2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2019, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
37 * \brief Implements LINCS using CUDA
39 * This file contains implementation of LINCS constraints algorithm
40 * using CUDA, including class initialization, data-structures management
43 * \note Management of CUDA stream and periodic boundary exists here as a temporary
44 * scaffolding to allow this class to be used as a stand-alone unit. The scaffolding
45 * is intended to be removed once constraints are fully integrated with update module.
46 * \todo Reconsider naming, i.e. "cuda" suffics should be changed to "gpu".
48 * \author Artem Zhmurov <zhmurov@gmail.com>
49 * \author Alan Gray <alang@nvidia.com>
51 * \ingroup module_mdlib
55 #include "lincs_cuda.cuh"
64 #include "gromacs/gpu_utils/cuda_arch_utils.cuh"
65 #include "gromacs/gpu_utils/cudautils.cuh"
66 #include "gromacs/gpu_utils/devicebuffer.cuh"
67 #include "gromacs/gpu_utils/gputraits.cuh"
68 #include "gromacs/gpu_utils/vectype_ops.cuh"
69 #include "gromacs/math/vec.h"
70 #include "gromacs/mdlib/constr.h"
71 #include "gromacs/pbcutil/pbc.h"
72 #include "gromacs/pbcutil/pbc_aiuc_cuda.cuh"
73 #include "gromacs/topology/ifunc.h"
78 //! Number of CUDA threads in a block
79 constexpr static int c_threadsPerBlock = 256;
80 //! Maximum number of threads in a block (for __launch_bounds__)
81 constexpr static int c_maxThreadsPerBlock = c_threadsPerBlock;
83 /*! \brief Main kernel for LINCS constraints.
85 * See Hess et al., J. Comput. Chem. 18: 1463-1472 (1997) for the description of the algorithm.
87 * In CUDA version, one thread is responsible for all computations for one constraint. The blocks are
88 * filled in a way that no constraint is coupled to the constraint from the next block. This is achieved
89 * by moving active threads to the next block, if the correspondent group of coupled constraints is to big
90 * to fit the current thread block. This may leave some 'dummy' threads in the end of the thread block, i.e.
91 * threads that are not required to do actual work. Since constraints from different blocks are not coupled,
92 * there is no need to synchronize across the device. However, extensive communication in a thread block
95 * \todo Reduce synchronization overhead. Some ideas are:
96 * 1. Consider going to warp-level synchronization for the coupled constraints.
97 * 2. Move more data to local/shared memory and try to get rid of atomic operations (at least on
99 * 3. Use analytical solution for matrix A inversion.
100 * 4. Introduce mapping of thread id to both single constraint and single atom, thus designating
101 * Nth threads to deal with Nat <= Nth coupled atoms and Nc <= Nth coupled constraints.
102 * See Redmine issue #2885 for details (https://redmine.gromacs.org/issues/2885)
103 * \todo The use of __restrict__ for gm_xp and gm_v causes failure, probably because of the atomic
104 operations. Investigate this issue further.
106 * \param[in,out] kernelParams All parameters and pointers for the kernel condensed in single struct.
107 * \param[in] invdt Inverse timestep (needed to update velocities).
109 template <bool updateVelocities, bool computeVirial>
110 __launch_bounds__(c_maxThreadsPerBlock)
111 __global__ void lincs_kernel(LincsCudaKernelParameters kernelParams,
112 const float3* __restrict__ gm_x,
117 const PbcAiuc pbcAiuc = kernelParams.pbcAiuc;
118 const int numConstraintsThreads = kernelParams.numConstraintsThreads;
119 const int numIterations = kernelParams.numIterations;
120 const int expansionOrder = kernelParams.expansionOrder;
121 const int2* __restrict__ gm_constraints = kernelParams.d_constraints;
122 const float* __restrict__ gm_constraintsTargetLengths = kernelParams.d_constraintsTargetLengths;
123 const int* __restrict__ gm_coupledConstraintsCounts = kernelParams.d_coupledConstraintsCounts;
124 const int* __restrict__ gm_coupledConstraintsIdxes = kernelParams.d_coupledConstraintsIndices;
125 const float* __restrict__ gm_massFactors = kernelParams.d_massFactors;
126 float* __restrict__ gm_matrixA = kernelParams.d_matrixA;
127 const float* __restrict__ gm_inverseMasses = kernelParams.d_inverseMasses;
128 float* __restrict__ gm_virialScaled = kernelParams.d_virialScaled;
130 int threadIndex = blockIdx.x*blockDim.x+threadIdx.x;
132 // numConstraintsThreads should be a integer multiple of blockSize (numConstraintsThreads = numBlocks*blockSize).
133 // This is to ensure proper synchronizations and reduction. All array are padded to the required size.
134 assert(threadIndex < numConstraintsThreads);
136 // Vectors connecting constrained atoms before algorithm was applied.
137 // Needed to construct constrain matrix A
138 extern __shared__ float3 sm_r[];
140 int2 pair = gm_constraints[threadIndex];
144 // Mass-scaled Lagrange multiplier
145 float lagrangeScaled = 0.0f;
150 float sqrtReducedMass;
156 // i == -1 indicates dummy constraint at the end of the thread block.
157 bool isDummyThread = (i == -1);
159 // Everything computed for these dummies will be equal to zero
165 sqrtReducedMass = 0.0f;
167 xi = make_float3(0.0f, 0.0f, 0.0f);
168 xj = make_float3(0.0f, 0.0f, 0.0f);
169 rc = make_float3(0.0f, 0.0f, 0.0f);
174 targetLength = gm_constraintsTargetLengths[threadIndex];
175 inverseMassi = gm_inverseMasses[i];
176 inverseMassj = gm_inverseMasses[j];
177 sqrtReducedMass = rsqrt(inverseMassi + inverseMassj);
182 float3 dx = pbcDxAiuc(pbcAiuc, xi, xj);
184 float rlen = rsqrtf(dx.x*dx.x + dx.y*dx.y + dx.z*dx.z);
188 sm_r[threadIdx.x] = rc;
189 // Make sure that all r's are saved into shared memory
190 // before they are accessed in the loop below
194 * Constructing LINCS matrix (A)
197 // Only non-zero values are saved (for coupled constraints)
198 int coupledConstraintsCount = gm_coupledConstraintsCounts[threadIndex];
199 for (int n = 0; n < coupledConstraintsCount; n++)
201 int index = n*numConstraintsThreads + threadIndex;
202 int c1 = gm_coupledConstraintsIdxes[index];
204 float3 rc1 = sm_r[c1 - blockIdx.x*blockDim.x];
205 gm_matrixA[index] = gm_massFactors[index]*(rc.x*rc1.x + rc.y*rc1.y + rc.z*rc1.z);
208 // Skipping in dummy threads
215 float3 dx = pbcDxAiuc(pbcAiuc, xi, xj);
217 float sol = sqrtReducedMass*((rc.x*dx.x + rc.y*dx.y + rc.z*dx.z) - targetLength);
220 * Inverse matrix using a set of expansionOrder matrix multiplications
223 // This will use the same memory space as sm_r, which is no longer needed.
224 extern __shared__ float sm_rhs[];
225 // Save current right-hand-side vector in the shared memory
226 sm_rhs[threadIdx.x] = sol;
228 for (int rec = 0; rec < expansionOrder; rec++)
230 // Making sure that all sm_rhs are saved before they are accessed in a loop below
234 for (int n = 0; n < coupledConstraintsCount; n++)
236 int index = n*numConstraintsThreads + threadIndex;
237 int c1 = gm_coupledConstraintsIdxes[index];
238 // Convolute current right-hand-side with A
239 // Different, non overlapping parts of sm_rhs[..] are read during odd and even iterations
240 mvb = mvb + gm_matrixA[index]*sm_rhs[c1 - blockIdx.x*blockDim.x + blockDim.x*(rec % 2)];
242 // 'Switch' rhs vectors, save current result
243 // These values will be accessed in the loop above during the next iteration.
244 sm_rhs[threadIdx.x + blockDim.x*((rec + 1) % 2)] = mvb;
248 // Current mass-scaled Lagrange multipliers
249 lagrangeScaled = sqrtReducedMass*sol;
251 // Save updated coordinates before correction for the rotational lengthening
252 float3 tmp = rc*lagrangeScaled;
254 // Writing for all but dummy constraints
257 atomicAdd(&gm_xp[i], -tmp*inverseMassi);
258 atomicAdd(&gm_xp[j], tmp*inverseMassj);
262 * Correction for centripetal effects
264 for (int iter = 0; iter < numIterations; iter++)
266 // Make sure that all xp's are saved: atomic operation calls before are
267 // communicating current xp[..] values across thread block.
276 float3 dx = pbcDxAiuc(pbcAiuc, xi, xj);
278 float len2 = targetLength*targetLength;
279 float dlen2 = 2.0f*len2 - norm2(dx);
281 // TODO A little bit more effective but slightly less readable version of the below would be:
282 // float proj = sqrtReducedMass*(targetLength - (dlen2 > 0.0f ? 1.0f : 0.0f)*dlen2*rsqrt(dlen2));
286 proj = sqrtReducedMass*(targetLength - dlen2*rsqrt(dlen2));
290 proj = sqrtReducedMass*targetLength;
293 sm_rhs[threadIdx.x] = proj;
297 * Same matrix inversion as above is used for updated data
299 for (int rec = 0; rec < expansionOrder; rec++)
301 // Make sure that all elements of rhs are saved into shared memory
305 for (int n = 0; n < coupledConstraintsCount; n++)
307 int index = n*numConstraintsThreads + threadIndex;
308 int c1 = gm_coupledConstraintsIdxes[index];
310 mvb = mvb + gm_matrixA[index]*sm_rhs[c1 - blockIdx.x*blockDim.x + blockDim.x*(rec % 2)];
313 sm_rhs[threadIdx.x + blockDim.x*((rec + 1) % 2)] = mvb;
317 // Add corrections to Lagrange multipliers
318 float sqrtmu_sol = sqrtReducedMass*sol;
319 lagrangeScaled += sqrtmu_sol;
321 // Save updated coordinates for the next iteration
322 // Dummy constraints are skipped
325 float3 tmp = rc*sqrtmu_sol;
326 atomicAdd(&gm_xp[i], -tmp*inverseMassi);
327 atomicAdd(&gm_xp[j], tmp*inverseMassj);
331 // Updating particle velocities for all but dummy threads
332 if (updateVelocities && !isDummyThread)
334 float3 tmp = rc*invdt*lagrangeScaled;
335 atomicAdd(&gm_v[i], -tmp*inverseMassi);
336 atomicAdd(&gm_v[j], tmp*inverseMassj);
342 // Virial is computed from Lagrange multiplier (lagrangeScaled), target constrain length
343 // (targetLength) and the normalized vector connecting constrained atoms before
344 // the algorithm was applied (rc). The evaluation of virial in each thread is
345 // followed by basic reduction for the values inside single thread block.
346 // Then, the values are reduced across grid by atomicAdd(...).
348 // TODO Shuffle reduction.
349 // TODO Should be unified and/or done once when virial is actually needed.
350 // TODO Recursive version that removes atomicAdd(...)'s entirely is needed. Ideally,
351 // one that works for any datatype.
353 // Save virial for each thread into the shared memory. Tensor is symmetrical, hence only
354 // 6 values are saved. Dummy threads will have zeroes in their virial: targetLength,
355 // lagrangeScaled and rc are all set to zero for them in the beginning of the kernel.
356 // The sm_threadVirial[..] will overlap with the sm_r[..] and sm_rhs[..], but the latter
357 // two are no longer in use.
358 extern __shared__ float sm_threadVirial[];
359 float mult = targetLength*lagrangeScaled;
360 sm_threadVirial[0*blockDim.x + threadIdx.x] = mult*rc.x*rc.x;
361 sm_threadVirial[1*blockDim.x + threadIdx.x] = mult*rc.x*rc.y;
362 sm_threadVirial[2*blockDim.x + threadIdx.x] = mult*rc.x*rc.z;
363 sm_threadVirial[3*blockDim.x + threadIdx.x] = mult*rc.y*rc.y;
364 sm_threadVirial[4*blockDim.x + threadIdx.x] = mult*rc.y*rc.z;
365 sm_threadVirial[5*blockDim.x + threadIdx.x] = mult*rc.z*rc.z;
369 // Reduce up to one virial per thread block. All blocks are divided by half, the first
370 // half of threads sums two virials. Then the first half is divided by two and the first
371 // half of it sums two values. This procedure is repeated until only one thread is left.
372 // Only works if the threads per blocks is a power of two (hence static_assert
373 // in the beginning of the kernel).
374 for (int divideBy = 2; divideBy <= static_cast<int>(blockDim.x); divideBy *= 2)
376 int dividedAt = blockDim.x/divideBy;
377 if (static_cast<int>(threadIdx.x) < dividedAt)
379 for (int d = 0; d < 6; d++)
381 sm_threadVirial[d*blockDim.x + threadIdx.x] += sm_threadVirial[d*blockDim.x + (threadIdx.x + dividedAt)];
384 // Syncronize if not within one warp
385 if (dividedAt > warpSize/2)
390 // First 6 threads in the block add the results of 6 tensor components to the global memory address.
393 atomicAdd(&(gm_virialScaled[threadIdx.x]), sm_threadVirial[threadIdx.x*blockDim.x]);
400 /*! \brief Select templated kernel.
402 * Returns pointer to a CUDA kernel based on provided booleans.
404 * \param[in] updateVelocities If the velocities should be constrained.
405 * \param[in] computeVirial If virial should be updated.
407 * \return Pointer to CUDA kernel
409 inline auto getLincsKernelPtr(const bool updateVelocities,
410 const bool computeVirial)
413 auto kernelPtr = lincs_kernel<true, true>;
414 if (updateVelocities && computeVirial)
416 kernelPtr = lincs_kernel<true, true>;
418 else if (updateVelocities && !computeVirial)
420 kernelPtr = lincs_kernel<true, false>;
422 else if (!updateVelocities && computeVirial)
424 kernelPtr = lincs_kernel<false, true>;
426 else if (!updateVelocities && !computeVirial)
428 kernelPtr = lincs_kernel<false, false>;
433 void LincsCuda::apply(const float3 *d_x,
435 const bool updateVelocities,
438 const bool computeVirial,
441 ensureNoPendingCudaError("In CUDA version of LINCS");
443 // Early exit if no constraints
444 if (kernelParams_.numConstraintsThreads == 0)
451 // Fill with zeros so the values can be reduced to it
452 // Only 6 values are needed because virial is symmetrical
453 clearDeviceBufferAsync(&kernelParams_.d_virialScaled, 0, 6, stream_);
456 auto kernelPtr = getLincsKernelPtr(updateVelocities, computeVirial);
458 KernelLaunchConfig config;
459 config.blockSize[0] = c_threadsPerBlock;
460 config.blockSize[1] = 1;
461 config.blockSize[2] = 1;
462 config.gridSize[0] = (kernelParams_.numConstraintsThreads + c_threadsPerBlock - 1)/c_threadsPerBlock;
463 config.gridSize[1] = 1;
464 config.gridSize[2] = 1;
466 // Shared memory is used to store:
467 // -- Current coordinates (3 floats per thread)
468 // -- Right-hand-sides for matrix inversion (2 floats per thread)
469 // -- Virial tensor components (6 floats per thread)
470 // Since none of these three are needed simultaneously, they can be saved at the same shared memory address
471 // (i.e. correspondent arrays are intentionally overlapped in address space). Consequently, only
472 // max{3, 2, 6} = 6 floats per thread are needed in case virial is computed, or max{3, 2} = 3 if not.
475 config.sharedMemorySize = c_threadsPerBlock*6*sizeof(float);
479 config.sharedMemorySize = c_threadsPerBlock*3*sizeof(float);
481 config.stream = stream_;
483 const auto kernelArgs = prepareGpuKernelArguments(kernelPtr, config,
488 launchGpuKernel(kernelPtr, config, nullptr,
489 "lincs_kernel<updateVelocities, computeVirial>", kernelArgs);
493 // Copy LINCS virial data and add it to the common virial
494 copyFromDeviceBuffer(h_virialScaled_.data(), &kernelParams_.d_virialScaled,
496 stream_, GpuApiCallBehavior::Sync, nullptr);
498 // Mapping [XX, XY, XZ, YY, YZ, ZZ] internal format to a tensor object
499 virialScaled[XX][XX] += h_virialScaled_[0];
500 virialScaled[XX][YY] += h_virialScaled_[1];
501 virialScaled[XX][ZZ] += h_virialScaled_[2];
503 virialScaled[YY][XX] += h_virialScaled_[1];
504 virialScaled[YY][YY] += h_virialScaled_[3];
505 virialScaled[YY][ZZ] += h_virialScaled_[4];
507 virialScaled[ZZ][XX] += h_virialScaled_[2];
508 virialScaled[ZZ][YY] += h_virialScaled_[4];
509 virialScaled[ZZ][ZZ] += h_virialScaled_[5];
515 LincsCuda::LincsCuda(int numIterations,
518 kernelParams_.numIterations = numIterations;
519 kernelParams_.expansionOrder = expansionOrder;
521 static_assert(sizeof(real) == sizeof(float),
522 "Real numbers should be in single precision in GPU code.");
523 static_assert(c_threadsPerBlock > 0 && ((c_threadsPerBlock & (c_threadsPerBlock - 1)) == 0),
524 "Number of threads per block should be a power of two in order for reduction to work.");
526 allocateDeviceBuffer(&kernelParams_.d_virialScaled, 6, nullptr);
527 h_virialScaled_.resize(6);
529 // The data arrays should be expanded/reallocated on first call of set() function.
530 numConstraintsThreadsAlloc_ = 0;
532 // Use default stream.
533 // TODO The stream should/can be assigned by the GPU schedule when the code will be integrated.
538 LincsCuda::~LincsCuda()
540 freeDeviceBuffer(&kernelParams_.d_virialScaled);
542 if (numConstraintsThreadsAlloc_ > 0)
544 freeDeviceBuffer(&kernelParams_.d_constraints);
545 freeDeviceBuffer(&kernelParams_.d_constraintsTargetLengths);
547 freeDeviceBuffer(&kernelParams_.d_coupledConstraintsCounts);
548 freeDeviceBuffer(&kernelParams_.d_coupledConstraintsIndices);
549 freeDeviceBuffer(&kernelParams_.d_massFactors);
550 freeDeviceBuffer(&kernelParams_.d_matrixA);
552 if (numAtomsAlloc_ > 0)
554 freeDeviceBuffer(&kernelParams_.d_inverseMasses);
558 /*! \brief Helper function to go through constraints recursively.
560 * For each constraint, counts the number of coupled constraints and stores the value in spaceNeeded array.
561 * This information is used to split the array of constraints between thread blocks on a GPU so there is no
562 * coupling between constraints from different thread blocks. After the 'spaceNeeded' array is filled, the
563 * value spaceNeeded[c] should be equal to the number of constraints that are coupled to 'c' and located
564 * after it in the constraints array.
566 * \param[in] a Atom index.
567 * \param[in,out] spaceNeeded Indicates if the constraint was already counted and stores
568 * the number of constraints (i) connected to it and (ii) located
569 * after it in memory. This array is filled by this recursive function.
570 * For a set of coupled constraints, only for the first one in this list
571 * the number of consecutive coupled constraints is needed: if there is
572 * not enough space for this set of constraints in the thread block,
573 * the group has to be moved to the next one.
574 * \param[in] atomAdjacencyList Stores information about connections between atoms.
576 inline int countCoupled(int a, std::vector<int> *spaceNeeded,
577 std::vector<std::vector<std::tuple<int, int, int> > > *atomsAdjacencyList)
582 for (unsigned i = 0; i < atomsAdjacencyList->at(a).size(); i++)
584 std::tie(a2, c2, sign) = atomsAdjacencyList->at(a).at(i);
585 if (spaceNeeded->at(c2) == -1)
587 spaceNeeded->at(c2) = 0; // To indicate we've been here
588 counted += 1 + countCoupled(a2, spaceNeeded, atomsAdjacencyList);
594 void LincsCuda::set(const t_idef &idef,
597 int numAtoms = md.nr;
598 // List of constrained atoms (CPU memory)
599 std::vector<int2> constraintsHost;
600 // Equilibrium distances for the constraints (CPU)
601 std::vector<float> constraintsTargetLengthsHost;
602 // Number of constraints, coupled with the current one (CPU)
603 std::vector<int> coupledConstraintsCountsHost;
604 // List of coupled with the current one (CPU)
605 std::vector<int> coupledConstraintsIndicesHost;
606 // Mass factors (CPU)
607 std::vector<float> massFactorsHost;
609 // List of constrained atoms in local topology
610 t_iatom *iatoms = idef.il[F_CONSTR].iatoms;
611 const int stride = NRAL(F_CONSTR) + 1;
612 const int numConstraints = idef.il[F_CONSTR].nr/stride;
614 // Early exit if no constraints
615 if (numConstraints == 0)
617 kernelParams_.numConstraintsThreads = 0;
621 // Constructing adjacency list --- usefull intermediate structure
622 std::vector<std::vector<std::tuple<int, int, int> > > atomsAdjacencyList(numAtoms);
623 for (int c = 0; c < numConstraints; c++)
625 int a1 = iatoms[stride*c + 1];
626 int a2 = iatoms[stride*c + 2];
628 // Each constraint will be represented as a tuple, containing index of the second constrained atom,
629 // index of the constraint and a sign that indicates the order of atoms in which they are listed.
630 // Sign is needed to compute the mass factors.
631 atomsAdjacencyList.at(a1).push_back(std::make_tuple(a2, c, +1));
632 atomsAdjacencyList.at(a2).push_back(std::make_tuple(a1, c, -1));
635 // Compute, how many coupled constraints are in front of each constraint.
636 // Needed to introduce splits in data so that all coupled constraints will be computed in a single GPU block.
637 // The position 'c' of the vector spaceNeeded should have the number of constraints that are coupled to a constraint
638 // 'c' and are after 'c' in the vector. Only first index of the connected group of the constraints is needed later in the
639 // code, hence the spaceNeeded vector is also used to keep track if the constrain was already counted.
640 std::vector<int> spaceNeeded;
641 spaceNeeded.resize(numConstraints, -1);
642 std::fill(spaceNeeded.begin(), spaceNeeded.end(), -1);
643 for (int c = 0; c < numConstraints; c++)
645 int a1 = iatoms[stride*c + 1];
646 int a2 = iatoms[stride*c + 2];
647 if (spaceNeeded.at(c) == -1)
649 spaceNeeded.at(c) = countCoupled(a1, &spaceNeeded, &atomsAdjacencyList) +
650 countCoupled(a2, &spaceNeeded, &atomsAdjacencyList);
654 // Map of splits in the constraints data. For each 'old' constraint index gives 'new' which
655 // takes into account the empty spaces which might be needed in the end of each thread block.
656 std::vector<int> splitMap;
657 splitMap.resize(numConstraints, -1);
658 int currentMapIndex = 0;
659 for (int c = 0; c < numConstraints; c++)
661 // Check if coupled constraints all fit in one block
662 GMX_RELEASE_ASSERT(spaceNeeded.at(c) < c_threadsPerBlock, "Maximum number of coupled constraints exceedes the size of the CUDA thread block. "
663 "Most likely, you are trying to use GPU version of LINCS with constraints on all-bonds, "
664 "which is not supported. Try using H-bonds constraints only.");
665 if (currentMapIndex / c_threadsPerBlock != (currentMapIndex + spaceNeeded.at(c)) / c_threadsPerBlock)
667 currentMapIndex = ((currentMapIndex/c_threadsPerBlock) + 1) * c_threadsPerBlock;
669 splitMap.at(c) = currentMapIndex;
672 kernelParams_.numConstraintsThreads = currentMapIndex + c_threadsPerBlock - currentMapIndex % c_threadsPerBlock;
673 GMX_RELEASE_ASSERT(kernelParams_.numConstraintsThreads % c_threadsPerBlock == 0, "Number of threads should be a multiple of the block size");
675 // Initialize constraints and their target indexes taking into account the splits in the data arrays.
679 constraintsHost.resize(kernelParams_.numConstraintsThreads, pair);
680 std::fill(constraintsHost.begin(), constraintsHost.end(), pair);
681 constraintsTargetLengthsHost.resize(kernelParams_.numConstraintsThreads, 0.0);
682 std::fill(constraintsTargetLengthsHost.begin(), constraintsTargetLengthsHost.end(), 0.0);
683 for (int c = 0; c < numConstraints; c++)
685 int a1 = iatoms[stride*c + 1];
686 int a2 = iatoms[stride*c + 2];
687 int type = iatoms[stride*c];
692 constraintsHost.at(splitMap.at(c)) = pair;
693 constraintsTargetLengthsHost.at(splitMap.at(c)) = idef.iparams[type].constr.dA;
697 // The adjacency list of constraints (i.e. the list of coupled constraints for each constraint).
698 // We map a single thread to a single constraint, hence each thread 'c' will be using one element from
699 // coupledConstraintsCountsHost array, which is the number of constraints coupled to the constraint 'c'.
700 // The coupled constraints indexes are placed into the coupledConstraintsIndicesHost array. Latter is organized
701 // as a one-dimensional array to ensure good memory alignment. It is addressed as [c + i*numConstraintsThreads],
702 // where 'i' goes from zero to the number of constraints coupled to 'c'. 'numConstraintsThreads' is the width of
703 // the array --- a number, greater then total number of constraints, taking into account the splits in the
704 // constraints array due to the GPU block borders. This number can be adjusted to improve memory access pattern.
705 // Mass factors are saved in a similar data structure.
706 int maxCoupledConstraints = 0;
707 for (int c = 0; c < numConstraints; c++)
709 int a1 = iatoms[stride*c + 1];
710 int a2 = iatoms[stride*c + 2];
712 // Constraint 'c' is counted twice, but it should be excluded altogether. Hence '-2'.
713 int nCoupedConstraints = atomsAdjacencyList.at(a1).size() + atomsAdjacencyList.at(a2).size() - 2;
715 if (nCoupedConstraints > maxCoupledConstraints)
717 maxCoupledConstraints = nCoupedConstraints;
721 coupledConstraintsCountsHost.resize(kernelParams_.numConstraintsThreads, 0);
722 coupledConstraintsIndicesHost.resize(maxCoupledConstraints*kernelParams_.numConstraintsThreads, -1);
723 massFactorsHost.resize(maxCoupledConstraints*kernelParams_.numConstraintsThreads, -1);
725 for (int c1 = 0; c1 < numConstraints; c1++)
727 coupledConstraintsCountsHost.at(splitMap.at(c1)) = 0;
728 int c1a1 = iatoms[stride*c1 + 1];
729 int c1a2 = iatoms[stride*c1 + 2];
736 // Constraints, coupled trough the first atom.
738 for (unsigned j = 0; j < atomsAdjacencyList.at(c1a1).size(); j++)
741 std::tie(c2a2, c2, sign) = atomsAdjacencyList.at(c1a1).at(j);
745 int index = kernelParams_.numConstraintsThreads*coupledConstraintsCountsHost.at(splitMap.at(c1)) + splitMap.at(c1);
747 coupledConstraintsIndicesHost.at(index) = splitMap.at(c2);
751 float sqrtmu1 = 1.0/sqrt(md.invmass[c1a1] + md.invmass[c1a2]);
752 float sqrtmu2 = 1.0/sqrt(md.invmass[c2a1] + md.invmass[c2a2]);
754 massFactorsHost.at(index) = -sign*md.invmass[center]*sqrtmu1*sqrtmu2;
756 coupledConstraintsCountsHost.at(splitMap.at(c1))++;
761 // Constraints, coupled through the second atom.
763 for (unsigned j = 0; j < atomsAdjacencyList.at(c1a2).size(); j++)
766 std::tie(c2a2, c2, sign) = atomsAdjacencyList.at(c1a2).at(j);
770 int index = kernelParams_.numConstraintsThreads*coupledConstraintsCountsHost.at(splitMap.at(c1)) + splitMap.at(c1);
772 coupledConstraintsIndicesHost.at(index) = splitMap.at(c2);
776 float sqrtmu1 = 1.0/sqrt(md.invmass[c1a1] + md.invmass[c1a2]);
777 float sqrtmu2 = 1.0/sqrt(md.invmass[c2a1] + md.invmass[c2a2]);
779 massFactorsHost.at(index) = sign*md.invmass[center]*sqrtmu1*sqrtmu2;
781 coupledConstraintsCountsHost.at(splitMap.at(c1))++;
787 // (Re)allocate the memory, if the number of constraints has increased.
788 if (kernelParams_.numConstraintsThreads > numConstraintsThreadsAlloc_)
790 // Free memory if it was allocated before (i.e. if not the first time here).
791 if (numConstraintsThreadsAlloc_ > 0)
793 freeDeviceBuffer(&kernelParams_.d_constraints);
794 freeDeviceBuffer(&kernelParams_.d_constraintsTargetLengths);
796 freeDeviceBuffer(&kernelParams_.d_coupledConstraintsCounts);
797 freeDeviceBuffer(&kernelParams_.d_coupledConstraintsIndices);
798 freeDeviceBuffer(&kernelParams_.d_massFactors);
799 freeDeviceBuffer(&kernelParams_.d_matrixA);
803 numConstraintsThreadsAlloc_ = kernelParams_.numConstraintsThreads;
805 allocateDeviceBuffer(&kernelParams_.d_constraints, kernelParams_.numConstraintsThreads, nullptr);
806 allocateDeviceBuffer(&kernelParams_.d_constraintsTargetLengths, kernelParams_.numConstraintsThreads, nullptr);
808 allocateDeviceBuffer(&kernelParams_.d_coupledConstraintsCounts, kernelParams_.numConstraintsThreads, nullptr);
809 allocateDeviceBuffer(&kernelParams_.d_coupledConstraintsIndices, maxCoupledConstraints*kernelParams_.numConstraintsThreads, nullptr);
810 allocateDeviceBuffer(&kernelParams_.d_massFactors, maxCoupledConstraints*kernelParams_.numConstraintsThreads, nullptr);
811 allocateDeviceBuffer(&kernelParams_.d_matrixA, maxCoupledConstraints*kernelParams_.numConstraintsThreads, nullptr);
815 // (Re)allocate the memory, if the number of atoms has increased.
816 if (numAtoms > numAtomsAlloc_)
818 if (numAtomsAlloc_ > 0)
820 freeDeviceBuffer(&kernelParams_.d_inverseMasses);
822 numAtomsAlloc_ = numAtoms;
823 allocateDeviceBuffer(&kernelParams_.d_inverseMasses, numAtoms, nullptr);
827 copyToDeviceBuffer(&kernelParams_.d_constraints, constraintsHost.data(),
828 0, kernelParams_.numConstraintsThreads,
829 stream_, GpuApiCallBehavior::Sync, nullptr);
830 copyToDeviceBuffer(&kernelParams_.d_constraintsTargetLengths, constraintsTargetLengthsHost.data(),
831 0, kernelParams_.numConstraintsThreads,
832 stream_, GpuApiCallBehavior::Sync, nullptr);
833 copyToDeviceBuffer(&kernelParams_.d_coupledConstraintsCounts, coupledConstraintsCountsHost.data(),
834 0, kernelParams_.numConstraintsThreads,
835 stream_, GpuApiCallBehavior::Sync, nullptr);
836 copyToDeviceBuffer(&kernelParams_.d_coupledConstraintsIndices, coupledConstraintsIndicesHost.data(),
837 0, maxCoupledConstraints*kernelParams_.numConstraintsThreads,
838 stream_, GpuApiCallBehavior::Sync, nullptr);
839 copyToDeviceBuffer(&kernelParams_.d_massFactors, massFactorsHost.data(),
840 0, maxCoupledConstraints*kernelParams_.numConstraintsThreads,
841 stream_, GpuApiCallBehavior::Sync, nullptr);
843 GMX_RELEASE_ASSERT(md.invmass != nullptr, "Masses of attoms should be specified.\n");
844 copyToDeviceBuffer(&kernelParams_.d_inverseMasses, md.invmass,
846 stream_, GpuApiCallBehavior::Sync, nullptr);
850 void LincsCuda::setPbc(const t_pbc *pbc)
852 setPbcAiuc(pbc->ndim_ePBC, pbc->box, &kernelParams_.pbcAiuc);