Added .gitignore for kernel generation
[gromacs.git] / include / maths.h
blob7db5b321d2a45edcef433cb6956e71a5f473d001
1 /* -*- mode: c; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; c-file-style: "stroustrup"; -*-
3 *
4 * This source code is part of
5 *
6 * G R O M A C S
7 *
8 * GROningen MAchine for Chemical Simulations
9 *
10 * VERSION 3.2.0
11 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
12 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
13 * Copyright (c) 2001-2004, The GROMACS development team,
14 * check out http://www.gromacs.org for more information.
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version 2
19 * of the License, or (at your option) any later version.
21 * If you want to redistribute modifications, please consider that
22 * scientific software is very special. Version control is crucial -
23 * bugs must be traceable. We will be happy to consider code for
24 * inclusion in the official distribution, but derived work must not
25 * be called official GROMACS. Details are found in the README & COPYING
26 * files - if they are missing, get the official version at www.gromacs.org.
28 * To help us fund GROMACS development, we humbly ask that you cite
29 * the papers on the package - you can find them in the top README file.
31 * For more info, check our website at http://www.gromacs.org
33 * And Hey:
34 * Gromacs Runs On Most of All Computer Systems
37 #ifndef _maths_h
38 #define _maths_h
40 #include <math.h>
41 #include "visibility.h"
42 #include "types/simple.h"
43 #include "typedefs.h"
45 #ifdef __cplusplus
46 extern "C" {
47 #endif
49 #ifndef M_PI
50 #define M_PI 3.14159265358979323846
51 #endif
53 #ifndef M_PI_2
54 #define M_PI_2 1.57079632679489661923
55 #endif
57 #ifndef M_2PI
58 #define M_2PI 6.28318530717958647692
59 #endif
61 #ifndef M_SQRT2
62 #define M_SQRT2 sqrt(2.0)
63 #endif
65 #ifndef M_1_PI
66 #define M_1_PI 0.31830988618379067154
67 #endif
69 #ifndef M_FLOAT_1_SQRTPI /* used in CUDA kernels */
70 /* 1.0 / sqrt(M_PI) */
71 #define M_FLOAT_1_SQRTPI 0.564189583547756f
72 #endif
74 #ifndef M_1_SQRTPI
75 /* 1.0 / sqrt(M_PI) */
76 #define M_1_SQRTPI 0.564189583547756
77 #endif
79 #ifndef M_2_SQRTPI
80 /* 2.0 / sqrt(M_PI) */
81 #define M_2_SQRTPI 1.128379167095513
82 #endif
84 /* Suzuki-Yoshida Constants, for n=3 and n=5, for symplectic integration */
85 /* for n=1, w0 = 1 */
86 /* for n=3, w0 = w2 = 1/(2-2^-(1/3)), w1 = 1-2*w0 */
87 /* for n=5, w0 = w1 = w3 = w4 = 1/(4-4^-(1/3)), w1 = 1-4*w0 */
89 #define MAX_SUZUKI_YOSHIDA_NUM 5
90 #define SUZUKI_YOSHIDA_NUM 5
92 static const double sy_const_1[] = { 1. };
93 static const double sy_const_3[] = { 0.828981543588751,-0.657963087177502,0.828981543588751 };
94 static const double sy_const_5[] = { 0.2967324292201065,0.2967324292201065,-0.186929716880426,0.2967324292201065,0.2967324292201065 };
96 static const double* sy_const[] = {
97 NULL,
98 sy_const_1,
99 NULL,
100 sy_const_3,
101 NULL,
102 sy_const_5
106 static const double sy_const[MAX_SUZUKI_YOSHIDA_NUM+1][MAX_SUZUKI_YOSHIDA_NUM+1] = {
108 {1},
110 {0.828981543588751,-0.657963087177502,0.828981543588751},
112 {0.2967324292201065,0.2967324292201065,-0.186929716880426,0.2967324292201065,0.2967324292201065}
113 };*/
115 GMX_LIBGMX_EXPORT
116 int gmx_nint(real a);
117 real sign(real x,real y);
119 real cuberoot (real a);
120 GMX_LIBGMX_EXPORT
121 double gmx_erfd(double x);
122 double gmx_erfcd(double x);
123 GMX_LIBGMX_EXPORT
124 float gmx_erff(float x);
125 GMX_LIBGMX_EXPORT
126 float gmx_erfcf(float x);
127 #ifdef GMX_DOUBLE
128 #define gmx_erf(x) gmx_erfd(x)
129 #define gmx_erfc(x) gmx_erfcd(x)
130 #else
131 #define gmx_erf(x) gmx_erff(x)
132 #define gmx_erfc(x) gmx_erfcf(x)
133 #endif
135 GMX_LIBGMX_EXPORT
136 gmx_bool gmx_isfinite(real x);
138 /*! \brief Check if two numbers are within a tolerance
140 * This routine checks if the relative difference between two numbers is
141 * approximately within the given tolerance, defined as
142 * fabs(f1-f2)<=tolerance*fabs(f1+f2).
144 * To check if two floating-point numbers are almost identical, use this routine
145 * with the tolerance GMX_REAL_EPS, or GMX_DOUBLE_EPS if the check should be
146 * done in double regardless of Gromacs precision.
148 * To check if two algorithms produce similar results you will normally need
149 * to relax the tolerance significantly since many operations (e.g. summation)
150 * accumulate floating point errors.
152 * \param f1 First number to compare
153 * \param f2 Second number to compare
154 * \param tol Tolerance to use
156 * \return 1 if the relative difference is within tolerance, 0 if not.
158 static int
159 gmx_within_tol(double f1,
160 double f2,
161 double tol)
163 /* The or-equal is important - otherwise we return false if f1==f2==0 */
164 if( fabs(f1-f2) <= tol*0.5*(fabs(f1)+fabs(f2)) )
166 return 1;
168 else
170 return 0;
176 /**
177 * Check if a number is smaller than some preset safe minimum
178 * value, currently defined as GMX_REAL_MIN/GMX_REAL_EPS.
180 * If a number is smaller than this value we risk numerical overflow
181 * if any number larger than 1.0/GMX_REAL_EPS is divided by it.
183 * \return 1 if 'almost' numerically zero, 0 otherwise.
185 static int
186 gmx_numzero(double a)
188 return gmx_within_tol(a,0.0,GMX_REAL_MIN/GMX_REAL_EPS);
192 static real
193 gmx_log2(real x)
195 const real iclog2 = 1.0/log( 2.0 );
197 return log( x ) * iclog2;
200 /*! /brief Multiply two large ints
202 * Returns true when overflow did not occur.
204 GMX_LIBGMX_EXPORT
205 gmx_bool
206 check_int_multiply_for_overflow(gmx_large_int_t a,
207 gmx_large_int_t b,
208 gmx_large_int_t *result);
210 #ifdef __cplusplus
212 #endif
214 #endif /* _maths_h */