2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2016,2017,2018,2019, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 /* Stride of the packed x coordinate array */
37 static constexpr int c_xStride4xN
= (GMX_SIMD_REAL_WIDTH
> c_nbnxnCpuIClusterSize
? GMX_SIMD_REAL_WIDTH
: c_nbnxnCpuIClusterSize
);
39 /* Copies PBC shifted i-cell packed atom coordinates to working array */
41 icell_set_x_simd_4xn(int ci
,
42 real shx
, real shy
, real shz
,
43 int gmx_unused stride
, const real
*x
,
44 NbnxnPairlistCpuWork
*work
)
47 real
*x_ci_simd
= work
->iClusterData
.xSimd
.data();
49 ia
= xIndexFromCi
<NbnxnLayout::Simd4xN
>(ci
);
51 store(x_ci_simd
+ 0*GMX_SIMD_REAL_WIDTH
, SimdReal(x
[ia
+ 0*c_xStride4xN
] + shx
) );
52 store(x_ci_simd
+ 1*GMX_SIMD_REAL_WIDTH
, SimdReal(x
[ia
+ 1*c_xStride4xN
] + shy
) );
53 store(x_ci_simd
+ 2*GMX_SIMD_REAL_WIDTH
, SimdReal(x
[ia
+ 2*c_xStride4xN
] + shz
) );
54 store(x_ci_simd
+ 3*GMX_SIMD_REAL_WIDTH
, SimdReal(x
[ia
+ 0*c_xStride4xN
+ 1] + shx
) );
55 store(x_ci_simd
+ 4*GMX_SIMD_REAL_WIDTH
, SimdReal(x
[ia
+ 1*c_xStride4xN
+ 1] + shy
) );
56 store(x_ci_simd
+ 5*GMX_SIMD_REAL_WIDTH
, SimdReal(x
[ia
+ 2*c_xStride4xN
+ 1] + shz
) );
57 store(x_ci_simd
+ 6*GMX_SIMD_REAL_WIDTH
, SimdReal(x
[ia
+ 0*c_xStride4xN
+ 2] + shx
) );
58 store(x_ci_simd
+ 7*GMX_SIMD_REAL_WIDTH
, SimdReal(x
[ia
+ 1*c_xStride4xN
+ 2] + shy
) );
59 store(x_ci_simd
+ 8*GMX_SIMD_REAL_WIDTH
, SimdReal(x
[ia
+ 2*c_xStride4xN
+ 2] + shz
) );
60 store(x_ci_simd
+ 9*GMX_SIMD_REAL_WIDTH
, SimdReal(x
[ia
+ 0*c_xStride4xN
+ 3] + shx
) );
61 store(x_ci_simd
+ 10*GMX_SIMD_REAL_WIDTH
, SimdReal(x
[ia
+ 1*c_xStride4xN
+ 3] + shy
) );
62 store(x_ci_simd
+ 11*GMX_SIMD_REAL_WIDTH
, SimdReal(x
[ia
+ 2*c_xStride4xN
+ 3] + shz
) );
65 /* SIMD code for checking and adding cluster-pairs to the list using coordinates in packed format.
67 * Checks bouding box distances and possibly atom pair distances.
68 * This is an accelerated version of make_cluster_list_simple.
70 * \param[in] jGrid The j-grid
71 * \param[in,out] nbl The pair-list to store the cluster pairs in
72 * \param[in] icluster The index of the i-cluster
73 * \param[in] firstCell The first cluster in the j-range, using i-cluster size indexing
74 * \param[in] lastCell The last cluster in the j-range, using i-cluster size indexing
75 * \param[in] excludeSubDiagonal Exclude atom pairs with i-index > j-index
76 * \param[in] x_j Coordinates for the j-atom, in SIMD packed format
77 * \param[in] rlist2 The squared list cut-off
78 * \param[in] rbb2 The squared cut-off for putting cluster-pairs in the list based on bounding box distance only
79 * \param[in,out] numDistanceChecks The number of distance checks performed
82 makeClusterListSimd4xn(const Grid
&jGrid
,
83 NbnxnPairlistCpu
* nbl
,
87 bool excludeSubDiagonal
,
88 const real
* gmx_restrict x_j
,
91 int * gmx_restrict numDistanceChecks
)
94 const real
* gmx_restrict x_ci_simd
= nbl
->work
->iClusterData
.xSimd
.data();
95 const BoundingBox
* gmx_restrict bb_ci
= nbl
->work
->iClusterData
.bb
.data();
97 SimdReal jx_S
, jy_S
, jz_S
;
99 SimdReal dx_S0
, dy_S0
, dz_S0
;
100 SimdReal dx_S1
, dy_S1
, dz_S1
;
101 SimdReal dx_S2
, dy_S2
, dz_S2
;
102 SimdReal dx_S3
, dy_S3
, dz_S3
;
113 SimdBool wco_any_S01
, wco_any_S23
, wco_any_S
;
121 /* Convert the j-range from i-cluster size indexing to j-cluster indexing */
122 int jclusterFirst
= cjFromCi
<NbnxnLayout::Simd4xN
, 0>(firstCell
);
123 int jclusterLast
= cjFromCi
<NbnxnLayout::Simd4xN
, 1>(lastCell
);
124 GMX_ASSERT(jclusterLast
>= jclusterFirst
, "We should have a non-empty j-cluster range, since the calling code should have ensured a non-empty cell range");
126 rc2_S
= SimdReal(rlist2
);
129 while (!InRange
&& jclusterFirst
<= jclusterLast
)
131 d2
= clusterBoundingBoxDistance2(bb_ci
[0], jGrid
.jBoundingBoxes()[jclusterFirst
]);
132 *numDistanceChecks
+= 2;
134 /* Check if the distance is within the distance where
135 * we use only the bounding box distance rbb,
136 * or within the cut-off and there is at least one atom pair
137 * within the cut-off.
143 else if (d2
< rlist2
)
145 xind_f
= xIndexFromCj
<NbnxnLayout::Simd4xN
>(cjFromCi
<NbnxnLayout::Simd4xN
, 0>(jGrid
.cellOffset()) + jclusterFirst
);
147 jx_S
= load
<SimdReal
>(x_j
+ xind_f
+ 0*c_xStride4xN
);
148 jy_S
= load
<SimdReal
>(x_j
+ xind_f
+ 1*c_xStride4xN
);
149 jz_S
= load
<SimdReal
>(x_j
+ xind_f
+ 2*c_xStride4xN
);
152 /* Calculate distance */
153 dx_S0
= load
<SimdReal
>(x_ci_simd
+ 0*GMX_SIMD_REAL_WIDTH
) - jx_S
;
154 dy_S0
= load
<SimdReal
>(x_ci_simd
+ 1*GMX_SIMD_REAL_WIDTH
) - jy_S
;
155 dz_S0
= load
<SimdReal
>(x_ci_simd
+ 2*GMX_SIMD_REAL_WIDTH
) - jz_S
;
156 dx_S1
= load
<SimdReal
>(x_ci_simd
+ 3*GMX_SIMD_REAL_WIDTH
) - jx_S
;
157 dy_S1
= load
<SimdReal
>(x_ci_simd
+ 4*GMX_SIMD_REAL_WIDTH
) - jy_S
;
158 dz_S1
= load
<SimdReal
>(x_ci_simd
+ 5*GMX_SIMD_REAL_WIDTH
) - jz_S
;
159 dx_S2
= load
<SimdReal
>(x_ci_simd
+ 6*GMX_SIMD_REAL_WIDTH
) - jx_S
;
160 dy_S2
= load
<SimdReal
>(x_ci_simd
+ 7*GMX_SIMD_REAL_WIDTH
) - jy_S
;
161 dz_S2
= load
<SimdReal
>(x_ci_simd
+ 8*GMX_SIMD_REAL_WIDTH
) - jz_S
;
162 dx_S3
= load
<SimdReal
>(x_ci_simd
+ 9*GMX_SIMD_REAL_WIDTH
) - jx_S
;
163 dy_S3
= load
<SimdReal
>(x_ci_simd
+ 10*GMX_SIMD_REAL_WIDTH
) - jy_S
;
164 dz_S3
= load
<SimdReal
>(x_ci_simd
+ 11*GMX_SIMD_REAL_WIDTH
) - jz_S
;
166 /* rsq = dx*dx+dy*dy+dz*dz */
167 rsq_S0
= norm2(dx_S0
, dy_S0
, dz_S0
);
168 rsq_S1
= norm2(dx_S1
, dy_S1
, dz_S1
);
169 rsq_S2
= norm2(dx_S2
, dy_S2
, dz_S2
);
170 rsq_S3
= norm2(dx_S3
, dy_S3
, dz_S3
);
172 wco_S0
= (rsq_S0
< rc2_S
);
173 wco_S1
= (rsq_S1
< rc2_S
);
174 wco_S2
= (rsq_S2
< rc2_S
);
175 wco_S3
= (rsq_S3
< rc2_S
);
177 wco_any_S01
= wco_S0
|| wco_S1
;
178 wco_any_S23
= wco_S2
|| wco_S3
;
179 wco_any_S
= wco_any_S01
|| wco_any_S23
;
181 InRange
= anyTrue(wco_any_S
);
183 *numDistanceChecks
+= 4*GMX_SIMD_REAL_WIDTH
;
196 while (!InRange
&& jclusterLast
> jclusterFirst
)
198 d2
= clusterBoundingBoxDistance2(bb_ci
[0], jGrid
.jBoundingBoxes()[jclusterLast
]);
199 *numDistanceChecks
+= 2;
201 /* Check if the distance is within the distance where
202 * we use only the bounding box distance rbb,
203 * or within the cut-off and there is at least one atom pair
204 * within the cut-off.
210 else if (d2
< rlist2
)
212 xind_l
= xIndexFromCj
<NbnxnLayout::Simd4xN
>(cjFromCi
<NbnxnLayout::Simd4xN
, 0>(jGrid
.cellOffset()) + jclusterLast
);
214 jx_S
= load
<SimdReal
>(x_j
+xind_l
+ 0*c_xStride4xN
);
215 jy_S
= load
<SimdReal
>(x_j
+xind_l
+ 1*c_xStride4xN
);
216 jz_S
= load
<SimdReal
>(x_j
+xind_l
+ 2*c_xStride4xN
);
218 /* Calculate distance */
219 dx_S0
= load
<SimdReal
>(x_ci_simd
+ 0*GMX_SIMD_REAL_WIDTH
) - jx_S
;
220 dy_S0
= load
<SimdReal
>(x_ci_simd
+ 1*GMX_SIMD_REAL_WIDTH
) - jy_S
;
221 dz_S0
= load
<SimdReal
>(x_ci_simd
+ 2*GMX_SIMD_REAL_WIDTH
) - jz_S
;
222 dx_S1
= load
<SimdReal
>(x_ci_simd
+ 3*GMX_SIMD_REAL_WIDTH
) - jx_S
;
223 dy_S1
= load
<SimdReal
>(x_ci_simd
+ 4*GMX_SIMD_REAL_WIDTH
) - jy_S
;
224 dz_S1
= load
<SimdReal
>(x_ci_simd
+ 5*GMX_SIMD_REAL_WIDTH
) - jz_S
;
225 dx_S2
= load
<SimdReal
>(x_ci_simd
+ 6*GMX_SIMD_REAL_WIDTH
) - jx_S
;
226 dy_S2
= load
<SimdReal
>(x_ci_simd
+ 7*GMX_SIMD_REAL_WIDTH
) - jy_S
;
227 dz_S2
= load
<SimdReal
>(x_ci_simd
+ 8*GMX_SIMD_REAL_WIDTH
) - jz_S
;
228 dx_S3
= load
<SimdReal
>(x_ci_simd
+ 9*GMX_SIMD_REAL_WIDTH
) - jx_S
;
229 dy_S3
= load
<SimdReal
>(x_ci_simd
+ 10*GMX_SIMD_REAL_WIDTH
) - jy_S
;
230 dz_S3
= load
<SimdReal
>(x_ci_simd
+ 11*GMX_SIMD_REAL_WIDTH
) - jz_S
;
232 /* rsq = dx*dx+dy*dy+dz*dz */
233 rsq_S0
= norm2(dx_S0
, dy_S0
, dz_S0
);
234 rsq_S1
= norm2(dx_S1
, dy_S1
, dz_S1
);
235 rsq_S2
= norm2(dx_S2
, dy_S2
, dz_S2
);
236 rsq_S3
= norm2(dx_S3
, dy_S3
, dz_S3
);
238 wco_S0
= (rsq_S0
< rc2_S
);
239 wco_S1
= (rsq_S1
< rc2_S
);
240 wco_S2
= (rsq_S2
< rc2_S
);
241 wco_S3
= (rsq_S3
< rc2_S
);
243 wco_any_S01
= wco_S0
|| wco_S1
;
244 wco_any_S23
= wco_S2
|| wco_S3
;
245 wco_any_S
= wco_any_S01
|| wco_any_S23
;
247 InRange
= anyTrue(wco_any_S
);
249 *numDistanceChecks
+= 4*GMX_SIMD_REAL_WIDTH
;
257 if (jclusterFirst
<= jclusterLast
)
259 for (int jcluster
= jclusterFirst
; jcluster
<= jclusterLast
; jcluster
++)
261 /* Store cj and the interaction mask */
263 cjEntry
.cj
= cjFromCi
<NbnxnLayout::Simd4xN
, 0>(jGrid
.cellOffset()) + jcluster
;
264 cjEntry
.excl
= get_imask_simd_4xn(excludeSubDiagonal
, icluster
, jcluster
);
265 nbl
->cj
.push_back(cjEntry
);
267 /* Increase the closing index in the i list */
268 nbl
->ci
.back().cj_ind_end
= nbl
->cj
.size();