Remove unused code detected by PGI compiler
[gromacs.git] / src / gromacs / gmxana / gmx_hydorder.cpp
blob2b3bafbfd26395539db000e527f40b98e994f7ce
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2010,2011,2012,2013,2014,2015, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 #include "gmxpre.h"
38 #include <cmath>
39 #include <cstring>
41 #include "gromacs/commandline/pargs.h"
42 #include "gromacs/fileio/confio.h"
43 #include "gromacs/fileio/matio.h"
44 #include "gromacs/fileio/trxio.h"
45 #include "gromacs/fileio/xvgr.h"
46 #include "gromacs/gmxana/binsearch.h"
47 #include "gromacs/gmxana/gmx_ana.h"
48 #include "gromacs/gmxana/gstat.h"
49 #include "gromacs/gmxana/powerspect.h"
50 #include "gromacs/math/vec.h"
51 #include "gromacs/pbcutil/pbc.h"
52 #include "gromacs/pbcutil/rmpbc.h"
53 #include "gromacs/topology/index.h"
54 #include "gromacs/topology/topology.h"
55 #include "gromacs/utility/arraysize.h"
56 #include "gromacs/utility/cstringutil.h"
57 #include "gromacs/utility/fatalerror.h"
58 #include "gromacs/utility/futil.h"
59 #include "gromacs/utility/gmxassert.h"
60 #include "gromacs/utility/smalloc.h"
62 static void find_tetra_order_grid(t_topology top, int ePBC,
63 int natoms, matrix box,
64 rvec x[], int maxidx, int index[],
65 real *sgmean, real *skmean,
66 int nslicex, int nslicey, int nslicez,
67 real ***sggrid, real ***skgrid)
69 int ix, jx, i, j, k, l, n, *nn[4];
70 rvec dx, rj, rk, urk, urj;
71 real cost, cost2, *sgmol, *skmol, rmean, rmean2, r2, box2, *r_nn[4];
72 t_pbc pbc;
73 int slindex_x, slindex_y, slindex_z;
74 int ***sl_count;
75 real onethird = 1.0/3.0;
76 gmx_rmpbc_t gpbc;
78 /* dmat = init_mat(maxidx, FALSE); */
80 box2 = box[XX][XX] * box[XX][XX];
82 /* Initialize expanded sl_count array */
83 snew(sl_count, nslicex);
84 for (i = 0; i < nslicex; i++)
86 snew(sl_count[i], nslicey);
87 for (j = 0; j < nslicey; j++)
89 snew(sl_count[i][j], nslicez);
94 for (i = 0; (i < 4); i++)
96 snew(r_nn[i], natoms);
97 snew(nn[i], natoms);
99 for (j = 0; (j < natoms); j++)
101 r_nn[i][j] = box2;
105 snew(sgmol, maxidx);
106 snew(skmol, maxidx);
108 /* Must init pbc every step because of pressure coupling */
109 set_pbc(&pbc, ePBC, box);
110 gpbc = gmx_rmpbc_init(&top.idef, ePBC, natoms);
111 gmx_rmpbc(gpbc, natoms, box, x);
113 *sgmean = 0.0;
114 *skmean = 0.0;
115 l = 0;
116 for (i = 0; (i < maxidx); i++)
117 { /* loop over index file */
118 ix = index[i];
119 for (j = 0; (j < maxidx); j++)
122 if (i == j)
124 continue;
127 jx = index[j];
129 pbc_dx(&pbc, x[ix], x[jx], dx);
130 r2 = iprod(dx, dx);
132 /* set_mat_entry(dmat,i,j,r2); */
134 /* determine the nearest neighbours */
135 if (r2 < r_nn[0][i])
137 r_nn[3][i] = r_nn[2][i]; nn[3][i] = nn[2][i];
138 r_nn[2][i] = r_nn[1][i]; nn[2][i] = nn[1][i];
139 r_nn[1][i] = r_nn[0][i]; nn[1][i] = nn[0][i];
140 r_nn[0][i] = r2; nn[0][i] = j;
142 else if (r2 < r_nn[1][i])
144 r_nn[3][i] = r_nn[2][i]; nn[3][i] = nn[2][i];
145 r_nn[2][i] = r_nn[1][i]; nn[2][i] = nn[1][i];
146 r_nn[1][i] = r2; nn[1][i] = j;
148 else if (r2 < r_nn[2][i])
150 r_nn[3][i] = r_nn[2][i]; nn[3][i] = nn[2][i];
151 r_nn[2][i] = r2; nn[2][i] = j;
153 else if (r2 < r_nn[3][i])
155 r_nn[3][i] = r2; nn[3][i] = j;
160 /* calculate mean distance between nearest neighbours */
161 rmean = 0;
162 for (j = 0; (j < 4); j++)
164 r_nn[j][i] = std::sqrt(r_nn[j][i]);
165 rmean += r_nn[j][i];
167 rmean /= 4;
169 n = 0;
170 sgmol[i] = 0.0;
171 skmol[i] = 0.0;
173 /* Chau1998a eqn 3 */
174 /* angular part tetrahedrality order parameter per atom */
175 for (j = 0; (j < 3); j++)
177 for (k = j+1; (k < 4); k++)
179 pbc_dx(&pbc, x[ix], x[index[nn[k][i]]], rk);
180 pbc_dx(&pbc, x[ix], x[index[nn[j][i]]], rj);
182 unitv(rk, urk);
183 unitv(rj, urj);
185 cost = iprod(urk, urj) + onethird;
186 cost2 = cost * cost;
188 sgmol[i] += cost2;
189 l++;
190 n++;
193 /* normalize sgmol between 0.0 and 1.0 */
194 sgmol[i] = 3*sgmol[i]/32;
195 *sgmean += sgmol[i];
197 /* distance part tetrahedrality order parameter per atom */
198 rmean2 = 4 * 3 * rmean * rmean;
199 for (j = 0; (j < 4); j++)
201 skmol[i] += (rmean - r_nn[j][i]) * (rmean - r_nn[j][i]) / rmean2;
202 /* printf("%d %f (%f %f %f %f) \n",
203 i, skmol[i], rmean, rmean2, r_nn[j][i], (rmean - r_nn[j][i]) );
207 *skmean += skmol[i];
209 /* Compute sliced stuff in x y z*/
210 slindex_x = static_cast<int>(std::round((1+x[i][XX]/box[XX][XX])*nslicex)) % nslicex;
211 slindex_y = static_cast<int>(std::round((1+x[i][YY]/box[YY][YY])*nslicey)) % nslicey;
212 slindex_z = static_cast<int>(std::round((1+x[i][ZZ]/box[ZZ][ZZ])*nslicez)) % nslicez;
213 sggrid[slindex_x][slindex_y][slindex_z] += sgmol[i];
214 skgrid[slindex_x][slindex_y][slindex_z] += skmol[i];
215 (sl_count[slindex_x][slindex_y][slindex_z])++;
216 } /* loop over entries in index file */
218 *sgmean /= maxidx;
219 *skmean /= maxidx;
221 for (i = 0; (i < nslicex); i++)
223 for (j = 0; j < nslicey; j++)
225 for (k = 0; k < nslicez; k++)
227 if (sl_count[i][j][k] > 0)
229 sggrid[i][j][k] /= sl_count[i][j][k];
230 skgrid[i][j][k] /= sl_count[i][j][k];
236 sfree(sl_count);
237 sfree(sgmol);
238 sfree(skmol);
239 for (i = 0; (i < 4); i++)
241 sfree(r_nn[i]);
242 sfree(nn[i]);
246 /*Determines interface from tetrahedral order parameter in box with specified binwidth. */
247 /*Outputs interface positions(bins), the number of timeframes, and the number of surface-mesh points in xy*/
249 static void calc_tetra_order_interface(const char *fnNDX, const char *fnTPS, const char *fnTRX, real binw, int tblock,
250 int *nframes, int *nslicex, int *nslicey,
251 real sgang1, real sgang2, real ****intfpos,
252 gmx_output_env_t *oenv)
254 FILE *fpsg = NULL, *fpsk = NULL;
255 t_topology top;
256 int ePBC;
257 t_trxstatus *status;
258 int natoms;
259 real t;
260 rvec *xtop, *x;
261 matrix box;
262 real sg, sk, sgintf;
263 int **index = NULL;
264 char **grpname = NULL;
265 int i, j, k, n, *isize, ng, nslicez, framenr;
266 real ***sg_grid = NULL, ***sk_grid = NULL, ***sg_fravg = NULL, ***sk_fravg = NULL, ****sk_4d = NULL, ****sg_4d = NULL;
267 int *perm;
268 int ndx1, ndx2;
269 int bins;
270 const real onehalf = 1.0/2.0;
271 /* real ***intfpos[2]; pointers to arrays of two interface positions zcoord(framenr,xbin,ybin): intfpos[interface_index][t][nslicey*x+y]
272 * i.e 1D Row-major order in (t,x,y) */
275 read_tps_conf(fnTPS, &top, &ePBC, &xtop, NULL, box, FALSE);
277 *nslicex = static_cast<int>(box[XX][XX]/binw + onehalf); /*Calculate slicenr from binwidth*/
278 *nslicey = static_cast<int>(box[YY][YY]/binw + onehalf);
279 nslicez = static_cast<int>(box[ZZ][ZZ]/binw + onehalf);
283 ng = 1;
284 /* get index groups */
285 printf("Select the group that contains the atoms you want to use for the tetrahedrality order parameter calculation:\n");
286 snew(grpname, ng);
287 snew(index, ng);
288 snew(isize, ng);
289 get_index(&top.atoms, fnNDX, ng, isize, index, grpname);
291 /* Analyze trajectory */
292 natoms = read_first_x(oenv, &status, fnTRX, &t, &x, box);
293 if (natoms > top.atoms.nr)
295 gmx_fatal(FARGS, "Topology (%d atoms) does not match trajectory (%d atoms)",
296 top.atoms.nr, natoms);
298 check_index(NULL, ng, index[0], NULL, natoms);
301 /*Prepare structures for temporary storage of frame info*/
302 snew(sg_grid, *nslicex);
303 snew(sk_grid, *nslicex);
304 for (i = 0; i < *nslicex; i++)
306 snew(sg_grid[i], *nslicey);
307 snew(sk_grid[i], *nslicey);
308 for (j = 0; j < *nslicey; j++)
310 snew(sg_grid[i][j], nslicez);
311 snew(sk_grid[i][j], nslicez);
315 sg_4d = NULL;
316 sk_4d = NULL;
317 *nframes = 0;
318 framenr = 0;
320 /* Loop over frames*/
323 /*Initialize box meshes (temporary storage for each tblock frame -reinitialise every tblock steps */
324 if (framenr%tblock == 0)
326 srenew(sk_4d, *nframes+1);
327 srenew(sg_4d, *nframes+1);
328 snew(sg_fravg, *nslicex);
329 snew(sk_fravg, *nslicex);
330 for (i = 0; i < *nslicex; i++)
332 snew(sg_fravg[i], *nslicey);
333 snew(sk_fravg[i], *nslicey);
334 for (j = 0; j < *nslicey; j++)
336 snew(sg_fravg[i][j], nslicez);
337 snew(sk_fravg[i][j], nslicez);
342 find_tetra_order_grid(top, ePBC, natoms, box, x, isize[0], index[0],
343 &sg, &sk, *nslicex, *nslicey, nslicez, sg_grid, sk_grid);
344 GMX_RELEASE_ASSERT(sk_fravg != NULL, "Trying to dereference NULL sk_fravg pointer");
345 for (i = 0; i < *nslicex; i++)
347 for (j = 0; j < *nslicey; j++)
349 for (k = 0; k < nslicez; k++)
351 sk_fravg[i][j][k] += sk_grid[i][j][k]/tblock;
352 sg_fravg[i][j][k] += sg_grid[i][j][k]/tblock;
357 framenr++;
359 if (framenr%tblock == 0)
361 GMX_RELEASE_ASSERT(sk_4d != NULL, "Trying to dereference NULL sk_4d pointer");
362 sk_4d[*nframes] = sk_fravg;
363 sg_4d[*nframes] = sg_fravg;
364 (*nframes)++;
368 while (read_next_x(oenv, status, &t, x, box));
369 close_trj(status);
371 sfree(grpname);
372 sfree(index);
373 sfree(isize);
375 /*Debugging for printing out the entire order parameter meshes.*/
376 if (debug)
378 fpsg = xvgropen("sg_ang_mesh", "S\\sg\\N Angle Order Parameter / Meshpoint", "(nm)", "S\\sg\\N", oenv);
379 fpsk = xvgropen("sk_dist_mesh", "S\\sk\\N Distance Order Parameter / Meshpoint", "(nm)", "S\\sk\\N", oenv);
380 for (n = 0; n < (*nframes); n++)
382 fprintf(fpsg, "%i\n", n);
383 fprintf(fpsk, "%i\n", n);
384 for (i = 0; (i < *nslicex); i++)
386 for (j = 0; j < *nslicey; j++)
388 for (k = 0; k < nslicez; k++)
390 fprintf(fpsg, "%4f %4f %4f %8f\n", (i+0.5)*box[XX][XX]/(*nslicex), (j+0.5)*box[YY][YY]/(*nslicey), (k+0.5)*box[ZZ][ZZ]/nslicez, sg_4d[n][i][j][k]);
391 fprintf(fpsk, "%4f %4f %4f %8f\n", (i+0.5)*box[XX][XX]/(*nslicex), (j+0.5)*box[YY][YY]/(*nslicey), (k+0.5)*box[ZZ][ZZ]/nslicez, sk_4d[n][i][j][k]);
396 xvgrclose(fpsg);
397 xvgrclose(fpsk);
401 /* Find positions of interface z by scanning orderparam for each frame and for each xy-mesh cylinder along z*/
403 /*Simple trial: assume interface is in the middle of -sgang1 and sgang2*/
404 sgintf = 0.5*(sgang1+sgang2);
407 /*Allocate memory for interface arrays; */
408 snew((*intfpos), 2);
409 snew((*intfpos)[0], *nframes);
410 snew((*intfpos)[1], *nframes);
412 bins = (*nslicex)*(*nslicey);
415 snew(perm, nslicez); /*permutation array for sorting along normal coordinate*/
418 for (n = 0; n < *nframes; n++)
420 snew((*intfpos)[0][n], bins);
421 snew((*intfpos)[1][n], bins);
422 for (i = 0; i < *nslicex; i++)
424 for (j = 0; j < *nslicey; j++)
426 rangeArray(perm, nslicez); /*reset permutation array to identity*/
427 /*Binsearch returns 2 bin-numbers where the order param is <= setpoint sgintf*/
428 ndx1 = start_binsearch(sg_4d[n][i][j], perm, 0, nslicez/2-1, sgintf, 1);
429 ndx2 = start_binsearch(sg_4d[n][i][j], perm, nslicez/2, nslicez-1, sgintf, -1);
430 /*Use linear interpolation to smooth out the interface position*/
432 /*left interface (0)*/
433 /*if((sg_4d[n][i][j][perm[ndx1+1]]-sg_4d[n][i][j][perm[ndx1]])/sg_4d[n][i][j][perm[ndx1]] > 0.01){
434 pos=( (sgintf-sg_4d[n][i][j][perm[ndx1]])*perm[ndx1+1]+(sg_4d[n][i][j][perm[ndx1+1]]-sgintf)*perm[ndx1 ])*/
435 (*intfpos)[0][n][j+*nslicey*i] = (perm[ndx1]+onehalf)*binw;
436 /*right interface (1)*/
437 /*alpha=(sgintf-sg_4d[n][i][j][perm[ndx2]])/(sg_4d[n][i][j][perm[ndx2]+1]-sg_4d[n][i][j][perm[ndx2]]);*/
438 /*(*intfpos)[1][n][j+*nslicey*i]=((1-alpha)*perm[ndx2]+alpha*(perm[ndx2]+1)+onehalf)*box[ZZ][ZZ]/nslicez;*/
439 (*intfpos)[1][n][j+*nslicey*i] = (perm[ndx2]+onehalf)*binw;
445 sfree(sk_4d);
446 sfree(sg_4d);
449 static void writesurftoxpms(real ***surf, int tblocks, int xbins, int ybins, real bw, char **outfiles, int maplevels )
452 char numbuf[8];
453 int n, i, j;
454 real **profile1, **profile2;
455 real max1, max2, min1, min2, *xticks, *yticks;
456 t_rgb lo = {1, 1, 1};
457 t_rgb hi = {0, 0, 0};
458 FILE *xpmfile1, *xpmfile2;
460 /*Prepare xpm structures for output*/
462 /*Allocate memory to tick's and matrices*/
463 snew (xticks, xbins+1);
464 snew (yticks, ybins+1);
466 profile1 = mk_matrix(xbins, ybins, FALSE);
467 profile2 = mk_matrix(xbins, ybins, FALSE);
469 for (i = 0; i < xbins+1; i++)
471 xticks[i] += bw;
473 for (j = 0; j < ybins+1; j++)
475 yticks[j] += bw;
478 xpmfile1 = gmx_ffopen(outfiles[0], "w");
479 xpmfile2 = gmx_ffopen(outfiles[1], "w");
481 max1 = max2 = 0.0;
482 min1 = min2 = 1000.00;
484 for (n = 0; n < tblocks; n++)
486 sprintf(numbuf, "%5d", n);
487 /*Filling matrices for inclusion in xpm-files*/
488 for (i = 0; i < xbins; i++)
490 for (j = 0; j < ybins; j++)
492 profile1[i][j] = (surf[0][n][j+ybins*i]);
493 profile2[i][j] = (surf[1][n][j+ybins*i]);
494 /*Finding max and min values*/
495 if (profile1[i][j] > max1)
497 max1 = profile1[i][j];
499 if (profile1[i][j] < min1)
501 min1 = profile1[i][j];
503 if (profile2[i][j] > max2)
505 max2 = profile2[i][j];
507 if (profile2[i][j] < min2)
509 min2 = profile2[i][j];
514 write_xpm(xpmfile1, 3, numbuf, "Height", "x[nm]", "y[nm]", xbins, ybins, xticks, yticks, profile1, min1, max1, lo, hi, &maplevels);
515 write_xpm(xpmfile2, 3, numbuf, "Height", "x[nm]", "y[nm]", xbins, ybins, xticks, yticks, profile2, min2, max2, lo, hi, &maplevels);
518 gmx_ffclose(xpmfile1);
519 gmx_ffclose(xpmfile2);
523 sfree(profile1);
524 sfree(profile2);
525 sfree(xticks);
526 sfree(yticks);
530 static void writeraw(real ***surf, int tblocks, int xbins, int ybins, char **fnms)
532 FILE *raw1, *raw2;
533 int i, j, n;
535 raw1 = gmx_ffopen(fnms[0], "w");
536 raw2 = gmx_ffopen(fnms[1], "w");
537 fprintf(raw1, "#Legend\n#TBlock\n#Xbin Ybin Z t\n");
538 fprintf(raw2, "#Legend\n#TBlock\n#Xbin Ybin Z t\n");
539 for (n = 0; n < tblocks; n++)
541 fprintf(raw1, "%5d\n", n);
542 fprintf(raw2, "%5d\n", n);
543 for (i = 0; i < xbins; i++)
545 for (j = 0; j < ybins; j++)
547 fprintf(raw1, "%i %i %8.5f\n", i, j, (surf[0][n][j+ybins*i]));
548 fprintf(raw2, "%i %i %8.5f\n", i, j, (surf[1][n][j+ybins*i]));
553 gmx_ffclose(raw1);
554 gmx_ffclose(raw2);
559 int gmx_hydorder(int argc, char *argv[])
561 static const char *desc[] = {
562 "[THISMODULE] computes the tetrahedrality order parameters around a ",
563 "given atom. Both angle an distance order parameters are calculated. See",
564 "P.-L. Chau and A.J. Hardwick, Mol. Phys., 93, (1998), 511-518.",
565 "for more details.[PAR]"
566 "[THISMODULE] calculates the order parameter in a 3d-mesh in the box, and",
567 "with 2 phases in the box gives the user the option to define a 2D interface in time",
568 "separating the faces by specifying parameters [TT]-sgang1[tt] and",
569 "[TT]-sgang2[tt] (it is important to select these judiciously)."
572 int axis = 0;
573 static int nsttblock = 1;
574 static int nlevels = 100;
575 static real binwidth = 1.0; /* binwidth in mesh */
576 static real sg1 = 1;
577 static real sg2 = 1; /* order parameters for bulk phases */
578 static gmx_bool bFourier = FALSE;
579 static gmx_bool bRawOut = FALSE;
580 int frames, xslices, yslices; /* Dimensions of interface arrays*/
581 real ***intfpos; /* Interface arrays (intfnr,t,xy) -potentially large */
582 static const char *normal_axis[] = { NULL, "z", "x", "y", NULL };
584 t_pargs pa[] = {
585 { "-d", FALSE, etENUM, {normal_axis},
586 "Direction of the normal on the membrane" },
587 { "-bw", FALSE, etREAL, {&binwidth},
588 "Binwidth of box mesh" },
589 { "-sgang1", FALSE, etREAL, {&sg1},
590 "tetrahedral angle parameter in Phase 1 (bulk)" },
591 { "-sgang2", FALSE, etREAL, {&sg2},
592 "tetrahedral angle parameter in Phase 2 (bulk)" },
593 { "-tblock", FALSE, etINT, {&nsttblock},
594 "Number of frames in one time-block average"},
595 { "-nlevel", FALSE, etINT, {&nlevels},
596 "Number of Height levels in 2D - XPixMaps"}
599 t_filenm fnm[] = { /* files for g_order */
600 { efTRX, "-f", NULL, ffREAD }, /* trajectory file */
601 { efNDX, "-n", NULL, ffREAD }, /* index file */
602 { efTPR, "-s", NULL, ffREAD }, /* topology file */
603 { efXPM, "-o", "intf", ffWRMULT}, /* XPM- surface maps */
604 { efOUT, "-or", "raw", ffOPTWRMULT }, /* xvgr output file */
605 { efOUT, "-Spect", "intfspect", ffOPTWRMULT}, /* Fourier spectrum interfaces */
607 #define NFILE asize(fnm)
609 /*Filenames*/
610 const char *ndxfnm, *tpsfnm, *trxfnm;
611 char **spectra, **intfn, **raw;
612 int nfspect, nfxpm, nfraw;
613 gmx_output_env_t *oenv;
615 if (!parse_common_args(&argc, argv, PCA_CAN_VIEW | PCA_CAN_TIME,
616 NFILE, fnm, asize(pa), pa, asize(desc), desc, 0, NULL, &oenv))
618 return 0;
620 bFourier = opt2bSet("-Spect", NFILE, fnm);
621 bRawOut = opt2bSet("-or", NFILE, fnm);
623 if (binwidth < 0.0)
625 gmx_fatal(FARGS, "Can not have binwidth < 0");
628 ndxfnm = ftp2fn(efNDX, NFILE, fnm);
629 tpsfnm = ftp2fn(efTPR, NFILE, fnm);
630 trxfnm = ftp2fn(efTRX, NFILE, fnm);
632 /* Calculate axis */
633 GMX_RELEASE_ASSERT(normal_axis[0] != NULL, "Option setting inconsistency; normal_axis[0] is NULL");
634 if (std::strcmp(normal_axis[0], "x") == 0)
636 axis = XX;
638 else if (std::strcmp(normal_axis[0], "y") == 0)
640 axis = YY;
642 else if (std::strcmp(normal_axis[0], "z") == 0)
644 axis = ZZ;
646 else
648 gmx_fatal(FARGS, "Invalid axis, use x, y or z");
651 switch (axis)
653 case 0:
654 fprintf(stderr, "Taking x axis as normal to the membrane\n");
655 break;
656 case 1:
657 fprintf(stderr, "Taking y axis as normal to the membrane\n");
658 break;
659 case 2:
660 fprintf(stderr, "Taking z axis as normal to the membrane\n");
661 break;
664 /* tetraheder order parameter */
665 /* If either of the options is set we compute both */
666 nfxpm = opt2fns(&intfn, "-o", NFILE, fnm);
667 if (nfxpm != 2)
669 gmx_fatal(FARGS, "No or not correct number (2) of output-files: %d", nfxpm);
671 calc_tetra_order_interface(ndxfnm, tpsfnm, trxfnm, binwidth, nsttblock, &frames, &xslices, &yslices, sg1, sg2, &intfpos, oenv);
672 writesurftoxpms(intfpos, frames, xslices, yslices, binwidth, intfn, nlevels);
674 if (bFourier)
676 nfspect = opt2fns(&spectra, "-Spect", NFILE, fnm);
677 if (nfspect != 2)
679 gmx_fatal(FARGS, "No or not correct number (2) of output-files: %d", nfspect);
681 powerspectavg(intfpos, frames, xslices, yslices, spectra);
684 if (bRawOut)
686 nfraw = opt2fns(&raw, "-or", NFILE, fnm);
687 if (nfraw != 2)
689 gmx_fatal(FARGS, "No or not correct number (2) of output-files: %d", nfraw);
691 writeraw(intfpos, frames, xslices, yslices, raw);
694 return 0;