bodies.git] / src / tools / gmx_lie.c
blob8c33e0008a8b9a78ee4cde445a41e72922706996
1 /*
2 *
3 * This source code is part of
4 *
5 * G R O M A C S
6 *
7 * GROningen MAchine for Chemical Simulations
8 *
9 * VERSION 3.2.0
10 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
11 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
12 * Copyright (c) 2001-2004, The GROMACS development team,
13 * check out http://www.gromacs.org for more information.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * If you want to redistribute modifications, please consider that
21 * scientific software is very special. Version control is crucial -
22 * bugs must be traceable. We will be happy to consider code for
23 * inclusion in the official distribution, but derived work must not
24 * be called official GROMACS. Details are found in the README & COPYING
25 * files - if they are missing, get the official version at www.gromacs.org.
27 * To help us fund GROMACS development, we humbly ask that you cite
28 * the papers on the package - you can find them in the top README file.
30 * For more info, check our website at http://www.gromacs.org
32 * And Hey:
33 * Green Red Orange Magenta Azure Cyan Skyblue
35 #ifdef HAVE_CONFIG_H
36 #include <config.h>
37 #endif
39 #include <stdio.h>
40 #include <stdlib.h>
41 #include <math.h>
42 #include <string.h>
44 #include "statutil.h"
45 #include "sysstuff.h"
46 #include "typedefs.h"
47 #include "smalloc.h"
48 #include "macros.h"
49 #include "gmx_fatal.h"
50 #include "vec.h"
51 #include "copyrite.h"
52 #include "futil.h"
53 #include "statutil.h"
54 #include "txtdump.h"
55 #include "enxio.h"
56 #include "gstat.h"
57 #include "xvgr.h"
58 #include "gmx_ana.h"
61 typedef struct {
62 int nlj,nqq;
63 int *lj;
64 int *qq;
65 } t_liedata;
67 static t_liedata *analyze_names(int nre,gmx_enxnm_t *names,const char *ligand)
69 int i;
70 t_liedata *ld;
71 char self[256];
73 /* Skip until we come to pressure */
74 for(i=0; (i<F_NRE); i++)
75 if (strcmp(names[i].name,interaction_function[F_PRES].longname) == 0)
76 break;
78 /* Now real analysis: find components of energies */
79 sprintf(self,"%s-%s",ligand,ligand);
80 snew(ld,1);
81 for( ; (i<nre); i++) {
82 if ((strstr(names[i].name,ligand) != NULL) &&
83 (strstr(names[i].name,self) == NULL)) {
84 if (strstr(names[i].name,"LJ") != NULL) {
85 ld->nlj++;
86 srenew(ld->lj,ld->nlj);
87 ld->lj[ld->nlj-1] = i;
89 else if (strstr(names[i].name,"Coul") != NULL) {
90 ld->nqq++;
91 srenew(ld->qq,ld->nqq);
92 ld->qq[ld->nqq-1] = i;
96 printf("Using the following energy terms:\n");
97 printf("LJ: ");
98 for(i=0; (i<ld->nlj); i++)
99 printf(" %12s",names[ld->lj[i]].name);
100 printf("\nCoul:");
101 for(i=0; (i<ld->nqq); i++)
102 printf(" %12s",names[ld->qq[i]].name);
103 printf("\n");
105 return ld;
108 real calc_lie(t_liedata *ld,t_energy ee[],real lie_lj,real lie_qq,
109 real fac_lj,real fac_qq)
111 int i;
112 real lj_tot,qq_tot;
114 lj_tot = 0;
115 for(i=0; (i<ld->nlj); i++)
116 lj_tot += ee[ld->lj[i]].e;
117 qq_tot = 0;
118 for(i=0; (i<ld->nqq); i++)
119 qq_tot += ee[ld->qq[i]].e;
121 /* And now the great LIE formula: */
122 return fac_lj*(lj_tot-lie_lj)+fac_qq*(qq_tot-lie_qq);
125 int gmx_lie(int argc,char *argv[])
127 const char *desc[] = {
128 "[TT]g_lie[tt] computes a free energy estimate based on an energy analysis",
129 "from. One needs an energy file with the following components:",
130 "Coul (A-B) LJ-SR (A-B) etc."
132 static real lie_lj=0,lie_qq=0,fac_lj=0.181,fac_qq=0.5;
133 static const char *ligand="none";
134 t_pargs pa[] = {
135 { "-Elj", FALSE, etREAL, {&lie_lj},
136 "Lennard-Jones interaction between ligand and solvent" },
137 { "-Eqq", FALSE, etREAL, {&lie_qq},
138 "Coulomb interaction between ligand and solvent" },
139 { "-Clj", FALSE, etREAL, {&fac_lj},
140 "Factor in the LIE equation for Lennard-Jones component of energy" },
141 { "-Cqq", FALSE, etREAL, {&fac_qq},
142 "Factor in the LIE equation for Coulomb component of energy" },
143 { "-ligand", FALSE, etSTR, {&ligand},
144 "Name of the ligand in the energy file" }
146 #define NPA asize(pa)
148 FILE *out;
149 int nre,nframes=0,ct=0;
150 ener_file_t fp;
151 gmx_bool bCont;
152 t_liedata *ld;
153 gmx_enxnm_t *enm=NULL;
154 t_enxframe *fr;
155 real lie;
156 double lieaver=0,lieav2=0;
157 output_env_t oenv;
159 t_filenm fnm[] = {
160 { efEDR, "-f", "ener", ffREAD },
161 { efXVG, "-o", "lie", ffWRITE }
163 #define NFILE asize(fnm)
165 CopyRight(stderr,argv[0]);
166 parse_common_args(&argc,argv,PCA_CAN_VIEW | PCA_CAN_TIME | PCA_BE_NICE,
167 NFILE,fnm,NPA,pa,asize(desc),desc,0,NULL,&oenv);
169 fp = open_enx(ftp2fn(efEDR,NFILE,fnm),"r");
170 do_enxnms(fp,&nre,&enm);
172 ld = analyze_names(nre,enm,ligand);
173 snew(fr,1);
174 out = xvgropen(ftp2fn(efXVG,NFILE,fnm),"LIE free energy estimate",
175 "Time (ps)","DGbind (kJ/mol)",oenv);
176 do {
177 bCont = do_enx(fp,fr);
178 ct = check_times(fr->t);
179 if (ct == 0) {
180 lie = calc_lie(ld,fr->ener,lie_lj,lie_qq,fac_lj,fac_qq);
181 lieaver += lie;
182 lieav2 += lie*lie;
183 nframes ++;
184 fprintf(out,"%10g %10g\n",fr->t,lie);
186 } while (bCont);
187 close_enx(fp);
188 ffclose(out);
189 fprintf(stderr,"\n");
191 if (nframes > 0)
192 printf("DGbind = %.3f (%.3f)\n",lieaver/nframes,
193 sqrt(lieav2/nframes-sqr(lieaver/nframes)));
195 do_view(oenv,ftp2fn(efXVG,NFILE,fnm),"-nxy");
197 thanx(stderr);
199 return 0;