2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2008,2009,2010,2011,2012,2013,2014,2015, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
40 #include "gromacs/commandline/pargs.h"
41 #include "gromacs/fileio/confio.h"
42 #include "gromacs/fileio/trx.h"
43 #include "gromacs/fileio/trxio.h"
44 #include "gromacs/fileio/xvgr.h"
45 #include "gromacs/gmxana/gmx_ana.h"
46 #include "gromacs/math/units.h"
47 #include "gromacs/math/vec.h"
48 #include "gromacs/pbcutil/pbc.h"
49 #include "gromacs/pbcutil/rmpbc.h"
50 #include "gromacs/statistics/statistics.h"
51 #include "gromacs/topology/index.h"
52 #include "gromacs/topology/topology.h"
53 #include "gromacs/utility/arraysize.h"
54 #include "gromacs/utility/cstringutil.h"
55 #include "gromacs/utility/fatalerror.h"
56 #include "gromacs/utility/gmxassert.h"
57 #include "gromacs/utility/smalloc.h"
59 #define EPSI0 (EPSILON0*E_CHARGE*E_CHARGE*AVOGADRO/(KILO*NANO)) /* EPSILON0 in SI units */
61 static void index_atom2mol(int *n
, int *index
, t_block
*mols
)
63 int nat
, i
, nmol
, mol
, j
;
71 while (index
[i
] > mols
->index
[mol
])
76 gmx_fatal(FARGS
, "Atom index out of range: %d", index
[i
]+1);
79 for (j
= mols
->index
[mol
]; j
< mols
->index
[mol
+1]; j
++)
81 if (i
>= nat
|| index
[i
] != j
)
83 gmx_fatal(FARGS
, "The index group does not consist of whole molecules");
90 fprintf(stderr
, "\nSplit group of %d atoms into %d molecules\n", nat
, nmol
);
95 static gmx_bool
precalc(t_topology top
, real mass2
[], real qmol
[])
110 for (i
= 0; i
< top
.mols
.nr
; i
++)
112 k
= top
.mols
.index
[i
];
113 l
= top
.mols
.index
[i
+1];
117 for (j
= k
; j
< l
; j
++)
119 mtot
+= top
.atoms
.atom
[j
].m
;
120 qtot
+= top
.atoms
.atom
[j
].q
;
123 for (j
= k
; j
< l
; j
++)
125 top
.atoms
.atom
[j
].q
-= top
.atoms
.atom
[j
].m
*qtot
/mtot
;
126 mass2
[j
] = top
.atoms
.atom
[j
].m
/mtot
;
143 if (std::abs(qall
) > 0.01)
145 printf("\n\nSystem not neutral (q=%f) will not calculate translational part of the dipole moment.\n", qall
);
157 static void remove_jump(matrix box
, int natoms
, rvec xp
[], rvec x
[])
163 for (d
= 0; d
< DIM
; d
++)
165 hbox
[d
] = 0.5*box
[d
][d
];
167 for (i
= 0; i
< natoms
; i
++)
169 for (m
= DIM
-1; m
>= 0; m
--)
171 while (x
[i
][m
]-xp
[i
][m
] <= -hbox
[m
])
173 for (d
= 0; d
<= m
; d
++)
175 x
[i
][d
] += box
[m
][d
];
178 while (x
[i
][m
]-xp
[i
][m
] > hbox
[m
])
180 for (d
= 0; d
<= m
; d
++)
182 x
[i
][d
] -= box
[m
][d
];
189 static void calc_mj(t_topology top
, int ePBC
, matrix box
, gmx_bool bNoJump
, int isize
, int index0
[], \
190 rvec fr
[], rvec mj
, real mass2
[], real qmol
[])
200 calc_box_center(ecenterRECT
, box
, center
);
204 set_pbc(&pbc
, ePBC
, box
);
210 for (i
= 0; i
< isize
; i
++)
214 k
= top
.mols
.index
[index0
[i
]];
215 l
= top
.mols
.index
[index0
[i
+1]];
216 for (j
= k
; j
< l
; j
++)
218 svmul(mass2
[j
], fr
[j
], tmp
);
224 svmul(qmol
[k
], mt1
, mt1
);
228 pbc_dx(&pbc
, mt1
, center
, mt2
);
229 svmul(qmol
[k
], mt2
, mt1
);
239 static real
calceps(real prefactor
, real md2
, real mj2
, real cor
, real eps_rf
, gmx_bool bCOR
)
242 /* bCOR determines if the correlation is computed via
243 * static properties (FALSE) or the correlation integral (TRUE)
251 epsilon
= md2
-2.0*cor
+mj2
;
255 epsilon
= md2
+mj2
+2.0*cor
;
260 epsilon
= 1.0+prefactor
*epsilon
;
265 epsilon
= 2.0*eps_rf
+1.0+2.0*eps_rf
*prefactor
*epsilon
;
266 epsilon
/= 2.0*eps_rf
+1.0-prefactor
*epsilon
;
275 static real
calc_cacf(FILE *fcacf
, real prefactor
, real cacf
[], real time
[], int nfr
, int vfr
[], int ei
, int nshift
)
282 real sigma_ret
= 0.0;
292 rfr
= static_cast<real
>(nfr
+i
)/nshift
;
295 if (time
[vfr
[i
]] <= time
[vfr
[ei
]])
300 fprintf(fcacf
, "%.3f\t%10.6g\t%10.6g\n", time
[vfr
[i
]], cacf
[i
], sigma
);
304 deltat
= (time
[vfr
[i
+1]]-time
[vfr
[i
]]);
306 corint
= 2.0*deltat
*cacf
[i
]*prefactor
;
307 if (i
== 0 || (i
+1) == nfr
)
319 printf("Too less points.\n");
326 static void calc_mjdsp(FILE *fmjdsp
, real prefactor
, real dsp2
[], real time
[], int nfr
, real refr
[])
331 fprintf(fmjdsp
, "#Prefactor fit E-H: 1 / 6.0*V*k_B*T: %g\n", prefactor
);
333 for (i
= 0; i
< nfr
; i
++)
338 dsp2
[i
] *= prefactor
/refr
[i
];
339 fprintf(fmjdsp
, "%.3f\t%10.6g\n", time
[i
], dsp2
[i
]);
348 static void dielectric(FILE *fmj
, FILE *fmd
, FILE *outf
, FILE *fcur
, FILE *mcor
,
349 FILE *fmjdsp
, gmx_bool bNoJump
, gmx_bool bACF
, gmx_bool bINT
,
350 int ePBC
, t_topology top
, t_trxframe fr
, real temp
,
351 real bfit
, real efit
, real bvit
, real evit
,
352 t_trxstatus
*status
, int isize
, int nmols
, int nshift
,
353 int *index0
, int indexm
[], real mass2
[],
354 real qmol
[], real eps_rf
, const gmx_output_env_t
*oenv
)
357 int valloc
, nalloc
, nfr
, nvfr
;
366 real prefactorav
= 0.0;
367 real prefactor
= 0.0;
369 real volume_av
= 0.0;
370 real dk_s
, dk_d
, dk_f
;
393 * Variables for the least-squares fit for Einstein-Helfand and Green-Kubo
403 gmx_rmpbc_t gpbc
= NULL
;
422 /* This is the main loop over frames */
437 gpbc
= gmx_rmpbc_init(&top
.idef
, ePBC
, fr
.natoms
);
447 srenew(time
, nalloc
);
449 srenew(mjdsp
, nalloc
);
450 srenew(dsp2
, nalloc
);
451 srenew(mtrans
, nalloc
);
452 srenew(xshfr
, nalloc
);
454 for (i
= nfr
; i
< nalloc
; i
++)
456 clear_rvec(mjdsp
[i
]);
458 clear_rvec(mtrans
[i
]);
463 GMX_RELEASE_ASSERT(time
!= NULL
, "Memory not allocated correctly - time array is NULL");
471 time
[nfr
] = fr
.time
-t0
;
473 if (time
[nfr
] <= bfit
)
477 if (time
[nfr
] <= efit
)
487 remove_jump(fr
.box
, fr
.natoms
, xp
, fr
.x
);
494 for (i
= 0; i
< fr
.natoms
; i
++)
496 copy_rvec(fr
.x
[i
], xp
[i
]);
501 gmx_rmpbc_trxfr(gpbc
, &fr
);
503 calc_mj(top
, ePBC
, fr
.box
, bNoJump
, nmols
, indexm
, fr
.x
, mtrans
[nfr
], mass2
, qmol
);
505 for (i
= 0; i
< isize
; i
++)
508 svmul(top
.atoms
.atom
[j
].q
, fr
.x
[j
], fr
.x
[j
]);
509 rvec_inc(mu
[nfr
], fr
.x
[j
]);
512 /*if(mod(nfr,nshift)==0){*/
515 for (j
= nfr
; j
>= 0; j
--)
517 rvec_sub(mtrans
[nfr
], mtrans
[j
], tmp
);
518 dsp2
[nfr
-j
] += norm2(tmp
);
536 srenew(cacf
, valloc
);
539 if (time
[nfr
] <= bvit
)
543 if (time
[nfr
] <= evit
)
548 clear_rvec(v0
[nvfr
]);
557 for (i
= 0; i
< isize
; i
++)
560 svmul(mass2
[j
], fr
.v
[j
], fr
.v
[j
]);
561 svmul(qmol
[j
], fr
.v
[j
], fr
.v
[j
]);
562 rvec_inc(v0
[nvfr
], fr
.v
[j
]);
565 fprintf(fcur
, "%.3f\t%.6f\t%.6f\t%.6f\n", time
[nfr
], v0
[nfr
][XX
], v0
[nfr
][YY
], v0
[nfr
][ZZ
]);
568 /*if(mod(nvfr,nshift)==0){*/
569 if (nvfr
%nshift
== 0)
571 for (j
= nvfr
; j
>= 0; j
--)
575 cacf
[nvfr
-j
] += iprod(v0
[nvfr
], v0
[j
]);
579 djc
[nvfr
-j
] += iprod(mu
[vfr
[j
]], v0
[nvfr
]);
588 volume
= det(fr
.box
);
591 rvec_inc(mja_tmp
, mtrans
[nfr
]);
592 mjd
+= iprod(mu
[nfr
], mtrans
[nfr
]);
593 rvec_inc(mdvec
, mu
[nfr
]);
595 mj2
+= iprod(mtrans
[nfr
], mtrans
[nfr
]);
596 md2
+= iprod(mu
[nfr
], mu
[nfr
]);
598 fprintf(fmj
, "%.3f\t%8.5f\t%8.5f\t%8.5f\t%8.5f\t%8.5f\n", time
[nfr
], mtrans
[nfr
][XX
], mtrans
[nfr
][YY
], mtrans
[nfr
][ZZ
], mj2
/refr
, norm(mja_tmp
)/refr
);
599 fprintf(fmd
, "%.3f\t%8.5f\t%8.5f\t%8.5f\t%8.5f\t%8.5f\n", \
600 time
[nfr
], mu
[nfr
][XX
], mu
[nfr
][YY
], mu
[nfr
][ZZ
], md2
/refr
, norm(mdvec
)/refr
);
605 while (read_next_frame(oenv
, status
, &fr
));
607 gmx_rmpbc_done(gpbc
);
612 prefactor
/= 3.0*EPSILON0
*volume_av
*BOLTZ
*temp
;
615 prefactorav
= E_CHARGE
*E_CHARGE
;
616 prefactorav
/= volume_av
*BOLTZMANN
*temp
*NANO
*6.0;
618 fprintf(stderr
, "Prefactor fit E-H: 1 / 6.0*V*k_B*T: %g\n", prefactorav
);
620 calc_mjdsp(fmjdsp
, prefactorav
, dsp2
, time
, nfr
, xshfr
);
623 * Now we can average and calculate the correlation functions
631 svmul(1.0/refr
, mdvec
, mdvec
);
632 svmul(1.0/refr
, mja_tmp
, mja_tmp
);
634 mdav2
= norm2(mdvec
);
636 mjdav
= iprod(mdvec
, mja_tmp
);
639 printf("\n\nAverage translational dipole moment M_J [enm] after %d frames (|M|^2): %f %f %f (%f)\n", nfr
, mja_tmp
[XX
], mja_tmp
[YY
], mja_tmp
[ZZ
], mj2
);
640 printf("\n\nAverage molecular dipole moment M_D [enm] after %d frames (|M|^2): %f %f %f (%f)\n", nfr
, mdvec
[XX
], mdvec
[YY
], mdvec
[ZZ
], md2
);
647 printf("\nCalculating M_D - current correlation integral ... \n");
648 corint
= calc_cacf(mcor
, prefactorav
/EPSI0
, djc
, time
, nvfr
, vfr
, ie
, nshift
);
655 printf("\nCalculating current autocorrelation ... \n");
656 sgk
= calc_cacf(outf
, prefactorav
/PICO
, cacf
, time
, nvfr
, vfr
, ie
, nshift
);
664 for (i
= ii
; i
<= ie
; i
++)
667 xfit
[i
-ii
] = std::log(time
[vfr
[i
]]);
668 rtmp
= std::abs(cacf
[i
]);
669 yfit
[i
-ii
] = std::log(rtmp
);
673 lsq_y_ax_b(ie
-ii
, xfit
, yfit
, &sigma
, &malt
, &err
, &rest
);
675 malt
= std::exp(malt
);
679 malt
*= prefactorav
*2.0e12
/sigma
;
689 /* Calculation of the dielectric constant */
691 fprintf(stderr
, "\n********************************************\n");
692 dk_s
= calceps(prefactor
, md2
, mj2
, mjd
, eps_rf
, FALSE
);
693 fprintf(stderr
, "\nAbsolute values:\n epsilon=%f\n", dk_s
);
694 fprintf(stderr
, " <M_D^2> , <M_J^2>, <(M_J*M_D)^2>: (%f, %f, %f)\n\n", md2
, mj2
, mjd
);
695 fprintf(stderr
, "********************************************\n");
698 dk_f
= calceps(prefactor
, md2
-mdav2
, mj2
-mj
, mjd
-mjdav
, eps_rf
, FALSE
);
699 fprintf(stderr
, "\n\nFluctuations:\n epsilon=%f\n\n", dk_f
);
700 fprintf(stderr
, "\n deltaM_D , deltaM_J, deltaM_JD: (%f, %f, %f)\n", md2
-mdav2
, mj2
-mj
, mjd
-mjdav
);
701 fprintf(stderr
, "\n********************************************\n");
704 dk_d
= calceps(prefactor
, md2
-mdav2
, mj2
-mj
, corint
, eps_rf
, TRUE
);
705 fprintf(stderr
, "\nStatic dielectric constant using integral and fluctuations: %f\n", dk_d
);
706 fprintf(stderr
, "\n < M_JM_D > via integral: %.3f\n", -1.0*corint
);
709 fprintf(stderr
, "\n***************************************************");
710 fprintf(stderr
, "\n\nAverage volume V=%f nm^3 at T=%f K\n", volume_av
, temp
);
711 fprintf(stderr
, "and corresponding refactor 1.0 / 3.0*V*k_B*T*EPSILON_0: %f \n", prefactor
);
715 if (bACF
&& (ii
< nvfr
))
717 fprintf(stderr
, "Integral and integrated fit to the current acf yields at t=%f:\n", time
[vfr
[ii
]]);
718 fprintf(stderr
, "sigma=%8.3f (pure integral: %.3f)\n", sgk
-malt
*std::pow(time
[vfr
[ii
]], sigma
), sgk
);
723 fprintf(stderr
, "\nStart fit at %f ps (%f).\n", time
[bi
], bfit
);
724 fprintf(stderr
, "End fit at %f ps (%f).\n\n", time
[ei
], efit
);
729 for (i
= bi
; i
<= ei
; i
++)
731 xfit
[i
-bi
] = time
[i
];
732 yfit
[i
-bi
] = dsp2
[i
];
735 lsq_y_ax_b(ei
-bi
, xfit
, yfit
, &sigma
, &malt
, &err
, &rest
);
738 dk_d
= calceps(prefactor
, md2
, 0.5*malt
/prefactorav
, corint
, eps_rf
, TRUE
);
740 fprintf(stderr
, "Einstein-Helfand fit to the MSD of the translational dipole moment yields:\n\n");
741 fprintf(stderr
, "sigma=%.4f\n", sigma
);
742 fprintf(stderr
, "translational fraction of M^2: %.4f\n", 0.5*malt
/prefactorav
);
743 fprintf(stderr
, "Dielectric constant using EH: %.4f\n", dk_d
);
750 fprintf(stderr
, "Too few points for a fit.\n");
776 int gmx_current(int argc
, char *argv
[])
779 static int nshift
= 1000;
780 static real temp
= 300.0;
781 static real eps_rf
= 0.0;
782 static gmx_bool bNoJump
= TRUE
;
783 static real bfit
= 100.0;
784 static real bvit
= 0.5;
785 static real efit
= 400.0;
786 static real evit
= 5.0;
788 { "-sh", FALSE
, etINT
, {&nshift
},
789 "Shift of the frames for averaging the correlation functions and the mean-square displacement."},
790 { "-nojump", FALSE
, etBOOL
, {&bNoJump
},
791 "Removes jumps of atoms across the box."},
792 { "-eps", FALSE
, etREAL
, {&eps_rf
},
793 "Dielectric constant of the surrounding medium. The value zero corresponds to infinity (tin-foil boundary conditions)."},
794 { "-bfit", FALSE
, etREAL
, {&bfit
},
795 "Begin of the fit of the straight line to the MSD of the translational fraction of the dipole moment."},
796 { "-efit", FALSE
, etREAL
, {&efit
},
797 "End of the fit of the straight line to the MSD of the translational fraction of the dipole moment."},
798 { "-bvit", FALSE
, etREAL
, {&bvit
},
799 "Begin of the fit of the current autocorrelation function to a*t^b."},
800 { "-evit", FALSE
, etREAL
, {&evit
},
801 "End of the fit of the current autocorrelation function to a*t^b."},
802 { "-temp", FALSE
, etREAL
, {&temp
},
803 "Temperature for calculating epsilon."}
806 gmx_output_env_t
*oenv
;
808 char **grpname
= NULL
;
831 { efTPS
, NULL
, NULL
, ffREAD
}, /* this is for the topology */
832 { efNDX
, NULL
, NULL
, ffOPTRD
},
833 { efTRX
, "-f", NULL
, ffREAD
}, /* and this for the trajectory */
834 { efXVG
, "-o", "current", ffWRITE
},
835 { efXVG
, "-caf", "caf", ffOPTWR
},
836 { efXVG
, "-dsp", "dsp", ffWRITE
},
837 { efXVG
, "-md", "md", ffWRITE
},
838 { efXVG
, "-mj", "mj", ffWRITE
},
839 { efXVG
, "-mc", "mc", ffOPTWR
}
842 #define NFILE asize(fnm)
845 const char *desc
[] = {
846 "[THISMODULE] is a tool for calculating the current autocorrelation function, the correlation",
847 "of the rotational and translational dipole moment of the system, and the resulting static",
848 "dielectric constant. To obtain a reasonable result, the index group has to be neutral.",
849 "Furthermore, the routine is capable of extracting the static conductivity from the current ",
850 "autocorrelation function, if velocities are given. Additionally, an Einstein-Helfand fit ",
851 "can be used to obtain the static conductivity."
853 "The flag [TT]-caf[tt] is for the output of the current autocorrelation function and [TT]-mc[tt] writes the",
854 "correlation of the rotational and translational part of the dipole moment in the corresponding",
855 "file. However, this option is only available for trajectories containing velocities.",
856 "Options [TT]-sh[tt] and [TT]-tr[tt] are responsible for the averaging and integration of the",
857 "autocorrelation functions. Since averaging proceeds by shifting the starting point",
858 "through the trajectory, the shift can be modified with [TT]-sh[tt] to enable the choice of uncorrelated",
859 "starting points. Towards the end, statistical inaccuracy grows and integrating the",
860 "correlation function only yields reliable values until a certain point, depending on",
861 "the number of frames. The option [TT]-tr[tt] controls the region of the integral taken into account",
862 "for calculating the static dielectric constant.",
864 "Option [TT]-temp[tt] sets the temperature required for the computation of the static dielectric constant.",
866 "Option [TT]-eps[tt] controls the dielectric constant of the surrounding medium for simulations using",
867 "a Reaction Field or dipole corrections of the Ewald summation ([TT]-eps[tt]\\=0 corresponds to",
868 "tin-foil boundary conditions).",
870 "[TT]-[no]nojump[tt] unfolds the coordinates to allow free diffusion. This is required to get a continuous",
871 "translational dipole moment, required for the Einstein-Helfand fit. The results from the fit allow",
872 "the determination of the dielectric constant for system of charged molecules. However, it is also possible to extract",
873 "the dielectric constant from the fluctuations of the total dipole moment in folded coordinates. But this",
874 "option has to be used with care, since only very short time spans fulfill the approximation that the density",
875 "of the molecules is approximately constant and the averages are already converged. To be on the safe side,",
876 "the dielectric constant should be calculated with the help of the Einstein-Helfand method for",
877 "the translational part of the dielectric constant."
881 /* At first the arguments will be parsed and the system information processed */
882 if (!parse_common_args(&argc
, argv
, PCA_CAN_TIME
| PCA_CAN_VIEW
,
883 NFILE
, fnm
, asize(pa
), pa
, asize(desc
), desc
, 0, NULL
, &oenv
))
888 bACF
= opt2bSet("-caf", NFILE
, fnm
);
889 bINT
= opt2bSet("-mc", NFILE
, fnm
);
891 read_tps_conf(ftp2fn(efTPS
, NFILE
, fnm
), &top
, &ePBC
, NULL
, NULL
, box
, TRUE
);
893 indexfn
= ftp2fn_null(efNDX
, NFILE
, fnm
);
896 get_index(&(top
.atoms
), indexfn
, 1, &isize
, &index0
, grpname
);
898 flags
= flags
| TRX_READ_X
| TRX_READ_V
;
900 read_first_frame(oenv
, &status
, ftp2fn(efTRX
, NFILE
, fnm
), &fr
, flags
);
902 snew(mass2
, top
.atoms
.nr
);
903 snew(qmol
, top
.atoms
.nr
);
905 precalc(top
, mass2
, qmol
);
910 for (i
= 0; i
< isize
; i
++)
912 indexm
[i
] = index0
[i
];
918 index_atom2mol(&nmols
, indexm
, &top
.mols
);
924 outf
= xvgropen(opt2fn("-caf", NFILE
, fnm
),
925 "Current autocorrelation function", output_env_get_xvgr_tlabel(oenv
),
926 "ACF (e nm/ps)\\S2", oenv
);
927 fprintf(outf
, "# time\t acf\t average \t std.dev\n");
929 fcur
= xvgropen(opt2fn("-o", NFILE
, fnm
),
930 "Current", output_env_get_xvgr_tlabel(oenv
), "J(t) (e nm/ps)", oenv
);
931 fprintf(fcur
, "# time\t Jx\t Jy \t J_z \n");
934 mcor
= xvgropen(opt2fn("-mc", NFILE
, fnm
),
935 "M\\sD\\N - current autocorrelation function",
936 output_env_get_xvgr_tlabel(oenv
),
937 "< M\\sD\\N (0)\\c7\\CJ(t) > (e nm/ps)\\S2", oenv
);
938 fprintf(mcor
, "# time\t M_D(0) J(t) acf \t Integral acf\n");
942 fmj
= xvgropen(opt2fn("-mj", NFILE
, fnm
),
943 "Averaged translational part of M", output_env_get_xvgr_tlabel(oenv
),
944 "< M\\sJ\\N > (enm)", oenv
);
945 fprintf(fmj
, "# time\t x\t y \t z \t average of M_J^2 \t std.dev\n");
946 fmd
= xvgropen(opt2fn("-md", NFILE
, fnm
),
947 "Averaged rotational part of M", output_env_get_xvgr_tlabel(oenv
),
948 "< M\\sD\\N > (enm)", oenv
);
949 fprintf(fmd
, "# time\t x\t y \t z \t average of M_D^2 \t std.dev\n");
951 fmjdsp
= xvgropen(opt2fn("-dsp", NFILE
, fnm
),
952 "MSD of the squared translational dipole moment M",
953 output_env_get_xvgr_tlabel(oenv
),
954 "<|M\\sJ\\N(t)-M\\sJ\\N(0)|\\S2\\N > / 6.0*V*k\\sB\\N*T / Sm\\S-1\\Nps\\S-1\\N",
958 /* System information is read and prepared, dielectric() processes the frames
959 * and calculates the requested quantities */
961 dielectric(fmj
, fmd
, outf
, fcur
, mcor
, fmjdsp
, bNoJump
, bACF
, bINT
, ePBC
, top
, fr
,
962 temp
, bfit
, efit
, bvit
, evit
, status
, isize
, nmols
, nshift
,
963 index0
, indexm
, mass2
, qmol
, eps_rf
, oenv
);