Fix segmentation fault in minimize
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecNone_VdwLJ_GeomP1P1_sse4_1_single.cpp
blob7b5755112405c7900a19a9e66174982e4061c9e8
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_sse4_1_single.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_sse4_1_single
51 * Electrostatics interaction: None
52 * VdW interaction: LennardJones
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_sse4_1_single
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB,jnrC,jnrD;
74 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
77 real rcutoff_scalar;
78 real *shiftvec,*fshift,*x,*f;
79 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80 real scratch[4*DIM];
81 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82 int vdwioffset0;
83 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87 int nvdwtype;
88 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89 int *vdwtype;
90 real *vdwparam;
91 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
92 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
93 __m128 dummy_mask,cutoff_mask;
94 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
95 __m128 one = _mm_set1_ps(1.0);
96 __m128 two = _mm_set1_ps(2.0);
97 x = xx[0];
98 f = ff[0];
100 nri = nlist->nri;
101 iinr = nlist->iinr;
102 jindex = nlist->jindex;
103 jjnr = nlist->jjnr;
104 shiftidx = nlist->shift;
105 gid = nlist->gid;
106 shiftvec = fr->shift_vec[0];
107 fshift = fr->fshift[0];
108 nvdwtype = fr->ntype;
109 vdwparam = fr->nbfp;
110 vdwtype = mdatoms->typeA;
112 /* Avoid stupid compiler warnings */
113 jnrA = jnrB = jnrC = jnrD = 0;
114 j_coord_offsetA = 0;
115 j_coord_offsetB = 0;
116 j_coord_offsetC = 0;
117 j_coord_offsetD = 0;
119 outeriter = 0;
120 inneriter = 0;
122 for(iidx=0;iidx<4*DIM;iidx++)
124 scratch[iidx] = 0.0;
127 /* Start outer loop over neighborlists */
128 for(iidx=0; iidx<nri; iidx++)
130 /* Load shift vector for this list */
131 i_shift_offset = DIM*shiftidx[iidx];
133 /* Load limits for loop over neighbors */
134 j_index_start = jindex[iidx];
135 j_index_end = jindex[iidx+1];
137 /* Get outer coordinate index */
138 inr = iinr[iidx];
139 i_coord_offset = DIM*inr;
141 /* Load i particle coords and add shift vector */
142 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
144 fix0 = _mm_setzero_ps();
145 fiy0 = _mm_setzero_ps();
146 fiz0 = _mm_setzero_ps();
148 /* Load parameters for i particles */
149 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
151 /* Reset potential sums */
152 vvdwsum = _mm_setzero_ps();
154 /* Start inner kernel loop */
155 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
158 /* Get j neighbor index, and coordinate index */
159 jnrA = jjnr[jidx];
160 jnrB = jjnr[jidx+1];
161 jnrC = jjnr[jidx+2];
162 jnrD = jjnr[jidx+3];
163 j_coord_offsetA = DIM*jnrA;
164 j_coord_offsetB = DIM*jnrB;
165 j_coord_offsetC = DIM*jnrC;
166 j_coord_offsetD = DIM*jnrD;
168 /* load j atom coordinates */
169 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
170 x+j_coord_offsetC,x+j_coord_offsetD,
171 &jx0,&jy0,&jz0);
173 /* Calculate displacement vector */
174 dx00 = _mm_sub_ps(ix0,jx0);
175 dy00 = _mm_sub_ps(iy0,jy0);
176 dz00 = _mm_sub_ps(iz0,jz0);
178 /* Calculate squared distance and things based on it */
179 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
181 rinvsq00 = sse41_inv_f(rsq00);
183 /* Load parameters for j particles */
184 vdwjidx0A = 2*vdwtype[jnrA+0];
185 vdwjidx0B = 2*vdwtype[jnrB+0];
186 vdwjidx0C = 2*vdwtype[jnrC+0];
187 vdwjidx0D = 2*vdwtype[jnrD+0];
189 /**************************
190 * CALCULATE INTERACTIONS *
191 **************************/
193 /* Compute parameters for interactions between i and j atoms */
194 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
195 vdwparam+vdwioffset0+vdwjidx0B,
196 vdwparam+vdwioffset0+vdwjidx0C,
197 vdwparam+vdwioffset0+vdwjidx0D,
198 &c6_00,&c12_00);
200 /* LENNARD-JONES DISPERSION/REPULSION */
202 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
203 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
204 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
205 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
206 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
208 /* Update potential sum for this i atom from the interaction with this j atom. */
209 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
211 fscal = fvdw;
213 /* Calculate temporary vectorial force */
214 tx = _mm_mul_ps(fscal,dx00);
215 ty = _mm_mul_ps(fscal,dy00);
216 tz = _mm_mul_ps(fscal,dz00);
218 /* Update vectorial force */
219 fix0 = _mm_add_ps(fix0,tx);
220 fiy0 = _mm_add_ps(fiy0,ty);
221 fiz0 = _mm_add_ps(fiz0,tz);
223 fjptrA = f+j_coord_offsetA;
224 fjptrB = f+j_coord_offsetB;
225 fjptrC = f+j_coord_offsetC;
226 fjptrD = f+j_coord_offsetD;
227 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
229 /* Inner loop uses 32 flops */
232 if(jidx<j_index_end)
235 /* Get j neighbor index, and coordinate index */
236 jnrlistA = jjnr[jidx];
237 jnrlistB = jjnr[jidx+1];
238 jnrlistC = jjnr[jidx+2];
239 jnrlistD = jjnr[jidx+3];
240 /* Sign of each element will be negative for non-real atoms.
241 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
242 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
244 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
245 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
246 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
247 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
248 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
249 j_coord_offsetA = DIM*jnrA;
250 j_coord_offsetB = DIM*jnrB;
251 j_coord_offsetC = DIM*jnrC;
252 j_coord_offsetD = DIM*jnrD;
254 /* load j atom coordinates */
255 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
256 x+j_coord_offsetC,x+j_coord_offsetD,
257 &jx0,&jy0,&jz0);
259 /* Calculate displacement vector */
260 dx00 = _mm_sub_ps(ix0,jx0);
261 dy00 = _mm_sub_ps(iy0,jy0);
262 dz00 = _mm_sub_ps(iz0,jz0);
264 /* Calculate squared distance and things based on it */
265 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
267 rinvsq00 = sse41_inv_f(rsq00);
269 /* Load parameters for j particles */
270 vdwjidx0A = 2*vdwtype[jnrA+0];
271 vdwjidx0B = 2*vdwtype[jnrB+0];
272 vdwjidx0C = 2*vdwtype[jnrC+0];
273 vdwjidx0D = 2*vdwtype[jnrD+0];
275 /**************************
276 * CALCULATE INTERACTIONS *
277 **************************/
279 /* Compute parameters for interactions between i and j atoms */
280 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
281 vdwparam+vdwioffset0+vdwjidx0B,
282 vdwparam+vdwioffset0+vdwjidx0C,
283 vdwparam+vdwioffset0+vdwjidx0D,
284 &c6_00,&c12_00);
286 /* LENNARD-JONES DISPERSION/REPULSION */
288 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
289 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
290 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
291 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
292 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
294 /* Update potential sum for this i atom from the interaction with this j atom. */
295 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
296 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
298 fscal = fvdw;
300 fscal = _mm_andnot_ps(dummy_mask,fscal);
302 /* Calculate temporary vectorial force */
303 tx = _mm_mul_ps(fscal,dx00);
304 ty = _mm_mul_ps(fscal,dy00);
305 tz = _mm_mul_ps(fscal,dz00);
307 /* Update vectorial force */
308 fix0 = _mm_add_ps(fix0,tx);
309 fiy0 = _mm_add_ps(fiy0,ty);
310 fiz0 = _mm_add_ps(fiz0,tz);
312 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
313 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
314 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
315 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
316 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
318 /* Inner loop uses 32 flops */
321 /* End of innermost loop */
323 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
324 f+i_coord_offset,fshift+i_shift_offset);
326 ggid = gid[iidx];
327 /* Update potential energies */
328 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
330 /* Increment number of inner iterations */
331 inneriter += j_index_end - j_index_start;
333 /* Outer loop uses 7 flops */
336 /* Increment number of outer iterations */
337 outeriter += nri;
339 /* Update outer/inner flops */
341 inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*32);
344 * Gromacs nonbonded kernel: nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_sse4_1_single
345 * Electrostatics interaction: None
346 * VdW interaction: LennardJones
347 * Geometry: Particle-Particle
348 * Calculate force/pot: Force
350 void
351 nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_sse4_1_single
352 (t_nblist * gmx_restrict nlist,
353 rvec * gmx_restrict xx,
354 rvec * gmx_restrict ff,
355 struct t_forcerec * gmx_restrict fr,
356 t_mdatoms * gmx_restrict mdatoms,
357 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
358 t_nrnb * gmx_restrict nrnb)
360 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
361 * just 0 for non-waters.
362 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
363 * jnr indices corresponding to data put in the four positions in the SIMD register.
365 int i_shift_offset,i_coord_offset,outeriter,inneriter;
366 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
367 int jnrA,jnrB,jnrC,jnrD;
368 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
369 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
370 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
371 real rcutoff_scalar;
372 real *shiftvec,*fshift,*x,*f;
373 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
374 real scratch[4*DIM];
375 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
376 int vdwioffset0;
377 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
378 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
379 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
380 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
381 int nvdwtype;
382 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
383 int *vdwtype;
384 real *vdwparam;
385 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
386 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
387 __m128 dummy_mask,cutoff_mask;
388 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
389 __m128 one = _mm_set1_ps(1.0);
390 __m128 two = _mm_set1_ps(2.0);
391 x = xx[0];
392 f = ff[0];
394 nri = nlist->nri;
395 iinr = nlist->iinr;
396 jindex = nlist->jindex;
397 jjnr = nlist->jjnr;
398 shiftidx = nlist->shift;
399 gid = nlist->gid;
400 shiftvec = fr->shift_vec[0];
401 fshift = fr->fshift[0];
402 nvdwtype = fr->ntype;
403 vdwparam = fr->nbfp;
404 vdwtype = mdatoms->typeA;
406 /* Avoid stupid compiler warnings */
407 jnrA = jnrB = jnrC = jnrD = 0;
408 j_coord_offsetA = 0;
409 j_coord_offsetB = 0;
410 j_coord_offsetC = 0;
411 j_coord_offsetD = 0;
413 outeriter = 0;
414 inneriter = 0;
416 for(iidx=0;iidx<4*DIM;iidx++)
418 scratch[iidx] = 0.0;
421 /* Start outer loop over neighborlists */
422 for(iidx=0; iidx<nri; iidx++)
424 /* Load shift vector for this list */
425 i_shift_offset = DIM*shiftidx[iidx];
427 /* Load limits for loop over neighbors */
428 j_index_start = jindex[iidx];
429 j_index_end = jindex[iidx+1];
431 /* Get outer coordinate index */
432 inr = iinr[iidx];
433 i_coord_offset = DIM*inr;
435 /* Load i particle coords and add shift vector */
436 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
438 fix0 = _mm_setzero_ps();
439 fiy0 = _mm_setzero_ps();
440 fiz0 = _mm_setzero_ps();
442 /* Load parameters for i particles */
443 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
445 /* Start inner kernel loop */
446 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
449 /* Get j neighbor index, and coordinate index */
450 jnrA = jjnr[jidx];
451 jnrB = jjnr[jidx+1];
452 jnrC = jjnr[jidx+2];
453 jnrD = jjnr[jidx+3];
454 j_coord_offsetA = DIM*jnrA;
455 j_coord_offsetB = DIM*jnrB;
456 j_coord_offsetC = DIM*jnrC;
457 j_coord_offsetD = DIM*jnrD;
459 /* load j atom coordinates */
460 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
461 x+j_coord_offsetC,x+j_coord_offsetD,
462 &jx0,&jy0,&jz0);
464 /* Calculate displacement vector */
465 dx00 = _mm_sub_ps(ix0,jx0);
466 dy00 = _mm_sub_ps(iy0,jy0);
467 dz00 = _mm_sub_ps(iz0,jz0);
469 /* Calculate squared distance and things based on it */
470 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
472 rinvsq00 = sse41_inv_f(rsq00);
474 /* Load parameters for j particles */
475 vdwjidx0A = 2*vdwtype[jnrA+0];
476 vdwjidx0B = 2*vdwtype[jnrB+0];
477 vdwjidx0C = 2*vdwtype[jnrC+0];
478 vdwjidx0D = 2*vdwtype[jnrD+0];
480 /**************************
481 * CALCULATE INTERACTIONS *
482 **************************/
484 /* Compute parameters for interactions between i and j atoms */
485 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
486 vdwparam+vdwioffset0+vdwjidx0B,
487 vdwparam+vdwioffset0+vdwjidx0C,
488 vdwparam+vdwioffset0+vdwjidx0D,
489 &c6_00,&c12_00);
491 /* LENNARD-JONES DISPERSION/REPULSION */
493 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
494 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
496 fscal = fvdw;
498 /* Calculate temporary vectorial force */
499 tx = _mm_mul_ps(fscal,dx00);
500 ty = _mm_mul_ps(fscal,dy00);
501 tz = _mm_mul_ps(fscal,dz00);
503 /* Update vectorial force */
504 fix0 = _mm_add_ps(fix0,tx);
505 fiy0 = _mm_add_ps(fiy0,ty);
506 fiz0 = _mm_add_ps(fiz0,tz);
508 fjptrA = f+j_coord_offsetA;
509 fjptrB = f+j_coord_offsetB;
510 fjptrC = f+j_coord_offsetC;
511 fjptrD = f+j_coord_offsetD;
512 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
514 /* Inner loop uses 27 flops */
517 if(jidx<j_index_end)
520 /* Get j neighbor index, and coordinate index */
521 jnrlistA = jjnr[jidx];
522 jnrlistB = jjnr[jidx+1];
523 jnrlistC = jjnr[jidx+2];
524 jnrlistD = jjnr[jidx+3];
525 /* Sign of each element will be negative for non-real atoms.
526 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
527 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
529 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
530 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
531 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
532 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
533 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
534 j_coord_offsetA = DIM*jnrA;
535 j_coord_offsetB = DIM*jnrB;
536 j_coord_offsetC = DIM*jnrC;
537 j_coord_offsetD = DIM*jnrD;
539 /* load j atom coordinates */
540 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
541 x+j_coord_offsetC,x+j_coord_offsetD,
542 &jx0,&jy0,&jz0);
544 /* Calculate displacement vector */
545 dx00 = _mm_sub_ps(ix0,jx0);
546 dy00 = _mm_sub_ps(iy0,jy0);
547 dz00 = _mm_sub_ps(iz0,jz0);
549 /* Calculate squared distance and things based on it */
550 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
552 rinvsq00 = sse41_inv_f(rsq00);
554 /* Load parameters for j particles */
555 vdwjidx0A = 2*vdwtype[jnrA+0];
556 vdwjidx0B = 2*vdwtype[jnrB+0];
557 vdwjidx0C = 2*vdwtype[jnrC+0];
558 vdwjidx0D = 2*vdwtype[jnrD+0];
560 /**************************
561 * CALCULATE INTERACTIONS *
562 **************************/
564 /* Compute parameters for interactions between i and j atoms */
565 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
566 vdwparam+vdwioffset0+vdwjidx0B,
567 vdwparam+vdwioffset0+vdwjidx0C,
568 vdwparam+vdwioffset0+vdwjidx0D,
569 &c6_00,&c12_00);
571 /* LENNARD-JONES DISPERSION/REPULSION */
573 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
574 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
576 fscal = fvdw;
578 fscal = _mm_andnot_ps(dummy_mask,fscal);
580 /* Calculate temporary vectorial force */
581 tx = _mm_mul_ps(fscal,dx00);
582 ty = _mm_mul_ps(fscal,dy00);
583 tz = _mm_mul_ps(fscal,dz00);
585 /* Update vectorial force */
586 fix0 = _mm_add_ps(fix0,tx);
587 fiy0 = _mm_add_ps(fiy0,ty);
588 fiz0 = _mm_add_ps(fiz0,tz);
590 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
591 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
592 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
593 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
594 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
596 /* Inner loop uses 27 flops */
599 /* End of innermost loop */
601 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
602 f+i_coord_offset,fshift+i_shift_offset);
604 /* Increment number of inner iterations */
605 inneriter += j_index_end - j_index_start;
607 /* Outer loop uses 6 flops */
610 /* Increment number of outer iterations */
611 outeriter += nri;
613 /* Update outer/inner flops */
615 inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*27);