3 * This source code is part of
7 * GROningen MAchine for Chemical Simulations
10 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
11 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
12 * Copyright (c) 2001-2004, The GROMACS development team,
13 * check out http://www.gromacs.org for more information.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * If you want to redistribute modifications, please consider that
21 * scientific software is very special. Version control is crucial -
22 * bugs must be traceable. We will be happy to consider code for
23 * inclusion in the official distribution, but derived work must not
24 * be called official GROMACS. Details are found in the README & COPYING
25 * files - if they are missing, get the official version at www.gromacs.org.
27 * To help us fund GROMACS development, we humbly ask that you cite
28 * the papers on the package - you can find them in the top README file.
30 * For more info, check our website at http://www.gromacs.org
33 * GROningen Mixture of Alchemy and Childrens' Stories
49 result
= (a
< 0.) ? ((int)(a
- half
)) : ((int)(a
+ half
));
53 real
cuberoot (real x
)
57 return (-pow(-x
,1.0/DIM
));
61 return (pow(x
,1.0/DIM
));
65 real
sign(real x
,real y
)
73 /* Double and single precision erf() and erfc() from
74 * the Sun Freely Distributable Math Library FDLIBM.
75 * See http://www.netlib.org/fdlibm
76 * Specific file used: s_erf.c, version 1.3 95/01/18
79 * ====================================================
80 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
82 * Developed at SunSoft, a Sun Microsystems, Inc. business.
83 * Permission to use, copy, modify, and distribute this
84 * software is freely granted, provided that this notice
86 * ====================================================
89 #if (INT_MAX == 2147483647)
90 typedef int erf_int32_t
;
91 typedef unsigned int erf_u_int32_t
;
92 #elif (LONG_MAX == 2147483647L)
93 typedef long erf_int32_t
;
94 typedef unsigned long erf_u_int32_t
;
95 #elif (SHRT_MAX == 2147483647)
96 typedef short erf_int32_t
;
97 typedef unsigned short erf_u_int32_t
;
99 # error ERROR: No 32 bit wide integer type found!
107 half
= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
108 one
= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
109 two
= 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
110 /* c = (float)0.84506291151 */
111 erx
= 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
113 * Coefficients for approximation to erf on [0,0.84375]
115 efx
= 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
116 efx8
= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
117 pp0
= 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
118 pp1
= -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
119 pp2
= -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
120 pp3
= -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
121 pp4
= -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
122 qq1
= 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
123 qq2
= 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
124 qq3
= 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
125 qq4
= 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
126 qq5
= -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
128 * Coefficients for approximation to erf in [0.84375,1.25]
130 pa0
= -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
131 pa1
= 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
132 pa2
= -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
133 pa3
= 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
134 pa4
= -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
135 pa5
= 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
136 pa6
= -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
137 qa1
= 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
138 qa2
= 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
139 qa3
= 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
140 qa4
= 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
141 qa5
= 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
142 qa6
= 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
144 * Coefficients for approximation to erfc in [1.25,1/0.35]
146 ra0
= -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
147 ra1
= -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
148 ra2
= -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
149 ra3
= -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
150 ra4
= -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
151 ra5
= -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
152 ra6
= -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
153 ra7
= -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
154 sa1
= 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
155 sa2
= 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
156 sa3
= 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
157 sa4
= 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
158 sa5
= 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
159 sa6
= 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
160 sa7
= 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
161 sa8
= -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
163 * Coefficients for approximation to erfc in [1/.35,28]
165 rb0
= -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
166 rb1
= -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
167 rb2
= -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
168 rb3
= -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
169 rb4
= -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
170 rb5
= -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
171 rb6
= -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
172 sb1
= 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
173 sb2
= 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
174 sb3
= 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
175 sb4
= 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
176 sb5
= 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
177 sb6
= 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
178 sb7
= -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
180 double gmx_erf(double x
)
184 double R
,S
,P
,Q
,s
,y
,z
,r
;
195 #ifdef IEEE754_BIG_ENDIAN_WORD_ORDER
205 i
= ((erf_u_int32_t
)hx
>>31)<<1;
206 return (double)(1-i
)+one
/x
; /* erf(+-inf)=+-1 */
216 return 0.125*(8.0*x
+efx8
*x
); /*avoid underflow */
220 r
= pp0
+z
*(pp1
+z
*(pp2
+z
*(pp3
+z
*pp4
)));
221 s
= one
+z
*(qq1
+z
*(qq2
+z
*(qq3
+z
*(qq4
+z
*qq5
))));
227 /* 0.84375 <= |x| < 1.25 */
229 P
= pa0
+s
*(pa1
+s
*(pa2
+s
*(pa3
+s
*(pa4
+s
*(pa5
+s
*pa6
)))));
230 Q
= one
+s
*(qa1
+s
*(qa2
+s
*(qa3
+s
*(qa4
+s
*(qa5
+s
*qa6
)))));
231 if(hx
>=0) return erx
+ P
/Q
; else return -erx
- P
/Q
;
233 if (ix
>= 0x40180000)
236 if(hx
>=0) return one
-tiny
; else return tiny
-one
;
243 R
=ra0
+s
*(ra1
+s
*(ra2
+s
*(ra3
+s
*(ra4
+s
*(ra5
+s
*(ra6
+s
*ra7
))))));
244 S
=one
+s
*(sa1
+s
*(sa2
+s
*(sa3
+s
*(sa4
+s
*(sa5
+s
*(sa6
+s
*(sa7
+s
*sa8
)))))));
249 R
=rb0
+s
*(rb1
+s
*(rb2
+s
*(rb3
+s
*(rb4
+s
*(rb5
+s
*rb6
)))));
250 S
=one
+s
*(sb1
+s
*(sb2
+s
*(sb3
+s
*(sb4
+s
*(sb5
+s
*(sb6
+s
*sb7
))))));
255 #ifdef IEEE754_BIG_ENDIAN_WORD_ORDER
263 r
= exp(-z
*z
-0.5625)*exp((z
-x
)*(z
+x
)+R
/S
);
271 double gmx_erfc(double x
)
274 double R
,S
,P
,Q
,s
,y
,z
,r
;
285 #ifdef IEEE754_BIG_ENDIAN_WORD_ORDER
295 /* erfc(+-inf)=0,2 */
296 return (double)(((erf_u_int32_t
)hx
>>31)<<1)+one
/x
;
302 double r1
,r2
,s1
,s2
,s3
,z2
,z4
;
303 if(ix
< 0x3c700000) /* |x|<2**-56 */
306 r
= pp0
+z
*(pp1
+z
*(pp2
+z
*(pp3
+z
*pp4
)));
307 s
= one
+z
*(qq1
+z
*(qq2
+z
*(qq3
+z
*(qq4
+z
*qq5
))));
324 /* 0.84375 <= |x| < 1.25 */
326 P
= pa0
+s
*(pa1
+s
*(pa2
+s
*(pa3
+s
*(pa4
+s
*(pa5
+s
*pa6
)))));
327 Q
= one
+s
*(qa1
+s
*(qa2
+s
*(qa3
+s
*(qa4
+s
*(qa5
+s
*qa6
)))));
329 z
= one
-erx
; return z
- P
/Q
;
331 z
= erx
+P
/Q
; return one
+z
;
341 /* |x| < 1/.35 ~ 2.857143*/
342 R
=ra0
+s
*(ra1
+s
*(ra2
+s
*(ra3
+s
*(ra4
+s
*(ra5
+s
*(ra6
+s
*ra7
))))));
343 S
=one
+s
*(sa1
+s
*(sa2
+s
*(sa3
+s
*(sa4
+s
*(sa5
+s
*(sa6
+s
*(sa7
+s
*sa8
)))))));
347 /* |x| >= 1/.35 ~ 2.857143 */
348 if(hx
<0&&ix
>=0x40180000)
349 return two
-tiny
; /* x < -6 */
350 R
=rb0
+s
*(rb1
+s
*(rb2
+s
*(rb3
+s
*(rb4
+s
*(rb5
+s
*rb6
)))));
351 S
=one
+s
*(sb1
+s
*(sb2
+s
*(sb3
+s
*(sb4
+s
*(sb5
+s
*(sb6
+s
*sb7
))))));
356 #ifdef IEEE754_BIG_ENDIAN_WORD_ORDER
364 r
= exp(-z
*z
-0.5625)*exp((z
-x
)*(z
+x
)+R
/S
);
380 #else /* single precision */
386 half
= 5.0000000000e-01, /* 0x3F000000 */
387 one
= 1.0000000000e+00, /* 0x3F800000 */
388 two
= 2.0000000000e+00, /* 0x40000000 */
389 /* c = (subfloat)0.84506291151 */
390 erx
= 8.4506291151e-01, /* 0x3f58560b */
392 * Coefficients for approximation to erf on [0,0.84375]
394 efx
= 1.2837916613e-01, /* 0x3e0375d4 */
395 efx8
= 1.0270333290e+00, /* 0x3f8375d4 */
396 pp0
= 1.2837916613e-01, /* 0x3e0375d4 */
397 pp1
= -3.2504209876e-01, /* 0xbea66beb */
398 pp2
= -2.8481749818e-02, /* 0xbce9528f */
399 pp3
= -5.7702702470e-03, /* 0xbbbd1489 */
400 pp4
= -2.3763017452e-05, /* 0xb7c756b1 */
401 qq1
= 3.9791721106e-01, /* 0x3ecbbbce */
402 qq2
= 6.5022252500e-02, /* 0x3d852a63 */
403 qq3
= 5.0813062117e-03, /* 0x3ba68116 */
404 qq4
= 1.3249473704e-04, /* 0x390aee49 */
405 qq5
= -3.9602282413e-06, /* 0xb684e21a */
407 * Coefficients for approximation to erf in [0.84375,1.25]
409 pa0
= -2.3621185683e-03, /* 0xbb1acdc6 */
410 pa1
= 4.1485610604e-01, /* 0x3ed46805 */
411 pa2
= -3.7220788002e-01, /* 0xbebe9208 */
412 pa3
= 3.1834661961e-01, /* 0x3ea2fe54 */
413 pa4
= -1.1089469492e-01, /* 0xbde31cc2 */
414 pa5
= 3.5478305072e-02, /* 0x3d1151b3 */
415 pa6
= -2.1663755178e-03, /* 0xbb0df9c0 */
416 qa1
= 1.0642088205e-01, /* 0x3dd9f331 */
417 qa2
= 5.4039794207e-01, /* 0x3f0a5785 */
418 qa3
= 7.1828655899e-02, /* 0x3d931ae7 */
419 qa4
= 1.2617121637e-01, /* 0x3e013307 */
420 qa5
= 1.3637083583e-02, /* 0x3c5f6e13 */
421 qa6
= 1.1984500103e-02, /* 0x3c445aa3 */
423 * Coefficients for approximation to erfc in [1.25,1/0.35]
425 ra0
= -9.8649440333e-03, /* 0xbc21a093 */
426 ra1
= -6.9385856390e-01, /* 0xbf31a0b7 */
427 ra2
= -1.0558626175e+01, /* 0xc128f022 */
428 ra3
= -6.2375331879e+01, /* 0xc2798057 */
429 ra4
= -1.6239666748e+02, /* 0xc322658c */
430 ra5
= -1.8460508728e+02, /* 0xc3389ae7 */
431 ra6
= -8.1287437439e+01, /* 0xc2a2932b */
432 ra7
= -9.8143291473e+00, /* 0xc11d077e */
433 sa1
= 1.9651271820e+01, /* 0x419d35ce */
434 sa2
= 1.3765776062e+02, /* 0x4309a863 */
435 sa3
= 4.3456588745e+02, /* 0x43d9486f */
436 sa4
= 6.4538726807e+02, /* 0x442158c9 */
437 sa5
= 4.2900814819e+02, /* 0x43d6810b */
438 sa6
= 1.0863500214e+02, /* 0x42d9451f */
439 sa7
= 6.5702495575e+00, /* 0x40d23f7c */
440 sa8
= -6.0424413532e-02, /* 0xbd777f97 */
442 * Coefficients for approximation to erfc in [1/.35,28]
444 rb0
= -9.8649431020e-03, /* 0xbc21a092 */
445 rb1
= -7.9928326607e-01, /* 0xbf4c9dd4 */
446 rb2
= -1.7757955551e+01, /* 0xc18e104b */
447 rb3
= -1.6063638306e+02, /* 0xc320a2ea */
448 rb4
= -6.3756646729e+02, /* 0xc41f6441 */
449 rb5
= -1.0250950928e+03, /* 0xc480230b */
450 rb6
= -4.8351919556e+02, /* 0xc3f1c275 */
451 sb1
= 3.0338060379e+01, /* 0x41f2b459 */
452 sb2
= 3.2579251099e+02, /* 0x43a2e571 */
453 sb3
= 1.5367296143e+03, /* 0x44c01759 */
454 sb4
= 3.1998581543e+03, /* 0x4547fdbb */
455 sb5
= 2.5530502930e+03, /* 0x451f90ce */
456 sb6
= 4.7452853394e+02, /* 0x43ed43a7 */
457 sb7
= -2.2440952301e+01; /* 0xc1b38712 */
464 } ieee_float_shape_type
;
466 #define GET_FLOAT_WORD(i,d) \
468 ieee_float_shape_type gf_u; \
474 #define SET_FLOAT_WORD(d,i) \
476 ieee_float_shape_type sf_u; \
482 float gmx_erf(float x
)
485 float R
,S
,P
,Q
,s
,y
,z
,r
;
501 i
= ((erf_u_int32_t
)hx
>>31)<<1;
502 return (float)(1-i
)+one
/x
; /* erf(+-inf)=+-1 */
512 return (float)0.125*((float)8.0*x
+efx8
*x
); /*avoid underflow */
516 r
= pp0
+z
*(pp1
+z
*(pp2
+z
*(pp3
+z
*pp4
)));
517 s
= one
+z
*(qq1
+z
*(qq2
+z
*(qq3
+z
*(qq4
+z
*qq5
))));
523 /* 0.84375 <= |x| < 1.25 */
525 P
= pa0
+s
*(pa1
+s
*(pa2
+s
*(pa3
+s
*(pa4
+s
*(pa5
+s
*pa6
)))));
526 Q
= one
+s
*(qa1
+s
*(qa2
+s
*(qa3
+s
*(qa4
+s
*(qa5
+s
*qa6
)))));
527 if(hx
>=0) return erx
+ P
/Q
; else return -erx
- P
/Q
;
529 if (ix
>= 0x40c00000)
532 if(hx
>=0) return one
-tiny
; else return tiny
-one
;
539 R
=ra0
+s
*(ra1
+s
*(ra2
+s
*(ra3
+s
*(ra4
+s
*(ra5
+s
*(ra6
+s
*ra7
))))));
540 S
=one
+s
*(sa1
+s
*(sa2
+s
*(sa3
+s
*(sa4
+s
*(sa5
+s
*(sa6
+s
*(sa7
+s
*sa8
)))))));
545 R
=rb0
+s
*(rb1
+s
*(rb2
+s
*(rb3
+s
*(rb4
+s
*(rb5
+s
*rb6
)))));
546 S
=one
+s
*(sb1
+s
*(sb2
+s
*(sb3
+s
*(sb4
+s
*(sb5
+s
*(sb6
+s
*sb7
))))));
550 conv
.i
= conv
.i
& 0xfffff000;
553 r
= exp(-z
*z
-(float)0.5625)*exp((z
-x
)*(z
+x
)+R
/S
);
554 if(hx
>=0) return one
-r
/x
; else return r
/x
-one
;
557 float gmx_erfc(float x
)
560 float R
,S
,P
,Q
,s
,y
,z
,r
;
576 /* erfc(+-inf)=0,2 */
577 return (float)(((erf_u_int32_t
)hx
>>31)<<1)+one
/x
;
584 return one
-x
; /* |x|<2**-56 */
586 r
= pp0
+z
*(pp1
+z
*(pp2
+z
*(pp3
+z
*pp4
)));
587 s
= one
+z
*(qq1
+z
*(qq2
+z
*(qq3
+z
*(qq4
+z
*qq5
))));
601 /* 0.84375 <= |x| < 1.25 */
603 P
= pa0
+s
*(pa1
+s
*(pa2
+s
*(pa3
+s
*(pa4
+s
*(pa5
+s
*pa6
)))));
604 Q
= one
+s
*(qa1
+s
*(qa2
+s
*(qa3
+s
*(qa4
+s
*(qa5
+s
*qa6
)))));
606 z
= one
-erx
; return z
- P
/Q
;
608 z
= erx
+P
/Q
; return one
+z
;
618 /* |x| < 1/.35 ~ 2.857143*/
619 R
=ra0
+s
*(ra1
+s
*(ra2
+s
*(ra3
+s
*(ra4
+s
*(ra5
+s
*(ra6
+s
*ra7
))))));
620 S
=one
+s
*(sa1
+s
*(sa2
+s
*(sa3
+s
*(sa4
+s
*(sa5
+s
*(sa6
+s
*(sa7
+s
*sa8
)))))));
622 /* |x| >= 1/.35 ~ 2.857143 */
623 if(hx
<0&&ix
>=0x40c00000) return two
-tiny
;/* x < -6 */
624 R
=rb0
+s
*(rb1
+s
*(rb2
+s
*(rb3
+s
*(rb4
+s
*(rb5
+s
*rb6
)))));
625 S
=one
+s
*(sb1
+s
*(sb2
+s
*(sb3
+s
*(sb4
+s
*(sb5
+s
*(sb6
+s
*sb7
))))));
629 conv
.i
= conv
.i
& 0xfffff000;
632 r
= exp(-z
*z
-(float)0.5625)*exp((z
-x
)*(z
+x
)+R
/S
);
633 if(hx
>0) return r
/x
; else return two
-r
/x
;
635 if(hx
>0) return tiny
*tiny
; else return two
-tiny
;
641 float fast_float_erf(float x
)
646 ans
=t
*exp(-x
*x
-1.26551223+t
*(1.00002368+t
*(0.37409196+t
*(0.09678418+
647 t
*(-0.18628806+t
*(0.27886807+t
*(-1.13520398+t
*(1.48851587+
648 t
*(-0.82215223+t
*0.17087277)))))))));
652 float fast_float_erfc(float x
)
657 ans
=t
*exp(-x
*x
-1.26551223+t
*(1.00002368+t
*(0.37409196+t
*(0.09678418+
658 t
*(-0.18628806+t
*(0.27886807+t
*(-1.13520398+t
*(1.48851587+
659 t
*(-0.82215223+t
*0.17087277)))))))));