Improved SIMD test data to use all bits
[gromacs.git] / src / gromacs / simd / tests / simd_floatingpoint.cpp
blobce994b6e3dd45f7d4f147343a987e609f8966ce4
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2014,2015,2016,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
35 #include "gmxpre.h"
37 #include <cmath>
39 #include "gromacs/math/utilities.h"
40 #include "gromacs/simd/simd.h"
41 #include "gromacs/utility/basedefinitions.h"
43 #include "testutils/testasserts.h"
45 #include "data.h"
46 #include "simd.h"
48 #if GMX_SIMD
50 namespace gmx
52 namespace test
55 namespace
58 /*! \cond internal */
59 /*! \addtogroup module_simd */
60 /*! \{ */
62 #if GMX_SIMD_HAVE_REAL
64 /*! \brief Test fixture for floating-point tests (identical to the generic \ref SimdTest) */
65 typedef SimdTest SimdFloatingpointTest;
67 TEST_F(SimdFloatingpointTest, setZero)
69 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(0.0), setZero());
72 TEST_F(SimdFloatingpointTest, set)
74 const real *p = &c0;
75 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(c1), SimdReal(c1));
76 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(c0), SimdReal(*p));
79 TEST_F(SimdFloatingpointTest, add)
81 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 + c3, c1 + c4, c2 + c5 ),
82 rSimd_c0c1c2 + rSimd_c3c4c5);
85 TEST_F(SimdFloatingpointTest, maskAdd)
87 SimdBool m = setSimdRealFrom3R(c6, 0, c7) != setZero();
88 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 + c3, c1 + 0.0, c2 + c5 ),
89 maskAdd(rSimd_c0c1c2, rSimd_c3c4c5, m));
92 TEST_F(SimdFloatingpointTest, sub)
94 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 - c3, c1 - c4, c2 - c5 ),
95 rSimd_c0c1c2 - rSimd_c3c4c5);
98 TEST_F(SimdFloatingpointTest, mul)
100 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3, c1 * c4, c2 * c5 ),
101 rSimd_c0c1c2 * rSimd_c3c4c5);
104 TEST_F(SimdFloatingpointTest, maskzMul)
106 SimdBool m = setSimdRealFrom3R(c1, 0, c1) != setZero();
107 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3, 0.0, c2 * c5 ),
108 maskzMul(rSimd_c0c1c2, rSimd_c3c4c5, m));
111 TEST_F(SimdFloatingpointTest, fma)
113 // The last bit of FMA operations depends on hardware, so we don't require exact match
114 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3 + c6, c1 * c4 + c7, c2 * c5 + c8),
115 fma(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8));
119 TEST_F(SimdFloatingpointTest, maskzFma)
121 SimdBool m = setSimdRealFrom3R(c2, 0, c3) != setZero();
122 // The last bit of FMA operations depends on hardware, so we don't require exact match
123 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3 + c6, 0.0, c2 * c5 + c8),
124 maskzFma(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8, m));
127 TEST_F(SimdFloatingpointTest, fms)
129 // The last bit of FMA operations depends on hardware, so we don't require exact match
130 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c0 * c3 - c6, c1 * c4 - c7, c2 * c5 - c8),
131 fms(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8));
134 TEST_F(SimdFloatingpointTest, fnma)
136 // The last bit of FMA operations depends on hardware, so we don't require exact match
137 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(c6 - c0 * c3, c7 - c1 * c4, c8 - c2 * c5),
138 fnma(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8));
141 TEST_F(SimdFloatingpointTest, fnms)
143 // The last bit of FMA operations depends on hardware, so we don't require exact match
144 GMX_EXPECT_SIMD_REAL_NEAR(setSimdRealFrom3R(-c0 * c3 - c6, -c1 * c4 - c7, -c2 * c5 - c8),
145 fnms(rSimd_c0c1c2, rSimd_c3c4c5, rSimd_c6c7c8));
148 TEST_F(SimdFloatingpointTest, abs)
150 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, abs(rSimd_c0c1c2)); // fabs(x)=x
151 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, abs(rSimd_m0m1m2)); // fabs(-x)=x
154 TEST_F(SimdFloatingpointTest, neg)
156 GMX_EXPECT_SIMD_REAL_EQ(rSimd_m0m1m2, -(rSimd_c0c1c2)); // fneg(x)=-x
157 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, -(rSimd_m0m1m2)); // fneg(-x)=x
160 #if GMX_SIMD_HAVE_LOGICAL
161 TEST_F(SimdFloatingpointTest, and)
163 GMX_EXPECT_SIMD_REAL_EQ(rSimd_logicalResultAnd,
164 (rSimd_logicalA & rSimd_logicalB));
167 TEST_F(SimdFloatingpointTest, or)
169 GMX_EXPECT_SIMD_REAL_EQ(rSimd_logicalResultOr,
170 (rSimd_logicalA | rSimd_logicalB));
173 TEST_F(SimdFloatingpointTest, xor)
175 /* Test xor by taking xor with a number and its negative. This should result
176 * in only the sign bit being set. We then use this bit change the sign of
177 * different numbers.
179 SimdReal signbit = SimdReal(c1) ^ SimdReal(-c1);
180 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c2, c3, -c4), (signbit ^ setSimdRealFrom3R(c2, -c3, c4)));
183 TEST_F(SimdFloatingpointTest, andNot)
185 /* Use xor (which we already tested, so fix that first if both tests fail)
186 * to extract the sign bit, and then use andnot to take absolute values.
188 SimdReal signbit = SimdReal(c1) ^ SimdReal(-c1);
189 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c2, c3, c4), andNot(signbit, setSimdRealFrom3R(-c2, c3, -c4)));
192 #endif
194 TEST_F(SimdFloatingpointTest, max)
196 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R( c3, c1, c4), max(rSimd_c0c1c2, rSimd_c3c0c4));
197 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R( c3, c1, c4), max(rSimd_c3c0c4, rSimd_c0c1c2));
198 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c0, -c0, -c2), max(rSimd_m0m1m2, rSimd_m3m0m4));
199 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c0, -c0, -c2), max(rSimd_m3m0m4, rSimd_m0m1m2));
202 TEST_F(SimdFloatingpointTest, min)
204 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R( c0, c0, c2), min(rSimd_c0c1c2, rSimd_c3c0c4));
205 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R( c0, c0, c2), min(rSimd_c3c0c4, rSimd_c0c1c2));
206 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c3, -c1, -c4), min(rSimd_m0m1m2, rSimd_m3m0m4));
207 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(-c3, -c1, -c4), min(rSimd_m3m0m4, rSimd_m0m1m2));
210 TEST_F(SimdFloatingpointTest, round)
212 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(2), round(rSimd_2p25));
213 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(4), round(rSimd_3p75));
214 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(-2), round(rSimd_m2p25));
215 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(-4), round(rSimd_m3p75));
218 TEST_F(SimdFloatingpointTest, trunc)
220 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(2), trunc(rSimd_2p25));
221 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(3), trunc(rSimd_3p75));
222 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(-2), trunc(rSimd_m2p25));
223 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom1R(-3), trunc(rSimd_m3p75));
226 // We explicitly test the exponent/mantissa routines with double precision data,
227 // since these usually rely on direct manipulation and shift of the SIMD registers,
228 // where it is easy to make mistakes with single vs double precision.
230 TEST_F(SimdFloatingpointTest, frexp)
232 SimdReal fraction;
233 SimdInt32 exponent;
235 fraction = frexp(rSimd_Exp, &exponent);
237 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(0.609548660288905419513128,
238 0.5833690139241746175358116,
239 -0.584452007502232362412542),
240 fraction);
241 GMX_EXPECT_SIMD_INT_EQ(setSimdIntFrom3I(61, -40, 55), exponent);
244 #if GMX_SIMD_HAVE_DOUBLE && GMX_DOUBLE
245 fraction = frexp(rSimd_ExpDouble, &exponent);
247 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(0.6206306194761728178832527,
248 0.5236473618795619566768096,
249 -0.9280331023751380303821179),
250 fraction);
251 GMX_EXPECT_SIMD_INT_EQ(setSimdIntFrom3I(588, -461, 673), exponent);
252 #endif
255 TEST_F(SimdFloatingpointTest, ldexp)
257 SimdReal x0 = setSimdRealFrom3R(0.5, 11.5, 99.5);
258 SimdReal x1 = setSimdRealFrom3R(-0.5, -11.5, -99.5);
259 SimdReal one = setSimdRealFrom1R(1.0);
261 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(pow(2.0, 60.0), pow(2.0, -41.0), pow(2.0, 54.0)),
262 ldexp(one, setSimdIntFrom3I(60, -41, 54)));
263 #if GMX_SIMD_HAVE_DOUBLE && GMX_DOUBLE
264 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(pow(2.0, 587.0), pow(2.0, -462.0), pow(2.0, 672.0)),
265 ldexp(one, setSimdIntFrom3I(587, -462, 672)));
266 #endif
267 /* Rounding mode in conversions must be consistent with simdRound() for SetExponent() to work */
268 GMX_EXPECT_SIMD_REAL_EQ(ldexp(one, cvtR2I(round(x0))), ldexp(one, cvtR2I(x0)));
269 GMX_EXPECT_SIMD_REAL_EQ(ldexp(one, cvtR2I(round(x1))), ldexp(one, cvtR2I(x1)));
273 * We do extensive 1/sqrt(x) and 1/x accuracy testing in the math module, so
274 * we just make sure the lookup instructions appear to work here
277 TEST_F(SimdFloatingpointTest, rsqrt)
279 SimdReal x = setSimdRealFrom3R(4.0, M_PI, 1234567890.0);
280 SimdReal ref = setSimdRealFrom3R(0.5, 1.0/std::sqrt(M_PI), 1.0/std::sqrt(1234567890.0));
281 int shiftbits = std::numeric_limits<real>::digits-GMX_SIMD_RSQRT_BITS;
283 if (shiftbits < 0)
285 shiftbits = 0;
288 /* Set the allowed ulp error as 2 to the power of the number of bits in
289 * the mantissa that do not have to be correct after the table lookup.
291 setUlpTol(1LL << shiftbits);
292 GMX_EXPECT_SIMD_REAL_NEAR(ref, rsqrt(x));
295 TEST_F(SimdFloatingpointTest, maskzRsqrt)
297 SimdReal x = setSimdRealFrom3R(M_PI, -4.0, 0.0);
298 // simdCmpLe is tested separately further down
299 SimdBool m = setZero() < x;
300 SimdReal ref = setSimdRealFrom3R(1.0/std::sqrt(M_PI), 0.0, 0.0);
301 int shiftbits = std::numeric_limits<real>::digits-GMX_SIMD_RSQRT_BITS;
303 if (shiftbits < 0)
305 shiftbits = 0;
308 /* Set the allowed ulp error as 2 to the power of the number of bits in
309 * the mantissa that do not have to be correct after the table lookup.
311 setUlpTol(1LL << shiftbits);
312 GMX_EXPECT_SIMD_REAL_NEAR(ref, maskzRsqrt(x, m));
315 TEST_F(SimdFloatingpointTest, rcp)
317 SimdReal x = setSimdRealFrom3R(4.0, M_PI, 1234567890.0);
318 SimdReal ref = setSimdRealFrom3R(0.25, 1.0/M_PI, 1.0/1234567890.0);
319 int shiftbits = std::numeric_limits<real>::digits-GMX_SIMD_RCP_BITS;
321 if (shiftbits < 0)
323 shiftbits = 0;
326 /* Set the allowed ulp error as 2 to the power of the number of bits in
327 * the mantissa that do not have to be correct after the table lookup.
329 setUlpTol(1LL << shiftbits);
330 GMX_EXPECT_SIMD_REAL_NEAR(ref, rcp(x));
333 TEST_F(SimdFloatingpointTest, maskzRcp)
335 SimdReal x = setSimdRealFrom3R(M_PI, 0.0, -1234567890.0);
336 SimdBool m = (x != setZero());
337 SimdReal ref = setSimdRealFrom3R(1.0/M_PI, 0.0, -1.0/1234567890.0);
338 int shiftbits = std::numeric_limits<real>::digits-GMX_SIMD_RCP_BITS;
340 if (shiftbits < 0)
342 shiftbits = 0;
345 /* Set the allowed ulp error as 2 to the power of the number of bits in
346 * the mantissa that do not have to be correct after the table lookup.
348 setUlpTol(1LL << shiftbits);
349 GMX_EXPECT_SIMD_REAL_NEAR(ref, maskzRcp(x, m));
352 TEST_F(SimdFloatingpointTest, cmpEqAndSelectByMask)
354 SimdBool eq = rSimd_c4c6c8 == rSimd_c6c7c8;
355 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(0, 0, c2), selectByMask(rSimd_c0c1c2, eq));
358 TEST_F(SimdFloatingpointTest, selectByNotMask)
360 SimdBool eq = rSimd_c4c6c8 == rSimd_c6c7c8;
361 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c0, c1, 0), selectByNotMask(rSimd_c0c1c2, eq));
364 TEST_F(SimdFloatingpointTest, cmpNe)
366 SimdBool eq = rSimd_c4c6c8 != rSimd_c6c7c8;
367 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c0, c1, 0), selectByMask(rSimd_c0c1c2, eq));
370 TEST_F(SimdFloatingpointTest, cmpLe)
372 SimdBool le = rSimd_c4c6c8 <= rSimd_c6c7c8;
373 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, selectByMask(rSimd_c0c1c2, le));
376 TEST_F(SimdFloatingpointTest, cmpLt)
378 SimdBool lt = rSimd_c4c6c8 < rSimd_c6c7c8;
379 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c0, c1, 0), selectByMask(rSimd_c0c1c2, lt));
382 #if GMX_SIMD_HAVE_INT32_LOGICAL || GMX_SIMD_HAVE_LOGICAL
383 TEST_F(SimdFloatingpointTest, testBits)
385 SimdBool eq = testBits(setSimdRealFrom3R(c1, 0, c1));
386 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c0, 0, c2), selectByMask(rSimd_c0c1c2, eq));
388 // Test if we detect only the sign bit being set
389 eq = testBits(setSimdRealFrom1R(GMX_REAL_NEGZERO));
390 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, selectByMask(rSimd_c0c1c2, eq));
392 #endif
394 TEST_F(SimdFloatingpointTest, andB)
396 SimdBool eq = rSimd_c4c6c8 == rSimd_c6c7c8;
397 SimdBool le = rSimd_c4c6c8 <= rSimd_c6c7c8;
398 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(0, 0, c2), selectByMask(rSimd_c0c1c2, (eq && le)));
401 TEST_F(SimdFloatingpointTest, orB)
403 SimdBool eq = rSimd_c4c6c8 == rSimd_c6c7c8;
404 SimdBool lt = rSimd_c4c6c8 < rSimd_c6c7c8;
405 GMX_EXPECT_SIMD_REAL_EQ(rSimd_c0c1c2, selectByMask(rSimd_c0c1c2, (eq || lt)));
408 TEST_F(SimdFloatingpointTest, anyTrueB)
410 SimdBool eq;
412 /* this test is a bit tricky since we don't know the simd width.
413 * We cannot check for truth values for "any" element beyond the first,
414 * since that part of the data will not be used if simd width is 1.
416 eq = rSimd_c4c6c8 == setSimdRealFrom3R(c4, 0, 0);
417 EXPECT_TRUE(anyTrue(eq));
419 eq = rSimd_c0c1c2 == rSimd_c3c4c5;
420 EXPECT_FALSE(anyTrue(eq));
423 TEST_F(SimdFloatingpointTest, blend)
425 SimdBool lt = rSimd_c4c6c8 < rSimd_c6c7c8;
426 GMX_EXPECT_SIMD_REAL_EQ(setSimdRealFrom3R(c3, c4, c2), blend(rSimd_c0c1c2, rSimd_c3c4c5, lt));
429 TEST_F(SimdFloatingpointTest, reduce)
431 // The horizontal sum of the SIMD variable depends on the width, so
432 // simply store it an extra time and calculate what the sum should be
433 std::vector<real> v = simdReal2Vector(rSimd_c3c4c5);
434 real sum = 0.0;
436 for (int i = 0; i < GMX_SIMD_REAL_WIDTH; i++)
438 sum += v[i];
441 EXPECT_REAL_EQ_TOL(sum, reduce(rSimd_c3c4c5), defaultRealTolerance() );
444 #endif // GMX_SIMD_HAVE_REAL
446 #if GMX_SIMD_HAVE_FLOAT && GMX_SIMD_HAVE_DOUBLE
447 TEST_F(SimdFloatingpointTest, cvtFloat2Double)
449 GMX_ALIGNED(float, GMX_SIMD_FLOAT_WIDTH) f[GMX_SIMD_FLOAT_WIDTH];
450 GMX_ALIGNED(double, GMX_SIMD_DOUBLE_WIDTH) d[GMX_SIMD_FLOAT_WIDTH]; // Yes, double array length should be same as float
452 int i;
453 SimdFloat vf;
454 SimdDouble vd0;
455 FloatingPointTolerance tolerance(defaultRealTolerance());
457 for (i = 0; i < GMX_SIMD_FLOAT_WIDTH; i++)
459 // Scale by 1+100*eps to use low bits too.
460 // Due to the conversions we want to avoid being too sensitive to fluctuations in last bit
461 f[i] = i * (1.0 + 100*GMX_FLOAT_EPS);
464 vf = load(f);
465 #if (GMX_SIMD_FLOAT_WIDTH == 2*GMX_SIMD_DOUBLE_WIDTH)
466 SimdDouble vd1;
467 cvtF2DD(vf, &vd0, &vd1);
468 store(d + GMX_SIMD_DOUBLE_WIDTH, vd1); // Store upper part halfway through array
469 #elif (GMX_SIMD_FLOAT_WIDTH == GMX_SIMD_DOUBLE_WIDTH)
470 vd0 = cvtF2D(vf);
471 #else
472 # error Width of float SIMD must either be identical to double, or twice the width.
473 #endif
474 store(d, vd0); // store lower (or whole) part from start of vector
476 for (i = 0; i < GMX_SIMD_FLOAT_WIDTH; i++)
478 EXPECT_REAL_EQ_TOL(f[i], d[i], tolerance);
482 TEST_F(SimdFloatingpointTest, cvtDouble2Float)
484 GMX_ALIGNED(float, GMX_SIMD_FLOAT_WIDTH) f[GMX_SIMD_FLOAT_WIDTH];
485 GMX_ALIGNED(double, GMX_SIMD_DOUBLE_WIDTH) d[GMX_SIMD_FLOAT_WIDTH]; // Yes, double array length should be same as float
486 int i;
487 SimdFloat vf;
488 SimdDouble vd0;
489 FloatingPointTolerance tolerance(defaultRealTolerance());
491 // This fills elements for pd1 too when double width is 2*single width
492 for (i = 0; i < GMX_SIMD_FLOAT_WIDTH; i++)
494 // Scale by 1+eps to use low bits too.
495 // Due to the conversions we want to avoid being too sensitive to fluctuations in last bit
496 d[i] = i * (1.0 + 100*GMX_FLOAT_EPS);
499 vd0 = load(d);
500 #if (GMX_SIMD_FLOAT_WIDTH == 2*GMX_SIMD_DOUBLE_WIDTH)
501 SimdDouble vd1 = load(d + GMX_SIMD_DOUBLE_WIDTH); // load upper half of data
502 vf = cvtDD2F(vd0, vd1);
503 #elif (GMX_SIMD_FLOAT_WIDTH == GMX_SIMD_DOUBLE_WIDTH)
504 vf = cvtD2F(vd0);
505 #else
506 # error Width of float SIMD must either be identical to double, or twice the width.
507 #endif
508 store(f, vf);
510 // This will check elements in pd1 too when double width is 2*single width
511 for (i = 0; i < GMX_SIMD_FLOAT_WIDTH; i++)
513 EXPECT_REAL_EQ_TOL(d[i], f[i], tolerance);
516 #endif // GMX_SIMD_HAVE_FLOAT && GMX_SIMD_HAVE_DOUBLE
518 /*! \} */
519 /*! \endcond */
521 } // namespace
522 } // namespace
523 } // namespace
525 #endif // GMX_SIMD