Replaced all occurences of str(n)casecmp with gmx_str(n)casecmp.
[gromacs/rigid-bodies.git] / src / gmxlib / maths.c
blob9ffa832b35b55f1440b737a1aa94181ef4b7458d
1 /*
2 *
3 * This source code is part of
4 *
5 * G R O M A C S
6 *
7 * GROningen MAchine for Chemical Simulations
8 *
9 * VERSION 3.2.0
10 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
11 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
12 * Copyright (c) 2001-2004, The GROMACS development team,
13 * check out http://www.gromacs.org for more information.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * If you want to redistribute modifications, please consider that
21 * scientific software is very special. Version control is crucial -
22 * bugs must be traceable. We will be happy to consider code for
23 * inclusion in the official distribution, but derived work must not
24 * be called official GROMACS. Details are found in the README & COPYING
25 * files - if they are missing, get the official version at www.gromacs.org.
27 * To help us fund GROMACS development, we humbly ask that you cite
28 * the papers on the package - you can find them in the top README file.
30 * For more info, check our website at http://www.gromacs.org
32 * And Hey:
33 * GROningen Mixture of Alchemy and Childrens' Stories
35 #ifdef HAVE_CONFIG_H
36 #include <config.h>
37 #endif
40 #include <math.h>
41 #include <limits.h>
42 #include "maths.h"
44 int gmx_nint(real a)
46 const real half = .5;
47 int result;
49 result = (a < 0.) ? ((int)(a - half)) : ((int)(a + half));
50 return result;
53 real cuberoot (real x)
55 if (x < 0)
57 return (-pow(-x,1.0/DIM));
59 else
61 return (pow(x,1.0/DIM));
65 real sign(real x,real y)
67 if (y < 0)
68 return -fabs(x);
69 else
70 return +fabs(x);
73 /* Double and single precision erf() and erfc() from
74 * the Sun Freely Distributable Math Library FDLIBM.
75 * See http://www.netlib.org/fdlibm
76 * Specific file used: s_erf.c, version 1.3 95/01/18
79 * ====================================================
80 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
82 * Developed at SunSoft, a Sun Microsystems, Inc. business.
83 * Permission to use, copy, modify, and distribute this
84 * software is freely granted, provided that this notice
85 * is preserved.
86 * ====================================================
89 #if (INT_MAX == 2147483647)
90 typedef int erf_int32_t;
91 typedef unsigned int erf_u_int32_t;
92 #elif (LONG_MAX == 2147483647L)
93 typedef long erf_int32_t;
94 typedef unsigned long erf_u_int32_t;
95 #elif (SHRT_MAX == 2147483647)
96 typedef short erf_int32_t;
97 typedef unsigned short erf_u_int32_t;
98 #else
99 # error ERROR: No 32 bit wide integer type found!
100 #endif
103 #ifdef GMX_DOUBLE
105 static const double
106 tiny = 1e-300,
107 half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
108 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
109 two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
110 /* c = (float)0.84506291151 */
111 erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
113 * Coefficients for approximation to erf on [0,0.84375]
115 efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
116 efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
117 pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
118 pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
119 pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
120 pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
121 pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
122 qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
123 qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
124 qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
125 qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
126 qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
128 * Coefficients for approximation to erf in [0.84375,1.25]
130 pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
131 pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
132 pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
133 pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
134 pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
135 pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
136 pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
137 qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
138 qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
139 qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
140 qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
141 qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
142 qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
144 * Coefficients for approximation to erfc in [1.25,1/0.35]
146 ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
147 ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
148 ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
149 ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
150 ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
151 ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
152 ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
153 ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
154 sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
155 sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
156 sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
157 sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
158 sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
159 sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
160 sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
161 sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
163 * Coefficients for approximation to erfc in [1/.35,28]
165 rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
166 rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
167 rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
168 rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
169 rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
170 rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
171 rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
172 sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
173 sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
174 sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
175 sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
176 sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
177 sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
178 sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
180 double gmx_erf(double x)
183 erf_int32_t hx,ix,i;
184 double R,S,P,Q,s,y,z,r;
186 union
188 double d;
189 int i[2];
191 conv;
193 conv.d=x;
195 #ifdef IEEE754_BIG_ENDIAN_WORD_ORDER
196 hx=conv.i[0];
197 #else
198 hx=conv.i[1];
199 #endif
201 ix = hx&0x7fffffff;
202 if(ix>=0x7ff00000)
204 /* erf(nan)=nan */
205 i = ((erf_u_int32_t)hx>>31)<<1;
206 return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
209 if(ix < 0x3feb0000)
211 /* |x|<0.84375 */
212 if(ix < 0x3e300000)
214 /* |x|<2**-28 */
215 if (ix < 0x00800000)
216 return 0.125*(8.0*x+efx8*x); /*avoid underflow */
217 return x + efx*x;
219 z = x*x;
220 r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
221 s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
222 y = r/s;
223 return x + x*y;
225 if(ix < 0x3ff40000)
227 /* 0.84375 <= |x| < 1.25 */
228 s = fabs(x)-one;
229 P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
230 Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
231 if(hx>=0) return erx + P/Q; else return -erx - P/Q;
233 if (ix >= 0x40180000)
235 /* inf>|x|>=6 */
236 if(hx>=0) return one-tiny; else return tiny-one;
238 x = fabs(x);
239 s = one/(x*x);
240 if(ix< 0x4006DB6E)
242 /* |x| < 1/0.35 */
243 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))));
244 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))));
246 else
248 /* |x| >= 1/0.35 */
249 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))));
250 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))));
253 conv.d = x;
255 #ifdef IEEE754_BIG_ENDIAN_WORD_ORDER
256 conv.i[1] = 0;
257 #else
258 conv.i[0] = 0;
259 #endif
261 z = conv.d;
263 r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
264 if(hx>=0)
265 return one-r/x;
266 else
267 return r/x-one;
271 double gmx_erfc(double x)
273 erf_int32_t hx,ix;
274 double R,S,P,Q,s,y,z,r;
276 union
278 double d;
279 int i[2];
281 conv;
283 conv.d = x;
285 #ifdef IEEE754_BIG_ENDIAN_WORD_ORDER
286 hx=conv.i[0];
287 #else
288 hx=conv.i[1];
289 #endif
291 ix = hx&0x7fffffff;
292 if(ix>=0x7ff00000)
294 /* erfc(nan)=nan */
295 /* erfc(+-inf)=0,2 */
296 return (double)(((erf_u_int32_t)hx>>31)<<1)+one/x;
299 if(ix < 0x3feb0000)
301 /* |x|<0.84375 */
302 double r1,r2,s1,s2,s3,z2,z4;
303 if(ix < 0x3c700000) /* |x|<2**-56 */
304 return one-x;
305 z = x*x;
306 r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
307 s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
308 y = r/s;
309 if(hx < 0x3fd00000)
311 /* x<1/4 */
312 return one-(x+x*y);
314 else
316 r = x*y;
317 r += (x-half);
318 return half - r ;
322 if(ix < 0x3ff40000)
324 /* 0.84375 <= |x| < 1.25 */
325 s = fabs(x)-one;
326 P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
327 Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
328 if(hx>=0) {
329 z = one-erx; return z - P/Q;
330 } else {
331 z = erx+P/Q; return one+z;
334 if (ix < 0x403c0000)
336 /* |x|<28 */
337 x = fabs(x);
338 s = one/(x*x);
339 if(ix< 0x4006DB6D)
341 /* |x| < 1/.35 ~ 2.857143*/
342 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))));
343 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))));
345 else
347 /* |x| >= 1/.35 ~ 2.857143 */
348 if(hx<0&&ix>=0x40180000)
349 return two-tiny; /* x < -6 */
350 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))));
351 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))));
354 conv.d = x;
356 #ifdef IEEE754_BIG_ENDIAN_WORD_ORDER
357 conv.i[1] = 0;
358 #else
359 conv.i[0] = 0;
360 #endif
362 z = conv.d;
364 r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
366 if(hx>0)
367 return r/x;
368 else
369 return two-r/x;
371 else
373 if(hx>0)
374 return tiny*tiny;
375 else
376 return two-tiny;
380 #else /* single precision */
384 static const float
385 tiny = 1e-30,
386 half= 5.0000000000e-01, /* 0x3F000000 */
387 one = 1.0000000000e+00, /* 0x3F800000 */
388 two = 2.0000000000e+00, /* 0x40000000 */
389 /* c = (subfloat)0.84506291151 */
390 erx = 8.4506291151e-01, /* 0x3f58560b */
392 * Coefficients for approximation to erf on [0,0.84375]
394 efx = 1.2837916613e-01, /* 0x3e0375d4 */
395 efx8= 1.0270333290e+00, /* 0x3f8375d4 */
396 pp0 = 1.2837916613e-01, /* 0x3e0375d4 */
397 pp1 = -3.2504209876e-01, /* 0xbea66beb */
398 pp2 = -2.8481749818e-02, /* 0xbce9528f */
399 pp3 = -5.7702702470e-03, /* 0xbbbd1489 */
400 pp4 = -2.3763017452e-05, /* 0xb7c756b1 */
401 qq1 = 3.9791721106e-01, /* 0x3ecbbbce */
402 qq2 = 6.5022252500e-02, /* 0x3d852a63 */
403 qq3 = 5.0813062117e-03, /* 0x3ba68116 */
404 qq4 = 1.3249473704e-04, /* 0x390aee49 */
405 qq5 = -3.9602282413e-06, /* 0xb684e21a */
407 * Coefficients for approximation to erf in [0.84375,1.25]
409 pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */
410 pa1 = 4.1485610604e-01, /* 0x3ed46805 */
411 pa2 = -3.7220788002e-01, /* 0xbebe9208 */
412 pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */
413 pa4 = -1.1089469492e-01, /* 0xbde31cc2 */
414 pa5 = 3.5478305072e-02, /* 0x3d1151b3 */
415 pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */
416 qa1 = 1.0642088205e-01, /* 0x3dd9f331 */
417 qa2 = 5.4039794207e-01, /* 0x3f0a5785 */
418 qa3 = 7.1828655899e-02, /* 0x3d931ae7 */
419 qa4 = 1.2617121637e-01, /* 0x3e013307 */
420 qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */
421 qa6 = 1.1984500103e-02, /* 0x3c445aa3 */
423 * Coefficients for approximation to erfc in [1.25,1/0.35]
425 ra0 = -9.8649440333e-03, /* 0xbc21a093 */
426 ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */
427 ra2 = -1.0558626175e+01, /* 0xc128f022 */
428 ra3 = -6.2375331879e+01, /* 0xc2798057 */
429 ra4 = -1.6239666748e+02, /* 0xc322658c */
430 ra5 = -1.8460508728e+02, /* 0xc3389ae7 */
431 ra6 = -8.1287437439e+01, /* 0xc2a2932b */
432 ra7 = -9.8143291473e+00, /* 0xc11d077e */
433 sa1 = 1.9651271820e+01, /* 0x419d35ce */
434 sa2 = 1.3765776062e+02, /* 0x4309a863 */
435 sa3 = 4.3456588745e+02, /* 0x43d9486f */
436 sa4 = 6.4538726807e+02, /* 0x442158c9 */
437 sa5 = 4.2900814819e+02, /* 0x43d6810b */
438 sa6 = 1.0863500214e+02, /* 0x42d9451f */
439 sa7 = 6.5702495575e+00, /* 0x40d23f7c */
440 sa8 = -6.0424413532e-02, /* 0xbd777f97 */
442 * Coefficients for approximation to erfc in [1/.35,28]
444 rb0 = -9.8649431020e-03, /* 0xbc21a092 */
445 rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */
446 rb2 = -1.7757955551e+01, /* 0xc18e104b */
447 rb3 = -1.6063638306e+02, /* 0xc320a2ea */
448 rb4 = -6.3756646729e+02, /* 0xc41f6441 */
449 rb5 = -1.0250950928e+03, /* 0xc480230b */
450 rb6 = -4.8351919556e+02, /* 0xc3f1c275 */
451 sb1 = 3.0338060379e+01, /* 0x41f2b459 */
452 sb2 = 3.2579251099e+02, /* 0x43a2e571 */
453 sb3 = 1.5367296143e+03, /* 0x44c01759 */
454 sb4 = 3.1998581543e+03, /* 0x4547fdbb */
455 sb5 = 2.5530502930e+03, /* 0x451f90ce */
456 sb6 = 4.7452853394e+02, /* 0x43ed43a7 */
457 sb7 = -2.2440952301e+01; /* 0xc1b38712 */
460 typedef union
462 float value;
463 erf_u_int32_t word;
464 } ieee_float_shape_type;
466 #define GET_FLOAT_WORD(i,d) \
467 do { \
468 ieee_float_shape_type gf_u; \
469 gf_u.value = (d); \
470 (i) = gf_u.word; \
471 } while (0)
474 #define SET_FLOAT_WORD(d,i) \
475 do { \
476 ieee_float_shape_type sf_u; \
477 sf_u.word = (i); \
478 (d) = sf_u.value; \
479 } while (0)
482 float gmx_erf(float x)
484 erf_int32_t hx,ix,i;
485 float R,S,P,Q,s,y,z,r;
487 union
489 float f;
490 int i;
492 conv;
494 conv.f=x;
495 hx=conv.i;
497 ix = hx&0x7fffffff;
498 if(ix>=0x7f800000)
500 /* erf(nan)=nan */
501 i = ((erf_u_int32_t)hx>>31)<<1;
502 return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */
505 if(ix < 0x3f580000)
507 /* |x|<0.84375 */
508 if(ix < 0x31800000)
510 /* |x|<2**-28 */
511 if (ix < 0x04000000)
512 return (float)0.125*((float)8.0*x+efx8*x); /*avoid underflow */
513 return x + efx*x;
515 z = x*x;
516 r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
517 s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
518 y = r/s;
519 return x + x*y;
521 if(ix < 0x3fa00000)
523 /* 0.84375 <= |x| < 1.25 */
524 s = fabs(x)-one;
525 P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
526 Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
527 if(hx>=0) return erx + P/Q; else return -erx - P/Q;
529 if (ix >= 0x40c00000)
531 /* inf>|x|>=6 */
532 if(hx>=0) return one-tiny; else return tiny-one;
534 x = fabs(x);
535 s = one/(x*x);
536 if(ix< 0x4036DB6E)
538 /* |x| < 1/0.35 */
539 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))));
540 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))));
542 else
544 /* |x| >= 1/0.35 */
545 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))));
546 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))));
549 conv.f = x;
550 conv.i = conv.i & 0xfffff000;
551 z = conv.f;
553 r = exp(-z*z-(float)0.5625)*exp((z-x)*(z+x)+R/S);
554 if(hx>=0) return one-r/x; else return r/x-one;
557 float gmx_erfc(float x)
559 erf_int32_t hx,ix;
560 float R,S,P,Q,s,y,z,r;
562 union
564 float f;
565 int i;
567 conv;
569 conv.f=x;
570 hx=conv.i;
572 ix = hx&0x7fffffff;
573 if(ix>=0x7f800000)
575 /* erfc(nan)=nan */
576 /* erfc(+-inf)=0,2 */
577 return (float)(((erf_u_int32_t)hx>>31)<<1)+one/x;
580 if(ix < 0x3f580000)
582 /* |x|<0.84375 */
583 if(ix < 0x23800000)
584 return one-x; /* |x|<2**-56 */
585 z = x*x;
586 r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
587 s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
588 y = r/s;
589 if(hx < 0x3e800000)
591 /* x<1/4 */
592 return one-(x+x*y);
593 } else {
594 r = x*y;
595 r += (x-half);
596 return half - r ;
599 if(ix < 0x3fa00000)
601 /* 0.84375 <= |x| < 1.25 */
602 s = fabs(x)-one;
603 P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
604 Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
605 if(hx>=0) {
606 z = one-erx; return z - P/Q;
607 } else {
608 z = erx+P/Q; return one+z;
611 if (ix < 0x41e00000)
613 /* |x|<28 */
614 x = fabs(x);
615 s = one/(x*x);
616 if(ix< 0x4036DB6D)
618 /* |x| < 1/.35 ~ 2.857143*/
619 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))));
620 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))));
621 } else {
622 /* |x| >= 1/.35 ~ 2.857143 */
623 if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */
624 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))));
625 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))));
628 conv.f = x;
629 conv.i = conv.i & 0xfffff000;
630 z = conv.f;
632 r = exp(-z*z-(float)0.5625)*exp((z-x)*(z+x)+R/S);
633 if(hx>0) return r/x; else return two-r/x;
634 } else {
635 if(hx>0) return tiny*tiny; else return two-tiny;
639 #endif
641 float fast_float_erf(float x)
643 float t,ans;
645 t=1.0/(1.0+0.5*x);
646 ans=t*exp(-x*x-1.26551223+t*(1.00002368+t*(0.37409196+t*(0.09678418+
647 t*(-0.18628806+t*(0.27886807+t*(-1.13520398+t*(1.48851587+
648 t*(-0.82215223+t*0.17087277)))))))));
649 return 1.0-ans;
652 float fast_float_erfc(float x)
654 float t,ans;
656 t=1.0/(1.0+0.5*x);
657 ans=t*exp(-x*x-1.26551223+t*(1.00002368+t*(0.37409196+t*(0.09678418+
658 t*(-0.18628806+t*(0.27886807+t*(-1.13520398+t*(1.48851587+
659 t*(-0.82215223+t*0.17087277)))))))));
660 return ans;