2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2016,2017,2018,2019, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
37 * Describes common routines and types for PME tests.
39 * \author Aleksei Iupinov <a.yupinov@gmail.com>
40 * \ingroup module_ewald
42 #ifndef GMX_EWALD_PME_TEST_COMMON_H
43 #define GMX_EWALD_PME_TEST_COMMON_H
49 #include <gtest/gtest.h>
51 #include "gromacs/ewald/pme.h"
52 #include "gromacs/ewald/pme_gpu_internal.h"
53 #include "gromacs/math/gmxcomplex.h"
54 #include "gromacs/utility/arrayref.h"
55 #include "gromacs/utility/unique_cptr.h"
57 #include "testhardwarecontexts.h"
64 // Convenience typedefs
65 //! A safe pointer type for PME.
66 typedef gmx::unique_cptr
<gmx_pme_t
, gmx_pme_destroy
> PmeSafePointer
;
68 typedef ArrayRef
<const real
> ChargesVector
;
70 typedef std::vector
<RVec
> CoordinatesVector
;
72 typedef ArrayRef
<RVec
> ForcesVector
;
74 typedef ArrayRef
<const IVec
> GridLineIndicesVector
;
75 /*! \brief Spline parameters (theta or dtheta).
76 * A reference to a single dimension's spline data; this means (atomCount * pmeOrder) values or derivatives.
78 typedef ArrayRef
<const real
> SplineParamsDimVector
;
79 /*! \brief Spline parameters (theta or dtheta) in all 3 dimensions
81 typedef std::array
<SplineParamsDimVector
, DIM
> SplineParamsVector
;
83 //! Non-zero grid values for test input; keys are 3d indices (IVec)
84 template<typename ValueType
>using SparseGridValuesInput
= std::map
<IVec
, ValueType
>;
85 //! Non-zero real grid values
86 typedef SparseGridValuesInput
<real
> SparseRealGridValuesInput
;
87 //! Non-zero complex grid values
88 typedef SparseGridValuesInput
<t_complex
> SparseComplexGridValuesInput
;
89 //! Non-zero grid values for test output; keys are string representations of the cells' 3d indices (IVec); this allows for better sorting.
90 template<typename ValueType
>using SparseGridValuesOutput
= std::map
<std::string
, ValueType
>;
91 //! Non-zero real grid values
92 typedef SparseGridValuesOutput
<real
> SparseRealGridValuesOutput
;
93 //! Non-zero complex grid values
94 typedef SparseGridValuesOutput
<t_complex
> SparseComplexGridValuesOutput
;
95 //! TODO: make proper C++ matrix for the whole Gromacs, get rid of this
96 typedef std::array
<real
, DIM
* DIM
> Matrix3x3
;
98 enum class PmeSolveAlgorithm
106 //! Tells if this generally valid PME input is supported for this mode
107 bool pmeSupportsInputForMode(const gmx_hw_info_t
&hwinfo
,
108 const t_inputrec
*inputRec
,
111 //! Spline moduli are computed in double precision, so they're very good in single precision
112 constexpr int64_t c_splineModuliSinglePrecisionUlps
= 1;
113 /*! \brief For double precision checks, the recursive interpolation
114 * and use of trig functions in make_dft_mod require a lot more flops,
115 * and thus opportunity for deviation between implementations. */
116 uint64_t getSplineModuliDoublePrecisionUlps(int splineOrder
);
120 //! Simple PME initialization (no atom data)
121 PmeSafePointer
pmeInitEmpty(const t_inputrec
*inputRec
,
122 CodePath mode
= CodePath::CPU
,
123 const gmx_device_info_t
*gpuInfo
= nullptr,
124 PmeGpuProgramHandle pmeGpuProgram
= nullptr,
125 const Matrix3x3
&box
= {{1.0F
, 0.0F
, 0.0F
, 0.0F
, 1.0F
, 0.0F
, 0.0F
, 0.0F
, 1.0F
}},
126 real ewaldCoeff_q
= 0.0F
, real ewaldCoeff_lj
= 0.0F
);
127 //! PME initialization with atom data and system box
128 PmeSafePointer
pmeInitAtoms(const t_inputrec
*inputRec
,
130 const gmx_device_info_t
*gpuInfo
,
131 PmeGpuProgramHandle pmeGpuProgram
,
132 const CoordinatesVector
&coordinates
,
133 const ChargesVector
&charges
,
136 //! PME spline computation and charge spreading
137 void pmePerformSplineAndSpread(gmx_pme_t
*pme
, CodePath mode
,
138 bool computeSplines
, bool spreadCharges
);
140 void pmePerformSolve(const gmx_pme_t
*pme
, CodePath mode
,
141 PmeSolveAlgorithm method
, real cellVolume
,
142 GridOrdering gridOrdering
, bool computeEnergyAndVirial
);
143 //! PME force gathering
144 void pmePerformGather(gmx_pme_t
*pme
, CodePath mode
,
145 PmeForceOutputHandling inputTreatment
, ForcesVector
&forces
); //NOLINT(google-runtime-references)
146 //! PME test finalization before fetching the outputs
147 void pmeFinalizeTest(const gmx_pme_t
*pme
, CodePath mode
);
151 //! Setting atom spline values or derivatives to be used in spread/gather
152 void pmeSetSplineData(const gmx_pme_t
*pme
, CodePath mode
,
153 const SplineParamsDimVector
&splineValues
, PmeSplineDataType type
, int dimIndex
);
154 //! Setting gridline indices be used in spread/gather
155 void pmeSetGridLineIndices(gmx_pme_t
*pme
, CodePath mode
,
156 const GridLineIndicesVector
&gridLineIndices
);
157 //! Setting real grid to be used in gather
158 void pmeSetRealGrid(const gmx_pme_t
*pme
, CodePath mode
,
159 const SparseRealGridValuesInput
&gridValues
);
160 void pmeSetComplexGrid(const gmx_pme_t
*pme
, CodePath mode
, GridOrdering gridOrdering
,
161 const SparseComplexGridValuesInput
&gridValues
);
165 //! Getting the single dimension's spline values or derivatives
166 SplineParamsDimVector
pmeGetSplineData(const gmx_pme_t
*pme
, CodePath mode
,
167 PmeSplineDataType type
, int dimIndex
);
168 //! Getting the gridline indices
169 GridLineIndicesVector
pmeGetGridlineIndices(const gmx_pme_t
*pme
, CodePath mode
);
170 //! Getting the real grid (spreading output of pmePerformSplineAndSpread())
171 SparseRealGridValuesOutput
pmeGetRealGrid(const gmx_pme_t
*pme
, CodePath mode
);
172 //! Getting the complex grid output of pmePerformSolve()
173 SparseComplexGridValuesOutput
pmeGetComplexGrid(const gmx_pme_t
*pme
, CodePath mode
,
174 GridOrdering gridOrdering
);
175 //! Getting the reciprocal energy and virial
176 PmeOutput
pmeGetReciprocalEnergyAndVirial(const gmx_pme_t
*pme
, CodePath mode
,
177 PmeSolveAlgorithm method
);