Fix segmentation fault in minimize
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJ_GeomP1P1_avx_256_double.cpp
blob15eab11acbc6036d36b635589a20fd67f592508c
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS avx_256_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
47 #include "kernelutil_x86_avx_256_double.h"
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_256_double
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LennardJones
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
56 void
57 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_256_double
58 (t_nblist * gmx_restrict nlist,
59 rvec * gmx_restrict xx,
60 rvec * gmx_restrict ff,
61 struct t_forcerec * gmx_restrict fr,
62 t_mdatoms * gmx_restrict mdatoms,
63 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64 t_nrnb * gmx_restrict nrnb)
66 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67 * just 0 for non-waters.
68 * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69 * jnr indices corresponding to data put in the four positions in the SIMD register.
71 int i_shift_offset,i_coord_offset,outeriter,inneriter;
72 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73 int jnrA,jnrB,jnrC,jnrD;
74 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75 int jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
78 real rcutoff_scalar;
79 real *shiftvec,*fshift,*x,*f;
80 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81 real scratch[4*DIM];
82 __m256d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83 real * vdwioffsetptr0;
84 __m256d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86 __m256d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87 __m256d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88 __m256d velec,felec,velecsum,facel,crf,krf,krf2;
89 real *charge;
90 int nvdwtype;
91 __m256d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92 int *vdwtype;
93 real *vdwparam;
94 __m256d one_sixth = _mm256_set1_pd(1.0/6.0);
95 __m256d one_twelfth = _mm256_set1_pd(1.0/12.0);
96 __m128i ewitab;
97 __m256d ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98 __m256d beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
99 real *ewtab;
100 __m256d dummy_mask,cutoff_mask;
101 __m128 tmpmask0,tmpmask1;
102 __m256d signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
103 __m256d one = _mm256_set1_pd(1.0);
104 __m256d two = _mm256_set1_pd(2.0);
105 x = xx[0];
106 f = ff[0];
108 nri = nlist->nri;
109 iinr = nlist->iinr;
110 jindex = nlist->jindex;
111 jjnr = nlist->jjnr;
112 shiftidx = nlist->shift;
113 gid = nlist->gid;
114 shiftvec = fr->shift_vec[0];
115 fshift = fr->fshift[0];
116 facel = _mm256_set1_pd(fr->ic->epsfac);
117 charge = mdatoms->chargeA;
118 nvdwtype = fr->ntype;
119 vdwparam = fr->nbfp;
120 vdwtype = mdatoms->typeA;
122 sh_ewald = _mm256_set1_pd(fr->ic->sh_ewald);
123 beta = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
124 beta2 = _mm256_mul_pd(beta,beta);
125 beta3 = _mm256_mul_pd(beta,beta2);
127 ewtab = fr->ic->tabq_coul_FDV0;
128 ewtabscale = _mm256_set1_pd(fr->ic->tabq_scale);
129 ewtabhalfspace = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
131 /* Avoid stupid compiler warnings */
132 jnrA = jnrB = jnrC = jnrD = 0;
133 j_coord_offsetA = 0;
134 j_coord_offsetB = 0;
135 j_coord_offsetC = 0;
136 j_coord_offsetD = 0;
138 outeriter = 0;
139 inneriter = 0;
141 for(iidx=0;iidx<4*DIM;iidx++)
143 scratch[iidx] = 0.0;
146 /* Start outer loop over neighborlists */
147 for(iidx=0; iidx<nri; iidx++)
149 /* Load shift vector for this list */
150 i_shift_offset = DIM*shiftidx[iidx];
152 /* Load limits for loop over neighbors */
153 j_index_start = jindex[iidx];
154 j_index_end = jindex[iidx+1];
156 /* Get outer coordinate index */
157 inr = iinr[iidx];
158 i_coord_offset = DIM*inr;
160 /* Load i particle coords and add shift vector */
161 gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163 fix0 = _mm256_setzero_pd();
164 fiy0 = _mm256_setzero_pd();
165 fiz0 = _mm256_setzero_pd();
167 /* Load parameters for i particles */
168 iq0 = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
169 vdwioffsetptr0 = vdwparam+2*nvdwtype*vdwtype[inr+0];
171 /* Reset potential sums */
172 velecsum = _mm256_setzero_pd();
173 vvdwsum = _mm256_setzero_pd();
175 /* Start inner kernel loop */
176 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
179 /* Get j neighbor index, and coordinate index */
180 jnrA = jjnr[jidx];
181 jnrB = jjnr[jidx+1];
182 jnrC = jjnr[jidx+2];
183 jnrD = jjnr[jidx+3];
184 j_coord_offsetA = DIM*jnrA;
185 j_coord_offsetB = DIM*jnrB;
186 j_coord_offsetC = DIM*jnrC;
187 j_coord_offsetD = DIM*jnrD;
189 /* load j atom coordinates */
190 gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
191 x+j_coord_offsetC,x+j_coord_offsetD,
192 &jx0,&jy0,&jz0);
194 /* Calculate displacement vector */
195 dx00 = _mm256_sub_pd(ix0,jx0);
196 dy00 = _mm256_sub_pd(iy0,jy0);
197 dz00 = _mm256_sub_pd(iz0,jz0);
199 /* Calculate squared distance and things based on it */
200 rsq00 = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
202 rinv00 = avx256_invsqrt_d(rsq00);
204 rinvsq00 = _mm256_mul_pd(rinv00,rinv00);
206 /* Load parameters for j particles */
207 jq0 = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
208 charge+jnrC+0,charge+jnrD+0);
209 vdwjidx0A = 2*vdwtype[jnrA+0];
210 vdwjidx0B = 2*vdwtype[jnrB+0];
211 vdwjidx0C = 2*vdwtype[jnrC+0];
212 vdwjidx0D = 2*vdwtype[jnrD+0];
214 /**************************
215 * CALCULATE INTERACTIONS *
216 **************************/
218 r00 = _mm256_mul_pd(rsq00,rinv00);
220 /* Compute parameters for interactions between i and j atoms */
221 qq00 = _mm256_mul_pd(iq0,jq0);
222 gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
223 vdwioffsetptr0+vdwjidx0B,
224 vdwioffsetptr0+vdwjidx0C,
225 vdwioffsetptr0+vdwjidx0D,
226 &c6_00,&c12_00);
228 /* EWALD ELECTROSTATICS */
230 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
231 ewrt = _mm256_mul_pd(r00,ewtabscale);
232 ewitab = _mm256_cvttpd_epi32(ewrt);
233 eweps = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
234 ewitab = _mm_slli_epi32(ewitab,2);
235 ewtabF = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
236 ewtabD = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
237 ewtabV = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
238 ewtabFn = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
239 GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
240 felec = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
241 velec = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
242 velec = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
243 felec = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
245 /* LENNARD-JONES DISPERSION/REPULSION */
247 rinvsix = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
248 vvdw6 = _mm256_mul_pd(c6_00,rinvsix);
249 vvdw12 = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
250 vvdw = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
251 fvdw = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
253 /* Update potential sum for this i atom from the interaction with this j atom. */
254 velecsum = _mm256_add_pd(velecsum,velec);
255 vvdwsum = _mm256_add_pd(vvdwsum,vvdw);
257 fscal = _mm256_add_pd(felec,fvdw);
259 /* Calculate temporary vectorial force */
260 tx = _mm256_mul_pd(fscal,dx00);
261 ty = _mm256_mul_pd(fscal,dy00);
262 tz = _mm256_mul_pd(fscal,dz00);
264 /* Update vectorial force */
265 fix0 = _mm256_add_pd(fix0,tx);
266 fiy0 = _mm256_add_pd(fiy0,ty);
267 fiz0 = _mm256_add_pd(fiz0,tz);
269 fjptrA = f+j_coord_offsetA;
270 fjptrB = f+j_coord_offsetB;
271 fjptrC = f+j_coord_offsetC;
272 fjptrD = f+j_coord_offsetD;
273 gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
275 /* Inner loop uses 53 flops */
278 if(jidx<j_index_end)
281 /* Get j neighbor index, and coordinate index */
282 jnrlistA = jjnr[jidx];
283 jnrlistB = jjnr[jidx+1];
284 jnrlistC = jjnr[jidx+2];
285 jnrlistD = jjnr[jidx+3];
286 /* Sign of each element will be negative for non-real atoms.
287 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
288 * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
290 tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
292 tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
293 tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
294 dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
296 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
297 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
298 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
299 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
300 j_coord_offsetA = DIM*jnrA;
301 j_coord_offsetB = DIM*jnrB;
302 j_coord_offsetC = DIM*jnrC;
303 j_coord_offsetD = DIM*jnrD;
305 /* load j atom coordinates */
306 gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
307 x+j_coord_offsetC,x+j_coord_offsetD,
308 &jx0,&jy0,&jz0);
310 /* Calculate displacement vector */
311 dx00 = _mm256_sub_pd(ix0,jx0);
312 dy00 = _mm256_sub_pd(iy0,jy0);
313 dz00 = _mm256_sub_pd(iz0,jz0);
315 /* Calculate squared distance and things based on it */
316 rsq00 = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
318 rinv00 = avx256_invsqrt_d(rsq00);
320 rinvsq00 = _mm256_mul_pd(rinv00,rinv00);
322 /* Load parameters for j particles */
323 jq0 = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
324 charge+jnrC+0,charge+jnrD+0);
325 vdwjidx0A = 2*vdwtype[jnrA+0];
326 vdwjidx0B = 2*vdwtype[jnrB+0];
327 vdwjidx0C = 2*vdwtype[jnrC+0];
328 vdwjidx0D = 2*vdwtype[jnrD+0];
330 /**************************
331 * CALCULATE INTERACTIONS *
332 **************************/
334 r00 = _mm256_mul_pd(rsq00,rinv00);
335 r00 = _mm256_andnot_pd(dummy_mask,r00);
337 /* Compute parameters for interactions between i and j atoms */
338 qq00 = _mm256_mul_pd(iq0,jq0);
339 gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
340 vdwioffsetptr0+vdwjidx0B,
341 vdwioffsetptr0+vdwjidx0C,
342 vdwioffsetptr0+vdwjidx0D,
343 &c6_00,&c12_00);
345 /* EWALD ELECTROSTATICS */
347 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
348 ewrt = _mm256_mul_pd(r00,ewtabscale);
349 ewitab = _mm256_cvttpd_epi32(ewrt);
350 eweps = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
351 ewitab = _mm_slli_epi32(ewitab,2);
352 ewtabF = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
353 ewtabD = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
354 ewtabV = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
355 ewtabFn = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
356 GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
357 felec = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
358 velec = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
359 velec = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
360 felec = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
362 /* LENNARD-JONES DISPERSION/REPULSION */
364 rinvsix = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
365 vvdw6 = _mm256_mul_pd(c6_00,rinvsix);
366 vvdw12 = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
367 vvdw = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
368 fvdw = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
370 /* Update potential sum for this i atom from the interaction with this j atom. */
371 velec = _mm256_andnot_pd(dummy_mask,velec);
372 velecsum = _mm256_add_pd(velecsum,velec);
373 vvdw = _mm256_andnot_pd(dummy_mask,vvdw);
374 vvdwsum = _mm256_add_pd(vvdwsum,vvdw);
376 fscal = _mm256_add_pd(felec,fvdw);
378 fscal = _mm256_andnot_pd(dummy_mask,fscal);
380 /* Calculate temporary vectorial force */
381 tx = _mm256_mul_pd(fscal,dx00);
382 ty = _mm256_mul_pd(fscal,dy00);
383 tz = _mm256_mul_pd(fscal,dz00);
385 /* Update vectorial force */
386 fix0 = _mm256_add_pd(fix0,tx);
387 fiy0 = _mm256_add_pd(fiy0,ty);
388 fiz0 = _mm256_add_pd(fiz0,tz);
390 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
391 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
392 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
393 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
394 gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
396 /* Inner loop uses 54 flops */
399 /* End of innermost loop */
401 gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
402 f+i_coord_offset,fshift+i_shift_offset);
404 ggid = gid[iidx];
405 /* Update potential energies */
406 gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
407 gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
409 /* Increment number of inner iterations */
410 inneriter += j_index_end - j_index_start;
412 /* Outer loop uses 9 flops */
415 /* Increment number of outer iterations */
416 outeriter += nri;
418 /* Update outer/inner flops */
420 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
423 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_256_double
424 * Electrostatics interaction: Ewald
425 * VdW interaction: LennardJones
426 * Geometry: Particle-Particle
427 * Calculate force/pot: Force
429 void
430 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_256_double
431 (t_nblist * gmx_restrict nlist,
432 rvec * gmx_restrict xx,
433 rvec * gmx_restrict ff,
434 struct t_forcerec * gmx_restrict fr,
435 t_mdatoms * gmx_restrict mdatoms,
436 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
437 t_nrnb * gmx_restrict nrnb)
439 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
440 * just 0 for non-waters.
441 * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
442 * jnr indices corresponding to data put in the four positions in the SIMD register.
444 int i_shift_offset,i_coord_offset,outeriter,inneriter;
445 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
446 int jnrA,jnrB,jnrC,jnrD;
447 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
448 int jnrlistE,jnrlistF,jnrlistG,jnrlistH;
449 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
450 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
451 real rcutoff_scalar;
452 real *shiftvec,*fshift,*x,*f;
453 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
454 real scratch[4*DIM];
455 __m256d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
456 real * vdwioffsetptr0;
457 __m256d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
458 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
459 __m256d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
460 __m256d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
461 __m256d velec,felec,velecsum,facel,crf,krf,krf2;
462 real *charge;
463 int nvdwtype;
464 __m256d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
465 int *vdwtype;
466 real *vdwparam;
467 __m256d one_sixth = _mm256_set1_pd(1.0/6.0);
468 __m256d one_twelfth = _mm256_set1_pd(1.0/12.0);
469 __m128i ewitab;
470 __m256d ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
471 __m256d beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
472 real *ewtab;
473 __m256d dummy_mask,cutoff_mask;
474 __m128 tmpmask0,tmpmask1;
475 __m256d signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
476 __m256d one = _mm256_set1_pd(1.0);
477 __m256d two = _mm256_set1_pd(2.0);
478 x = xx[0];
479 f = ff[0];
481 nri = nlist->nri;
482 iinr = nlist->iinr;
483 jindex = nlist->jindex;
484 jjnr = nlist->jjnr;
485 shiftidx = nlist->shift;
486 gid = nlist->gid;
487 shiftvec = fr->shift_vec[0];
488 fshift = fr->fshift[0];
489 facel = _mm256_set1_pd(fr->ic->epsfac);
490 charge = mdatoms->chargeA;
491 nvdwtype = fr->ntype;
492 vdwparam = fr->nbfp;
493 vdwtype = mdatoms->typeA;
495 sh_ewald = _mm256_set1_pd(fr->ic->sh_ewald);
496 beta = _mm256_set1_pd(fr->ic->ewaldcoeff_q);
497 beta2 = _mm256_mul_pd(beta,beta);
498 beta3 = _mm256_mul_pd(beta,beta2);
500 ewtab = fr->ic->tabq_coul_F;
501 ewtabscale = _mm256_set1_pd(fr->ic->tabq_scale);
502 ewtabhalfspace = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
504 /* Avoid stupid compiler warnings */
505 jnrA = jnrB = jnrC = jnrD = 0;
506 j_coord_offsetA = 0;
507 j_coord_offsetB = 0;
508 j_coord_offsetC = 0;
509 j_coord_offsetD = 0;
511 outeriter = 0;
512 inneriter = 0;
514 for(iidx=0;iidx<4*DIM;iidx++)
516 scratch[iidx] = 0.0;
519 /* Start outer loop over neighborlists */
520 for(iidx=0; iidx<nri; iidx++)
522 /* Load shift vector for this list */
523 i_shift_offset = DIM*shiftidx[iidx];
525 /* Load limits for loop over neighbors */
526 j_index_start = jindex[iidx];
527 j_index_end = jindex[iidx+1];
529 /* Get outer coordinate index */
530 inr = iinr[iidx];
531 i_coord_offset = DIM*inr;
533 /* Load i particle coords and add shift vector */
534 gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
536 fix0 = _mm256_setzero_pd();
537 fiy0 = _mm256_setzero_pd();
538 fiz0 = _mm256_setzero_pd();
540 /* Load parameters for i particles */
541 iq0 = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
542 vdwioffsetptr0 = vdwparam+2*nvdwtype*vdwtype[inr+0];
544 /* Start inner kernel loop */
545 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
548 /* Get j neighbor index, and coordinate index */
549 jnrA = jjnr[jidx];
550 jnrB = jjnr[jidx+1];
551 jnrC = jjnr[jidx+2];
552 jnrD = jjnr[jidx+3];
553 j_coord_offsetA = DIM*jnrA;
554 j_coord_offsetB = DIM*jnrB;
555 j_coord_offsetC = DIM*jnrC;
556 j_coord_offsetD = DIM*jnrD;
558 /* load j atom coordinates */
559 gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
560 x+j_coord_offsetC,x+j_coord_offsetD,
561 &jx0,&jy0,&jz0);
563 /* Calculate displacement vector */
564 dx00 = _mm256_sub_pd(ix0,jx0);
565 dy00 = _mm256_sub_pd(iy0,jy0);
566 dz00 = _mm256_sub_pd(iz0,jz0);
568 /* Calculate squared distance and things based on it */
569 rsq00 = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
571 rinv00 = avx256_invsqrt_d(rsq00);
573 rinvsq00 = _mm256_mul_pd(rinv00,rinv00);
575 /* Load parameters for j particles */
576 jq0 = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
577 charge+jnrC+0,charge+jnrD+0);
578 vdwjidx0A = 2*vdwtype[jnrA+0];
579 vdwjidx0B = 2*vdwtype[jnrB+0];
580 vdwjidx0C = 2*vdwtype[jnrC+0];
581 vdwjidx0D = 2*vdwtype[jnrD+0];
583 /**************************
584 * CALCULATE INTERACTIONS *
585 **************************/
587 r00 = _mm256_mul_pd(rsq00,rinv00);
589 /* Compute parameters for interactions between i and j atoms */
590 qq00 = _mm256_mul_pd(iq0,jq0);
591 gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
592 vdwioffsetptr0+vdwjidx0B,
593 vdwioffsetptr0+vdwjidx0C,
594 vdwioffsetptr0+vdwjidx0D,
595 &c6_00,&c12_00);
597 /* EWALD ELECTROSTATICS */
599 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
600 ewrt = _mm256_mul_pd(r00,ewtabscale);
601 ewitab = _mm256_cvttpd_epi32(ewrt);
602 eweps = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
603 gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
604 ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
605 &ewtabF,&ewtabFn);
606 felec = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
607 felec = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
609 /* LENNARD-JONES DISPERSION/REPULSION */
611 rinvsix = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
612 fvdw = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
614 fscal = _mm256_add_pd(felec,fvdw);
616 /* Calculate temporary vectorial force */
617 tx = _mm256_mul_pd(fscal,dx00);
618 ty = _mm256_mul_pd(fscal,dy00);
619 tz = _mm256_mul_pd(fscal,dz00);
621 /* Update vectorial force */
622 fix0 = _mm256_add_pd(fix0,tx);
623 fiy0 = _mm256_add_pd(fiy0,ty);
624 fiz0 = _mm256_add_pd(fiz0,tz);
626 fjptrA = f+j_coord_offsetA;
627 fjptrB = f+j_coord_offsetB;
628 fjptrC = f+j_coord_offsetC;
629 fjptrD = f+j_coord_offsetD;
630 gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
632 /* Inner loop uses 43 flops */
635 if(jidx<j_index_end)
638 /* Get j neighbor index, and coordinate index */
639 jnrlistA = jjnr[jidx];
640 jnrlistB = jjnr[jidx+1];
641 jnrlistC = jjnr[jidx+2];
642 jnrlistD = jjnr[jidx+3];
643 /* Sign of each element will be negative for non-real atoms.
644 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
645 * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
647 tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
649 tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
650 tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
651 dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
653 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
654 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
655 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
656 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
657 j_coord_offsetA = DIM*jnrA;
658 j_coord_offsetB = DIM*jnrB;
659 j_coord_offsetC = DIM*jnrC;
660 j_coord_offsetD = DIM*jnrD;
662 /* load j atom coordinates */
663 gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
664 x+j_coord_offsetC,x+j_coord_offsetD,
665 &jx0,&jy0,&jz0);
667 /* Calculate displacement vector */
668 dx00 = _mm256_sub_pd(ix0,jx0);
669 dy00 = _mm256_sub_pd(iy0,jy0);
670 dz00 = _mm256_sub_pd(iz0,jz0);
672 /* Calculate squared distance and things based on it */
673 rsq00 = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
675 rinv00 = avx256_invsqrt_d(rsq00);
677 rinvsq00 = _mm256_mul_pd(rinv00,rinv00);
679 /* Load parameters for j particles */
680 jq0 = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
681 charge+jnrC+0,charge+jnrD+0);
682 vdwjidx0A = 2*vdwtype[jnrA+0];
683 vdwjidx0B = 2*vdwtype[jnrB+0];
684 vdwjidx0C = 2*vdwtype[jnrC+0];
685 vdwjidx0D = 2*vdwtype[jnrD+0];
687 /**************************
688 * CALCULATE INTERACTIONS *
689 **************************/
691 r00 = _mm256_mul_pd(rsq00,rinv00);
692 r00 = _mm256_andnot_pd(dummy_mask,r00);
694 /* Compute parameters for interactions between i and j atoms */
695 qq00 = _mm256_mul_pd(iq0,jq0);
696 gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
697 vdwioffsetptr0+vdwjidx0B,
698 vdwioffsetptr0+vdwjidx0C,
699 vdwioffsetptr0+vdwjidx0D,
700 &c6_00,&c12_00);
702 /* EWALD ELECTROSTATICS */
704 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
705 ewrt = _mm256_mul_pd(r00,ewtabscale);
706 ewitab = _mm256_cvttpd_epi32(ewrt);
707 eweps = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
708 gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
709 ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
710 &ewtabF,&ewtabFn);
711 felec = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
712 felec = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
714 /* LENNARD-JONES DISPERSION/REPULSION */
716 rinvsix = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
717 fvdw = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
719 fscal = _mm256_add_pd(felec,fvdw);
721 fscal = _mm256_andnot_pd(dummy_mask,fscal);
723 /* Calculate temporary vectorial force */
724 tx = _mm256_mul_pd(fscal,dx00);
725 ty = _mm256_mul_pd(fscal,dy00);
726 tz = _mm256_mul_pd(fscal,dz00);
728 /* Update vectorial force */
729 fix0 = _mm256_add_pd(fix0,tx);
730 fiy0 = _mm256_add_pd(fiy0,ty);
731 fiz0 = _mm256_add_pd(fiz0,tz);
733 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
734 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
735 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
736 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
737 gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
739 /* Inner loop uses 44 flops */
742 /* End of innermost loop */
744 gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
745 f+i_coord_offset,fshift+i_shift_offset);
747 /* Increment number of inner iterations */
748 inneriter += j_index_end - j_index_start;
750 /* Outer loop uses 7 flops */
753 /* Increment number of outer iterations */
754 outeriter += nri;
756 /* Update outer/inner flops */
758 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*44);