Fix segmentation fault in minimize
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwNone_GeomP1P1_sse4_1_double.cpp
blob7a92ca237cb344e59ed81c55cb5e9bc0213726be
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_sse4_1_double.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse4_1_double
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: None
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse4_1_double
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB;
74 int j_coord_offsetA,j_coord_offsetB;
75 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
76 real rcutoff_scalar;
77 real *shiftvec,*fshift,*x,*f;
78 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79 int vdwioffset0;
80 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81 int vdwjidx0A,vdwjidx0B;
82 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
85 real *charge;
86 __m128d dummy_mask,cutoff_mask;
87 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
88 __m128d one = _mm_set1_pd(1.0);
89 __m128d two = _mm_set1_pd(2.0);
90 x = xx[0];
91 f = ff[0];
93 nri = nlist->nri;
94 iinr = nlist->iinr;
95 jindex = nlist->jindex;
96 jjnr = nlist->jjnr;
97 shiftidx = nlist->shift;
98 gid = nlist->gid;
99 shiftvec = fr->shift_vec[0];
100 fshift = fr->fshift[0];
101 facel = _mm_set1_pd(fr->ic->epsfac);
102 charge = mdatoms->chargeA;
103 krf = _mm_set1_pd(fr->ic->k_rf);
104 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
105 crf = _mm_set1_pd(fr->ic->c_rf);
107 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
108 rcutoff_scalar = fr->ic->rcoulomb;
109 rcutoff = _mm_set1_pd(rcutoff_scalar);
110 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
112 /* Avoid stupid compiler warnings */
113 jnrA = jnrB = 0;
114 j_coord_offsetA = 0;
115 j_coord_offsetB = 0;
117 outeriter = 0;
118 inneriter = 0;
120 /* Start outer loop over neighborlists */
121 for(iidx=0; iidx<nri; iidx++)
123 /* Load shift vector for this list */
124 i_shift_offset = DIM*shiftidx[iidx];
126 /* Load limits for loop over neighbors */
127 j_index_start = jindex[iidx];
128 j_index_end = jindex[iidx+1];
130 /* Get outer coordinate index */
131 inr = iinr[iidx];
132 i_coord_offset = DIM*inr;
134 /* Load i particle coords and add shift vector */
135 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
137 fix0 = _mm_setzero_pd();
138 fiy0 = _mm_setzero_pd();
139 fiz0 = _mm_setzero_pd();
141 /* Load parameters for i particles */
142 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
144 /* Reset potential sums */
145 velecsum = _mm_setzero_pd();
147 /* Start inner kernel loop */
148 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
151 /* Get j neighbor index, and coordinate index */
152 jnrA = jjnr[jidx];
153 jnrB = jjnr[jidx+1];
154 j_coord_offsetA = DIM*jnrA;
155 j_coord_offsetB = DIM*jnrB;
157 /* load j atom coordinates */
158 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
159 &jx0,&jy0,&jz0);
161 /* Calculate displacement vector */
162 dx00 = _mm_sub_pd(ix0,jx0);
163 dy00 = _mm_sub_pd(iy0,jy0);
164 dz00 = _mm_sub_pd(iz0,jz0);
166 /* Calculate squared distance and things based on it */
167 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
169 rinv00 = sse41_invsqrt_d(rsq00);
171 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
173 /* Load parameters for j particles */
174 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
176 /**************************
177 * CALCULATE INTERACTIONS *
178 **************************/
180 if (gmx_mm_any_lt(rsq00,rcutoff2))
183 /* Compute parameters for interactions between i and j atoms */
184 qq00 = _mm_mul_pd(iq0,jq0);
186 /* REACTION-FIELD ELECTROSTATICS */
187 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
188 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
190 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
192 /* Update potential sum for this i atom from the interaction with this j atom. */
193 velec = _mm_and_pd(velec,cutoff_mask);
194 velecsum = _mm_add_pd(velecsum,velec);
196 fscal = felec;
198 fscal = _mm_and_pd(fscal,cutoff_mask);
200 /* Calculate temporary vectorial force */
201 tx = _mm_mul_pd(fscal,dx00);
202 ty = _mm_mul_pd(fscal,dy00);
203 tz = _mm_mul_pd(fscal,dz00);
205 /* Update vectorial force */
206 fix0 = _mm_add_pd(fix0,tx);
207 fiy0 = _mm_add_pd(fiy0,ty);
208 fiz0 = _mm_add_pd(fiz0,tz);
210 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
214 /* Inner loop uses 36 flops */
217 if(jidx<j_index_end)
220 jnrA = jjnr[jidx];
221 j_coord_offsetA = DIM*jnrA;
223 /* load j atom coordinates */
224 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
225 &jx0,&jy0,&jz0);
227 /* Calculate displacement vector */
228 dx00 = _mm_sub_pd(ix0,jx0);
229 dy00 = _mm_sub_pd(iy0,jy0);
230 dz00 = _mm_sub_pd(iz0,jz0);
232 /* Calculate squared distance and things based on it */
233 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
235 rinv00 = sse41_invsqrt_d(rsq00);
237 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
239 /* Load parameters for j particles */
240 jq0 = _mm_load_sd(charge+jnrA+0);
242 /**************************
243 * CALCULATE INTERACTIONS *
244 **************************/
246 if (gmx_mm_any_lt(rsq00,rcutoff2))
249 /* Compute parameters for interactions between i and j atoms */
250 qq00 = _mm_mul_pd(iq0,jq0);
252 /* REACTION-FIELD ELECTROSTATICS */
253 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
254 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
256 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
258 /* Update potential sum for this i atom from the interaction with this j atom. */
259 velec = _mm_and_pd(velec,cutoff_mask);
260 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
261 velecsum = _mm_add_pd(velecsum,velec);
263 fscal = felec;
265 fscal = _mm_and_pd(fscal,cutoff_mask);
267 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
269 /* Calculate temporary vectorial force */
270 tx = _mm_mul_pd(fscal,dx00);
271 ty = _mm_mul_pd(fscal,dy00);
272 tz = _mm_mul_pd(fscal,dz00);
274 /* Update vectorial force */
275 fix0 = _mm_add_pd(fix0,tx);
276 fiy0 = _mm_add_pd(fiy0,ty);
277 fiz0 = _mm_add_pd(fiz0,tz);
279 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
283 /* Inner loop uses 36 flops */
286 /* End of innermost loop */
288 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
289 f+i_coord_offset,fshift+i_shift_offset);
291 ggid = gid[iidx];
292 /* Update potential energies */
293 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
295 /* Increment number of inner iterations */
296 inneriter += j_index_end - j_index_start;
298 /* Outer loop uses 8 flops */
301 /* Increment number of outer iterations */
302 outeriter += nri;
304 /* Update outer/inner flops */
306 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*36);
309 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse4_1_double
310 * Electrostatics interaction: ReactionField
311 * VdW interaction: None
312 * Geometry: Particle-Particle
313 * Calculate force/pot: Force
315 void
316 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse4_1_double
317 (t_nblist * gmx_restrict nlist,
318 rvec * gmx_restrict xx,
319 rvec * gmx_restrict ff,
320 struct t_forcerec * gmx_restrict fr,
321 t_mdatoms * gmx_restrict mdatoms,
322 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
323 t_nrnb * gmx_restrict nrnb)
325 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
326 * just 0 for non-waters.
327 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
328 * jnr indices corresponding to data put in the four positions in the SIMD register.
330 int i_shift_offset,i_coord_offset,outeriter,inneriter;
331 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
332 int jnrA,jnrB;
333 int j_coord_offsetA,j_coord_offsetB;
334 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
335 real rcutoff_scalar;
336 real *shiftvec,*fshift,*x,*f;
337 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
338 int vdwioffset0;
339 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
340 int vdwjidx0A,vdwjidx0B;
341 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
342 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
343 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
344 real *charge;
345 __m128d dummy_mask,cutoff_mask;
346 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
347 __m128d one = _mm_set1_pd(1.0);
348 __m128d two = _mm_set1_pd(2.0);
349 x = xx[0];
350 f = ff[0];
352 nri = nlist->nri;
353 iinr = nlist->iinr;
354 jindex = nlist->jindex;
355 jjnr = nlist->jjnr;
356 shiftidx = nlist->shift;
357 gid = nlist->gid;
358 shiftvec = fr->shift_vec[0];
359 fshift = fr->fshift[0];
360 facel = _mm_set1_pd(fr->ic->epsfac);
361 charge = mdatoms->chargeA;
362 krf = _mm_set1_pd(fr->ic->k_rf);
363 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
364 crf = _mm_set1_pd(fr->ic->c_rf);
366 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
367 rcutoff_scalar = fr->ic->rcoulomb;
368 rcutoff = _mm_set1_pd(rcutoff_scalar);
369 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
371 /* Avoid stupid compiler warnings */
372 jnrA = jnrB = 0;
373 j_coord_offsetA = 0;
374 j_coord_offsetB = 0;
376 outeriter = 0;
377 inneriter = 0;
379 /* Start outer loop over neighborlists */
380 for(iidx=0; iidx<nri; iidx++)
382 /* Load shift vector for this list */
383 i_shift_offset = DIM*shiftidx[iidx];
385 /* Load limits for loop over neighbors */
386 j_index_start = jindex[iidx];
387 j_index_end = jindex[iidx+1];
389 /* Get outer coordinate index */
390 inr = iinr[iidx];
391 i_coord_offset = DIM*inr;
393 /* Load i particle coords and add shift vector */
394 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
396 fix0 = _mm_setzero_pd();
397 fiy0 = _mm_setzero_pd();
398 fiz0 = _mm_setzero_pd();
400 /* Load parameters for i particles */
401 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
403 /* Start inner kernel loop */
404 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
407 /* Get j neighbor index, and coordinate index */
408 jnrA = jjnr[jidx];
409 jnrB = jjnr[jidx+1];
410 j_coord_offsetA = DIM*jnrA;
411 j_coord_offsetB = DIM*jnrB;
413 /* load j atom coordinates */
414 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
415 &jx0,&jy0,&jz0);
417 /* Calculate displacement vector */
418 dx00 = _mm_sub_pd(ix0,jx0);
419 dy00 = _mm_sub_pd(iy0,jy0);
420 dz00 = _mm_sub_pd(iz0,jz0);
422 /* Calculate squared distance and things based on it */
423 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
425 rinv00 = sse41_invsqrt_d(rsq00);
427 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
429 /* Load parameters for j particles */
430 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
432 /**************************
433 * CALCULATE INTERACTIONS *
434 **************************/
436 if (gmx_mm_any_lt(rsq00,rcutoff2))
439 /* Compute parameters for interactions between i and j atoms */
440 qq00 = _mm_mul_pd(iq0,jq0);
442 /* REACTION-FIELD ELECTROSTATICS */
443 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
445 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
447 fscal = felec;
449 fscal = _mm_and_pd(fscal,cutoff_mask);
451 /* Calculate temporary vectorial force */
452 tx = _mm_mul_pd(fscal,dx00);
453 ty = _mm_mul_pd(fscal,dy00);
454 tz = _mm_mul_pd(fscal,dz00);
456 /* Update vectorial force */
457 fix0 = _mm_add_pd(fix0,tx);
458 fiy0 = _mm_add_pd(fiy0,ty);
459 fiz0 = _mm_add_pd(fiz0,tz);
461 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
465 /* Inner loop uses 30 flops */
468 if(jidx<j_index_end)
471 jnrA = jjnr[jidx];
472 j_coord_offsetA = DIM*jnrA;
474 /* load j atom coordinates */
475 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
476 &jx0,&jy0,&jz0);
478 /* Calculate displacement vector */
479 dx00 = _mm_sub_pd(ix0,jx0);
480 dy00 = _mm_sub_pd(iy0,jy0);
481 dz00 = _mm_sub_pd(iz0,jz0);
483 /* Calculate squared distance and things based on it */
484 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
486 rinv00 = sse41_invsqrt_d(rsq00);
488 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
490 /* Load parameters for j particles */
491 jq0 = _mm_load_sd(charge+jnrA+0);
493 /**************************
494 * CALCULATE INTERACTIONS *
495 **************************/
497 if (gmx_mm_any_lt(rsq00,rcutoff2))
500 /* Compute parameters for interactions between i and j atoms */
501 qq00 = _mm_mul_pd(iq0,jq0);
503 /* REACTION-FIELD ELECTROSTATICS */
504 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
506 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
508 fscal = felec;
510 fscal = _mm_and_pd(fscal,cutoff_mask);
512 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
514 /* Calculate temporary vectorial force */
515 tx = _mm_mul_pd(fscal,dx00);
516 ty = _mm_mul_pd(fscal,dy00);
517 tz = _mm_mul_pd(fscal,dz00);
519 /* Update vectorial force */
520 fix0 = _mm_add_pd(fix0,tx);
521 fiy0 = _mm_add_pd(fiy0,ty);
522 fiz0 = _mm_add_pd(fiz0,tz);
524 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
528 /* Inner loop uses 30 flops */
531 /* End of innermost loop */
533 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
534 f+i_coord_offset,fshift+i_shift_offset);
536 /* Increment number of inner iterations */
537 inneriter += j_index_end - j_index_start;
539 /* Outer loop uses 7 flops */
542 /* Increment number of outer iterations */
543 outeriter += nri;
545 /* Update outer/inner flops */
547 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*30);