Fix segmentation fault in minimize
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSh_VdwNone_GeomW4P1_c.cpp
blob07f78d713478fe718598391319a0db57b945db46
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014.2015,2017,2018, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS c kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
48 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_c
49 * Electrostatics interaction: Ewald
50 * VdW interaction: None
51 * Geometry: Water4-Particle
52 * Calculate force/pot: PotentialAndForce
54 void
55 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_c
56 (t_nblist * gmx_restrict nlist,
57 rvec * gmx_restrict xx,
58 rvec * gmx_restrict ff,
59 struct t_forcerec * gmx_restrict fr,
60 t_mdatoms * gmx_restrict mdatoms,
61 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62 t_nrnb * gmx_restrict nrnb)
64 int i_shift_offset,i_coord_offset,j_coord_offset;
65 int j_index_start,j_index_end;
66 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
69 real *shiftvec,*fshift,*x,*f;
70 int vdwioffset1;
71 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
72 int vdwioffset2;
73 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
74 int vdwioffset3;
75 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
76 int vdwjidx0;
77 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
79 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
80 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
81 real velec,felec,velecsum,facel,crf,krf,krf2;
82 real *charge;
83 int ewitab;
84 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
85 real *ewtab;
87 x = xx[0];
88 f = ff[0];
90 nri = nlist->nri;
91 iinr = nlist->iinr;
92 jindex = nlist->jindex;
93 jjnr = nlist->jjnr;
94 shiftidx = nlist->shift;
95 gid = nlist->gid;
96 shiftvec = fr->shift_vec[0];
97 fshift = fr->fshift[0];
98 facel = fr->ic->epsfac;
99 charge = mdatoms->chargeA;
101 sh_ewald = fr->ic->sh_ewald;
102 ewtab = fr->ic->tabq_coul_FDV0;
103 ewtabscale = fr->ic->tabq_scale;
104 ewtabhalfspace = 0.5/ewtabscale;
106 /* Setup water-specific parameters */
107 inr = nlist->iinr[0];
108 iq1 = facel*charge[inr+1];
109 iq2 = facel*charge[inr+2];
110 iq3 = facel*charge[inr+3];
112 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
113 rcutoff = fr->ic->rcoulomb;
114 rcutoff2 = rcutoff*rcutoff;
116 outeriter = 0;
117 inneriter = 0;
119 /* Start outer loop over neighborlists */
120 for(iidx=0; iidx<nri; iidx++)
122 /* Load shift vector for this list */
123 i_shift_offset = DIM*shiftidx[iidx];
124 shX = shiftvec[i_shift_offset+XX];
125 shY = shiftvec[i_shift_offset+YY];
126 shZ = shiftvec[i_shift_offset+ZZ];
128 /* Load limits for loop over neighbors */
129 j_index_start = jindex[iidx];
130 j_index_end = jindex[iidx+1];
132 /* Get outer coordinate index */
133 inr = iinr[iidx];
134 i_coord_offset = DIM*inr;
136 /* Load i particle coords and add shift vector */
137 ix1 = shX + x[i_coord_offset+DIM*1+XX];
138 iy1 = shY + x[i_coord_offset+DIM*1+YY];
139 iz1 = shZ + x[i_coord_offset+DIM*1+ZZ];
140 ix2 = shX + x[i_coord_offset+DIM*2+XX];
141 iy2 = shY + x[i_coord_offset+DIM*2+YY];
142 iz2 = shZ + x[i_coord_offset+DIM*2+ZZ];
143 ix3 = shX + x[i_coord_offset+DIM*3+XX];
144 iy3 = shY + x[i_coord_offset+DIM*3+YY];
145 iz3 = shZ + x[i_coord_offset+DIM*3+ZZ];
147 fix1 = 0.0;
148 fiy1 = 0.0;
149 fiz1 = 0.0;
150 fix2 = 0.0;
151 fiy2 = 0.0;
152 fiz2 = 0.0;
153 fix3 = 0.0;
154 fiy3 = 0.0;
155 fiz3 = 0.0;
157 /* Reset potential sums */
158 velecsum = 0.0;
160 /* Start inner kernel loop */
161 for(jidx=j_index_start; jidx<j_index_end; jidx++)
163 /* Get j neighbor index, and coordinate index */
164 jnr = jjnr[jidx];
165 j_coord_offset = DIM*jnr;
167 /* load j atom coordinates */
168 jx0 = x[j_coord_offset+DIM*0+XX];
169 jy0 = x[j_coord_offset+DIM*0+YY];
170 jz0 = x[j_coord_offset+DIM*0+ZZ];
172 /* Calculate displacement vector */
173 dx10 = ix1 - jx0;
174 dy10 = iy1 - jy0;
175 dz10 = iz1 - jz0;
176 dx20 = ix2 - jx0;
177 dy20 = iy2 - jy0;
178 dz20 = iz2 - jz0;
179 dx30 = ix3 - jx0;
180 dy30 = iy3 - jy0;
181 dz30 = iz3 - jz0;
183 /* Calculate squared distance and things based on it */
184 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
185 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
186 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
188 rinv10 = 1.0/sqrt(rsq10);
189 rinv20 = 1.0/sqrt(rsq20);
190 rinv30 = 1.0/sqrt(rsq30);
192 rinvsq10 = rinv10*rinv10;
193 rinvsq20 = rinv20*rinv20;
194 rinvsq30 = rinv30*rinv30;
196 /* Load parameters for j particles */
197 jq0 = charge[jnr+0];
199 /**************************
200 * CALCULATE INTERACTIONS *
201 **************************/
203 if (rsq10<rcutoff2)
206 r10 = rsq10*rinv10;
208 qq10 = iq1*jq0;
210 /* EWALD ELECTROSTATICS */
212 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
213 ewrt = r10*ewtabscale;
214 ewitab = ewrt;
215 eweps = ewrt-ewitab;
216 ewitab = 4*ewitab;
217 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
218 velec = qq10*((rinv10-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
219 felec = qq10*rinv10*(rinvsq10-felec);
221 /* Update potential sums from outer loop */
222 velecsum += velec;
224 fscal = felec;
226 /* Calculate temporary vectorial force */
227 tx = fscal*dx10;
228 ty = fscal*dy10;
229 tz = fscal*dz10;
231 /* Update vectorial force */
232 fix1 += tx;
233 fiy1 += ty;
234 fiz1 += tz;
235 f[j_coord_offset+DIM*0+XX] -= tx;
236 f[j_coord_offset+DIM*0+YY] -= ty;
237 f[j_coord_offset+DIM*0+ZZ] -= tz;
241 /**************************
242 * CALCULATE INTERACTIONS *
243 **************************/
245 if (rsq20<rcutoff2)
248 r20 = rsq20*rinv20;
250 qq20 = iq2*jq0;
252 /* EWALD ELECTROSTATICS */
254 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
255 ewrt = r20*ewtabscale;
256 ewitab = ewrt;
257 eweps = ewrt-ewitab;
258 ewitab = 4*ewitab;
259 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
260 velec = qq20*((rinv20-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
261 felec = qq20*rinv20*(rinvsq20-felec);
263 /* Update potential sums from outer loop */
264 velecsum += velec;
266 fscal = felec;
268 /* Calculate temporary vectorial force */
269 tx = fscal*dx20;
270 ty = fscal*dy20;
271 tz = fscal*dz20;
273 /* Update vectorial force */
274 fix2 += tx;
275 fiy2 += ty;
276 fiz2 += tz;
277 f[j_coord_offset+DIM*0+XX] -= tx;
278 f[j_coord_offset+DIM*0+YY] -= ty;
279 f[j_coord_offset+DIM*0+ZZ] -= tz;
283 /**************************
284 * CALCULATE INTERACTIONS *
285 **************************/
287 if (rsq30<rcutoff2)
290 r30 = rsq30*rinv30;
292 qq30 = iq3*jq0;
294 /* EWALD ELECTROSTATICS */
296 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
297 ewrt = r30*ewtabscale;
298 ewitab = ewrt;
299 eweps = ewrt-ewitab;
300 ewitab = 4*ewitab;
301 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
302 velec = qq30*((rinv30-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
303 felec = qq30*rinv30*(rinvsq30-felec);
305 /* Update potential sums from outer loop */
306 velecsum += velec;
308 fscal = felec;
310 /* Calculate temporary vectorial force */
311 tx = fscal*dx30;
312 ty = fscal*dy30;
313 tz = fscal*dz30;
315 /* Update vectorial force */
316 fix3 += tx;
317 fiy3 += ty;
318 fiz3 += tz;
319 f[j_coord_offset+DIM*0+XX] -= tx;
320 f[j_coord_offset+DIM*0+YY] -= ty;
321 f[j_coord_offset+DIM*0+ZZ] -= tz;
325 /* Inner loop uses 126 flops */
327 /* End of innermost loop */
329 tx = ty = tz = 0;
330 f[i_coord_offset+DIM*1+XX] += fix1;
331 f[i_coord_offset+DIM*1+YY] += fiy1;
332 f[i_coord_offset+DIM*1+ZZ] += fiz1;
333 tx += fix1;
334 ty += fiy1;
335 tz += fiz1;
336 f[i_coord_offset+DIM*2+XX] += fix2;
337 f[i_coord_offset+DIM*2+YY] += fiy2;
338 f[i_coord_offset+DIM*2+ZZ] += fiz2;
339 tx += fix2;
340 ty += fiy2;
341 tz += fiz2;
342 f[i_coord_offset+DIM*3+XX] += fix3;
343 f[i_coord_offset+DIM*3+YY] += fiy3;
344 f[i_coord_offset+DIM*3+ZZ] += fiz3;
345 tx += fix3;
346 ty += fiy3;
347 tz += fiz3;
348 fshift[i_shift_offset+XX] += tx;
349 fshift[i_shift_offset+YY] += ty;
350 fshift[i_shift_offset+ZZ] += tz;
352 ggid = gid[iidx];
353 /* Update potential energies */
354 kernel_data->energygrp_elec[ggid] += velecsum;
356 /* Increment number of inner iterations */
357 inneriter += j_index_end - j_index_start;
359 /* Outer loop uses 31 flops */
362 /* Increment number of outer iterations */
363 outeriter += nri;
365 /* Update outer/inner flops */
367 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*31 + inneriter*126);
370 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_c
371 * Electrostatics interaction: Ewald
372 * VdW interaction: None
373 * Geometry: Water4-Particle
374 * Calculate force/pot: Force
376 void
377 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_c
378 (t_nblist * gmx_restrict nlist,
379 rvec * gmx_restrict xx,
380 rvec * gmx_restrict ff,
381 struct t_forcerec * gmx_restrict fr,
382 t_mdatoms * gmx_restrict mdatoms,
383 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
384 t_nrnb * gmx_restrict nrnb)
386 int i_shift_offset,i_coord_offset,j_coord_offset;
387 int j_index_start,j_index_end;
388 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
389 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
390 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
391 real *shiftvec,*fshift,*x,*f;
392 int vdwioffset1;
393 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
394 int vdwioffset2;
395 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
396 int vdwioffset3;
397 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
398 int vdwjidx0;
399 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
400 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
401 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
402 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
403 real velec,felec,velecsum,facel,crf,krf,krf2;
404 real *charge;
405 int ewitab;
406 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
407 real *ewtab;
409 x = xx[0];
410 f = ff[0];
412 nri = nlist->nri;
413 iinr = nlist->iinr;
414 jindex = nlist->jindex;
415 jjnr = nlist->jjnr;
416 shiftidx = nlist->shift;
417 gid = nlist->gid;
418 shiftvec = fr->shift_vec[0];
419 fshift = fr->fshift[0];
420 facel = fr->ic->epsfac;
421 charge = mdatoms->chargeA;
423 sh_ewald = fr->ic->sh_ewald;
424 ewtab = fr->ic->tabq_coul_F;
425 ewtabscale = fr->ic->tabq_scale;
426 ewtabhalfspace = 0.5/ewtabscale;
428 /* Setup water-specific parameters */
429 inr = nlist->iinr[0];
430 iq1 = facel*charge[inr+1];
431 iq2 = facel*charge[inr+2];
432 iq3 = facel*charge[inr+3];
434 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
435 rcutoff = fr->ic->rcoulomb;
436 rcutoff2 = rcutoff*rcutoff;
438 outeriter = 0;
439 inneriter = 0;
441 /* Start outer loop over neighborlists */
442 for(iidx=0; iidx<nri; iidx++)
444 /* Load shift vector for this list */
445 i_shift_offset = DIM*shiftidx[iidx];
446 shX = shiftvec[i_shift_offset+XX];
447 shY = shiftvec[i_shift_offset+YY];
448 shZ = shiftvec[i_shift_offset+ZZ];
450 /* Load limits for loop over neighbors */
451 j_index_start = jindex[iidx];
452 j_index_end = jindex[iidx+1];
454 /* Get outer coordinate index */
455 inr = iinr[iidx];
456 i_coord_offset = DIM*inr;
458 /* Load i particle coords and add shift vector */
459 ix1 = shX + x[i_coord_offset+DIM*1+XX];
460 iy1 = shY + x[i_coord_offset+DIM*1+YY];
461 iz1 = shZ + x[i_coord_offset+DIM*1+ZZ];
462 ix2 = shX + x[i_coord_offset+DIM*2+XX];
463 iy2 = shY + x[i_coord_offset+DIM*2+YY];
464 iz2 = shZ + x[i_coord_offset+DIM*2+ZZ];
465 ix3 = shX + x[i_coord_offset+DIM*3+XX];
466 iy3 = shY + x[i_coord_offset+DIM*3+YY];
467 iz3 = shZ + x[i_coord_offset+DIM*3+ZZ];
469 fix1 = 0.0;
470 fiy1 = 0.0;
471 fiz1 = 0.0;
472 fix2 = 0.0;
473 fiy2 = 0.0;
474 fiz2 = 0.0;
475 fix3 = 0.0;
476 fiy3 = 0.0;
477 fiz3 = 0.0;
479 /* Start inner kernel loop */
480 for(jidx=j_index_start; jidx<j_index_end; jidx++)
482 /* Get j neighbor index, and coordinate index */
483 jnr = jjnr[jidx];
484 j_coord_offset = DIM*jnr;
486 /* load j atom coordinates */
487 jx0 = x[j_coord_offset+DIM*0+XX];
488 jy0 = x[j_coord_offset+DIM*0+YY];
489 jz0 = x[j_coord_offset+DIM*0+ZZ];
491 /* Calculate displacement vector */
492 dx10 = ix1 - jx0;
493 dy10 = iy1 - jy0;
494 dz10 = iz1 - jz0;
495 dx20 = ix2 - jx0;
496 dy20 = iy2 - jy0;
497 dz20 = iz2 - jz0;
498 dx30 = ix3 - jx0;
499 dy30 = iy3 - jy0;
500 dz30 = iz3 - jz0;
502 /* Calculate squared distance and things based on it */
503 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
504 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
505 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
507 rinv10 = 1.0/sqrt(rsq10);
508 rinv20 = 1.0/sqrt(rsq20);
509 rinv30 = 1.0/sqrt(rsq30);
511 rinvsq10 = rinv10*rinv10;
512 rinvsq20 = rinv20*rinv20;
513 rinvsq30 = rinv30*rinv30;
515 /* Load parameters for j particles */
516 jq0 = charge[jnr+0];
518 /**************************
519 * CALCULATE INTERACTIONS *
520 **************************/
522 if (rsq10<rcutoff2)
525 r10 = rsq10*rinv10;
527 qq10 = iq1*jq0;
529 /* EWALD ELECTROSTATICS */
531 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
532 ewrt = r10*ewtabscale;
533 ewitab = ewrt;
534 eweps = ewrt-ewitab;
535 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
536 felec = qq10*rinv10*(rinvsq10-felec);
538 fscal = felec;
540 /* Calculate temporary vectorial force */
541 tx = fscal*dx10;
542 ty = fscal*dy10;
543 tz = fscal*dz10;
545 /* Update vectorial force */
546 fix1 += tx;
547 fiy1 += ty;
548 fiz1 += tz;
549 f[j_coord_offset+DIM*0+XX] -= tx;
550 f[j_coord_offset+DIM*0+YY] -= ty;
551 f[j_coord_offset+DIM*0+ZZ] -= tz;
555 /**************************
556 * CALCULATE INTERACTIONS *
557 **************************/
559 if (rsq20<rcutoff2)
562 r20 = rsq20*rinv20;
564 qq20 = iq2*jq0;
566 /* EWALD ELECTROSTATICS */
568 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
569 ewrt = r20*ewtabscale;
570 ewitab = ewrt;
571 eweps = ewrt-ewitab;
572 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
573 felec = qq20*rinv20*(rinvsq20-felec);
575 fscal = felec;
577 /* Calculate temporary vectorial force */
578 tx = fscal*dx20;
579 ty = fscal*dy20;
580 tz = fscal*dz20;
582 /* Update vectorial force */
583 fix2 += tx;
584 fiy2 += ty;
585 fiz2 += tz;
586 f[j_coord_offset+DIM*0+XX] -= tx;
587 f[j_coord_offset+DIM*0+YY] -= ty;
588 f[j_coord_offset+DIM*0+ZZ] -= tz;
592 /**************************
593 * CALCULATE INTERACTIONS *
594 **************************/
596 if (rsq30<rcutoff2)
599 r30 = rsq30*rinv30;
601 qq30 = iq3*jq0;
603 /* EWALD ELECTROSTATICS */
605 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
606 ewrt = r30*ewtabscale;
607 ewitab = ewrt;
608 eweps = ewrt-ewitab;
609 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
610 felec = qq30*rinv30*(rinvsq30-felec);
612 fscal = felec;
614 /* Calculate temporary vectorial force */
615 tx = fscal*dx30;
616 ty = fscal*dy30;
617 tz = fscal*dz30;
619 /* Update vectorial force */
620 fix3 += tx;
621 fiy3 += ty;
622 fiz3 += tz;
623 f[j_coord_offset+DIM*0+XX] -= tx;
624 f[j_coord_offset+DIM*0+YY] -= ty;
625 f[j_coord_offset+DIM*0+ZZ] -= tz;
629 /* Inner loop uses 102 flops */
631 /* End of innermost loop */
633 tx = ty = tz = 0;
634 f[i_coord_offset+DIM*1+XX] += fix1;
635 f[i_coord_offset+DIM*1+YY] += fiy1;
636 f[i_coord_offset+DIM*1+ZZ] += fiz1;
637 tx += fix1;
638 ty += fiy1;
639 tz += fiz1;
640 f[i_coord_offset+DIM*2+XX] += fix2;
641 f[i_coord_offset+DIM*2+YY] += fiy2;
642 f[i_coord_offset+DIM*2+ZZ] += fiz2;
643 tx += fix2;
644 ty += fiy2;
645 tz += fiz2;
646 f[i_coord_offset+DIM*3+XX] += fix3;
647 f[i_coord_offset+DIM*3+YY] += fiy3;
648 f[i_coord_offset+DIM*3+ZZ] += fiz3;
649 tx += fix3;
650 ty += fiy3;
651 tz += fiz3;
652 fshift[i_shift_offset+XX] += tx;
653 fshift[i_shift_offset+YY] += ty;
654 fshift[i_shift_offset+ZZ] += tz;
656 /* Increment number of inner iterations */
657 inneriter += j_index_end - j_index_start;
659 /* Outer loop uses 30 flops */
662 /* Increment number of outer iterations */
663 outeriter += nri;
665 /* Update outer/inner flops */
667 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*30 + inneriter*102);