Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / mdlib / tpi.c
blob9452fb3c3eaa7f2fb510f5846b535637aed1ecaf
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 #include "config.h"
39 #include <math.h>
40 #include <stdlib.h>
41 #include <string.h>
42 #include <time.h>
44 #include "network.h"
45 #include "gromacs/utility/smalloc.h"
46 #include "nrnb.h"
47 #include "chargegroup.h"
48 #include "force.h"
49 #include "macros.h"
50 #include "names.h"
51 #include "gromacs/utility/fatalerror.h"
52 #include "txtdump.h"
53 #include "typedefs.h"
54 #include "update.h"
55 #include "constr.h"
56 #include "gromacs/math/vec.h"
57 #include "tgroup.h"
58 #include "mdebin.h"
59 #include "vsite.h"
60 #include "force.h"
61 #include "mdrun.h"
62 #include "domdec.h"
63 #include "gromacs/random/random.h"
64 #include "gromacs/math/units.h"
65 #include "gromacs/fileio/xvgr.h"
66 #include "mdatoms.h"
67 #include "ns.h"
68 #include "gromacs/topology/mtop_util.h"
69 #include "pme.h"
70 #include "gromacs/gmxlib/conformation-utilities.h"
72 #include "gromacs/legacyheaders/types/commrec.h"
73 #include "gromacs/fileio/confio.h"
74 #include "gromacs/fileio/gmxfio.h"
75 #include "gromacs/fileio/trxio.h"
76 #include "gromacs/timing/wallcycle.h"
77 #include "gromacs/timing/walltime_accounting.h"
79 static void global_max(t_commrec *cr, int *n)
81 int *sum, i;
83 snew(sum, cr->nnodes);
84 sum[cr->nodeid] = *n;
85 gmx_sumi(cr->nnodes, sum, cr);
86 for (i = 0; i < cr->nnodes; i++)
88 *n = max(*n, sum[i]);
91 sfree(sum);
94 static void realloc_bins(double **bin, int *nbin, int nbin_new)
96 int i;
98 if (nbin_new != *nbin)
100 srenew(*bin, nbin_new);
101 for (i = *nbin; i < nbin_new; i++)
103 (*bin)[i] = 0;
105 *nbin = nbin_new;
109 double do_tpi(FILE *fplog, t_commrec *cr,
110 int nfile, const t_filenm fnm[],
111 const output_env_t oenv, gmx_bool bVerbose, gmx_bool gmx_unused bCompact,
112 int gmx_unused nstglobalcomm,
113 gmx_vsite_t gmx_unused *vsite, gmx_constr_t gmx_unused constr,
114 int gmx_unused stepout,
115 t_inputrec *inputrec,
116 gmx_mtop_t *top_global, t_fcdata *fcd,
117 t_state *state,
118 t_mdatoms *mdatoms,
119 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
120 gmx_edsam_t gmx_unused ed,
121 t_forcerec *fr,
122 int gmx_unused repl_ex_nst, int gmx_unused repl_ex_nex, int gmx_unused repl_ex_seed,
123 gmx_membed_t gmx_unused membed,
124 real gmx_unused cpt_period, real gmx_unused max_hours,
125 const char gmx_unused *deviceOptions,
126 int gmx_unused imdport,
127 unsigned long gmx_unused Flags,
128 gmx_walltime_accounting_t walltime_accounting)
130 const char *TPI = "Test Particle Insertion";
131 gmx_localtop_t *top;
132 gmx_groups_t *groups;
133 gmx_enerdata_t *enerd;
134 rvec *f;
135 real lambda, t, temp, beta, drmax, epot;
136 double embU, sum_embU, *sum_UgembU, V, V_all, VembU_all;
137 t_trxstatus *status;
138 t_trxframe rerun_fr;
139 gmx_bool bDispCorr, bCharge, bRFExcl, bNotLastFrame, bStateChanged, bNS;
140 tensor force_vir, shake_vir, vir, pres;
141 int cg_tp, a_tp0, a_tp1, ngid, gid_tp, nener, e;
142 rvec *x_mol;
143 rvec mu_tot, x_init, dx, x_tp;
144 int nnodes, frame;
145 gmx_int64_t frame_step_prev, frame_step;
146 gmx_int64_t nsteps, stepblocksize = 0, step;
147 gmx_int64_t rnd_count_stride, rnd_count;
148 gmx_int64_t seed;
149 double rnd[4];
150 int i, start, end;
151 FILE *fp_tpi = NULL;
152 char *ptr, *dump_pdb, **leg, str[STRLEN], str2[STRLEN];
153 double dbl, dump_ener;
154 gmx_bool bCavity;
155 int nat_cavity = 0, d;
156 real *mass_cavity = NULL, mass_tot;
157 int nbin;
158 double invbinw, *bin, refvolshift, logV, bUlogV;
159 real dvdl, prescorr, enercorr, dvdlcorr;
160 gmx_bool bEnergyOutOfBounds;
161 const char *tpid_leg[2] = {"direct", "reweighted"};
163 /* Since there is no upper limit to the insertion energies,
164 * we need to set an upper limit for the distribution output.
166 real bU_bin_limit = 50;
167 real bU_logV_bin_limit = bU_bin_limit + 10;
169 nnodes = cr->nnodes;
171 top = gmx_mtop_generate_local_top(top_global, inputrec);
173 groups = &top_global->groups;
175 bCavity = (inputrec->eI == eiTPIC);
176 if (bCavity)
178 ptr = getenv("GMX_TPIC_MASSES");
179 if (ptr == NULL)
181 nat_cavity = 1;
183 else
185 /* Read (multiple) masses from env var GMX_TPIC_MASSES,
186 * The center of mass of the last atoms is then used for TPIC.
188 nat_cavity = 0;
189 while (sscanf(ptr, "%lf%n", &dbl, &i) > 0)
191 srenew(mass_cavity, nat_cavity+1);
192 mass_cavity[nat_cavity] = dbl;
193 fprintf(fplog, "mass[%d] = %f\n",
194 nat_cavity+1, mass_cavity[nat_cavity]);
195 nat_cavity++;
196 ptr += i;
198 if (nat_cavity == 0)
200 gmx_fatal(FARGS, "Found %d masses in GMX_TPIC_MASSES", nat_cavity);
206 init_em(fplog,TPI,inputrec,&lambda,nrnb,mu_tot,
207 state->box,fr,mdatoms,top,cr,nfile,fnm,NULL,NULL);*/
208 /* We never need full pbc for TPI */
209 fr->ePBC = epbcXYZ;
210 /* Determine the temperature for the Boltzmann weighting */
211 temp = inputrec->opts.ref_t[0];
212 if (fplog)
214 for (i = 1; (i < inputrec->opts.ngtc); i++)
216 if (inputrec->opts.ref_t[i] != temp)
218 fprintf(fplog, "\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
219 fprintf(stderr, "\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
222 fprintf(fplog,
223 "\n The temperature for test particle insertion is %.3f K\n\n",
224 temp);
226 beta = 1.0/(BOLTZ*temp);
228 /* Number of insertions per frame */
229 nsteps = inputrec->nsteps;
231 /* Use the same neighborlist with more insertions points
232 * in a sphere of radius drmax around the initial point
234 /* This should be a proper mdp parameter */
235 drmax = inputrec->rtpi;
237 /* An environment variable can be set to dump all configurations
238 * to pdb with an insertion energy <= this value.
240 dump_pdb = getenv("GMX_TPI_DUMP");
241 dump_ener = 0;
242 if (dump_pdb)
244 sscanf(dump_pdb, "%lf", &dump_ener);
247 atoms2md(top_global, inputrec, 0, NULL, top_global->natoms, mdatoms);
248 update_mdatoms(mdatoms, inputrec->fepvals->init_lambda);
250 snew(enerd, 1);
251 init_enerdata(groups->grps[egcENER].nr, inputrec->fepvals->n_lambda, enerd);
252 snew(f, top_global->natoms);
254 /* Print to log file */
255 walltime_accounting_start(walltime_accounting);
256 wallcycle_start(wcycle, ewcRUN);
257 print_start(fplog, cr, walltime_accounting, "Test Particle Insertion");
259 /* The last charge group is the group to be inserted */
260 cg_tp = top->cgs.nr - 1;
261 a_tp0 = top->cgs.index[cg_tp];
262 a_tp1 = top->cgs.index[cg_tp+1];
263 if (debug)
265 fprintf(debug, "TPI cg %d, atoms %d-%d\n", cg_tp, a_tp0, a_tp1);
267 if (a_tp1 - a_tp0 > 1 &&
268 (inputrec->rlist < inputrec->rcoulomb ||
269 inputrec->rlist < inputrec->rvdw))
271 gmx_fatal(FARGS, "Can not do TPI for multi-atom molecule with a twin-range cut-off");
273 snew(x_mol, a_tp1-a_tp0);
275 bDispCorr = (inputrec->eDispCorr != edispcNO);
276 bCharge = FALSE;
277 for (i = a_tp0; i < a_tp1; i++)
279 /* Copy the coordinates of the molecule to be insterted */
280 copy_rvec(state->x[i], x_mol[i-a_tp0]);
281 /* Check if we need to print electrostatic energies */
282 bCharge |= (mdatoms->chargeA[i] != 0 ||
283 (mdatoms->chargeB && mdatoms->chargeB[i] != 0));
285 bRFExcl = (bCharge && EEL_RF(fr->eeltype) && fr->eeltype != eelRF_NEC);
287 calc_cgcm(fplog, cg_tp, cg_tp+1, &(top->cgs), state->x, fr->cg_cm);
288 if (bCavity)
290 if (norm(fr->cg_cm[cg_tp]) > 0.5*inputrec->rlist && fplog)
292 fprintf(fplog, "WARNING: Your TPI molecule is not centered at 0,0,0\n");
293 fprintf(stderr, "WARNING: Your TPI molecule is not centered at 0,0,0\n");
296 else
298 /* Center the molecule to be inserted at zero */
299 for (i = 0; i < a_tp1-a_tp0; i++)
301 rvec_dec(x_mol[i], fr->cg_cm[cg_tp]);
305 if (fplog)
307 fprintf(fplog, "\nWill insert %d atoms %s partial charges\n",
308 a_tp1-a_tp0, bCharge ? "with" : "without");
310 fprintf(fplog, "\nWill insert %d times in each frame of %s\n",
311 (int)nsteps, opt2fn("-rerun", nfile, fnm));
314 if (!bCavity)
316 if (inputrec->nstlist > 1)
318 if (drmax == 0 && a_tp1-a_tp0 == 1)
320 gmx_fatal(FARGS, "Re-using the neighborlist %d times for insertions of a single atom in a sphere of radius %f does not make sense", inputrec->nstlist, drmax);
322 if (fplog)
324 fprintf(fplog, "Will use the same neighborlist for %d insertions in a sphere of radius %f\n", inputrec->nstlist, drmax);
328 else
330 if (fplog)
332 fprintf(fplog, "Will insert randomly in a sphere of radius %f around the center of the cavity\n", drmax);
336 ngid = groups->grps[egcENER].nr;
337 gid_tp = GET_CGINFO_GID(fr->cginfo[cg_tp]);
338 nener = 1 + ngid;
339 if (bDispCorr)
341 nener += 1;
343 if (bCharge)
345 nener += ngid;
346 if (bRFExcl)
348 nener += 1;
350 if (EEL_FULL(fr->eeltype))
352 nener += 1;
355 snew(sum_UgembU, nener);
357 /* Copy the random seed set by the user */
358 seed = inputrec->ld_seed;
359 /* We use the frame step number as one random counter.
360 * The second counter use the insertion (step) count. But we
361 * need multiple random numbers per insertion. This number is
362 * not fixed, since we generate random locations in a sphere
363 * by putting locations in a cube and some of these fail.
364 * A count of 20 is already extremely unlikely, so 10000 is
365 * a safe margin for random numbers per insertion.
367 rnd_count_stride = 10000;
369 if (MASTER(cr))
371 fp_tpi = xvgropen(opt2fn("-tpi", nfile, fnm),
372 "TPI energies", "Time (ps)",
373 "(kJ mol\\S-1\\N) / (nm\\S3\\N)", oenv);
374 xvgr_subtitle(fp_tpi, "f. are averages over one frame", oenv);
375 snew(leg, 4+nener);
376 e = 0;
377 sprintf(str, "-kT log(<Ve\\S-\\betaU\\N>/<V>)");
378 leg[e++] = strdup(str);
379 sprintf(str, "f. -kT log<e\\S-\\betaU\\N>");
380 leg[e++] = strdup(str);
381 sprintf(str, "f. <e\\S-\\betaU\\N>");
382 leg[e++] = strdup(str);
383 sprintf(str, "f. V");
384 leg[e++] = strdup(str);
385 sprintf(str, "f. <Ue\\S-\\betaU\\N>");
386 leg[e++] = strdup(str);
387 for (i = 0; i < ngid; i++)
389 sprintf(str, "f. <U\\sVdW %s\\Ne\\S-\\betaU\\N>",
390 *(groups->grpname[groups->grps[egcENER].nm_ind[i]]));
391 leg[e++] = strdup(str);
393 if (bDispCorr)
395 sprintf(str, "f. <U\\sdisp c\\Ne\\S-\\betaU\\N>");
396 leg[e++] = strdup(str);
398 if (bCharge)
400 for (i = 0; i < ngid; i++)
402 sprintf(str, "f. <U\\sCoul %s\\Ne\\S-\\betaU\\N>",
403 *(groups->grpname[groups->grps[egcENER].nm_ind[i]]));
404 leg[e++] = strdup(str);
406 if (bRFExcl)
408 sprintf(str, "f. <U\\sRF excl\\Ne\\S-\\betaU\\N>");
409 leg[e++] = strdup(str);
411 if (EEL_FULL(fr->eeltype))
413 sprintf(str, "f. <U\\sCoul recip\\Ne\\S-\\betaU\\N>");
414 leg[e++] = strdup(str);
417 xvgr_legend(fp_tpi, 4+nener, (const char**)leg, oenv);
418 for (i = 0; i < 4+nener; i++)
420 sfree(leg[i]);
422 sfree(leg);
424 clear_rvec(x_init);
425 V_all = 0;
426 VembU_all = 0;
428 invbinw = 10;
429 nbin = 10;
430 snew(bin, nbin);
432 /* Avoid frame step numbers <= -1 */
433 frame_step_prev = -1;
435 bNotLastFrame = read_first_frame(oenv, &status, opt2fn("-rerun", nfile, fnm),
436 &rerun_fr, TRX_NEED_X);
437 frame = 0;
439 if (rerun_fr.natoms - (bCavity ? nat_cavity : 0) !=
440 mdatoms->nr - (a_tp1 - a_tp0))
442 gmx_fatal(FARGS, "Number of atoms in trajectory (%d)%s "
443 "is not equal the number in the run input file (%d) "
444 "minus the number of atoms to insert (%d)\n",
445 rerun_fr.natoms, bCavity ? " minus one" : "",
446 mdatoms->nr, a_tp1-a_tp0);
449 refvolshift = log(det(rerun_fr.box));
451 switch (inputrec->eI)
453 case eiTPI:
454 stepblocksize = inputrec->nstlist;
455 break;
456 case eiTPIC:
457 stepblocksize = 1;
458 break;
459 default:
460 gmx_fatal(FARGS, "Unknown integrator %s", ei_names[inputrec->eI]);
463 #ifdef GMX_SIMD
464 /* Make sure we don't detect SIMD overflow generated before this point */
465 gmx_simd_check_and_reset_overflow();
466 #endif
468 while (bNotLastFrame)
470 frame_step = rerun_fr.step;
471 if (frame_step <= frame_step_prev)
473 /* We don't have step number in the trajectory file,
474 * or we have constant or decreasing step numbers.
475 * Ensure we have increasing step numbers, since we use
476 * the step numbers as a counter for random numbers.
478 frame_step = frame_step_prev + 1;
480 frame_step_prev = frame_step;
482 lambda = rerun_fr.lambda;
483 t = rerun_fr.time;
485 sum_embU = 0;
486 for (e = 0; e < nener; e++)
488 sum_UgembU[e] = 0;
491 /* Copy the coordinates from the input trajectory */
492 for (i = 0; i < rerun_fr.natoms; i++)
494 copy_rvec(rerun_fr.x[i], state->x[i]);
496 copy_mat(rerun_fr.box, state->box);
498 V = det(state->box);
499 logV = log(V);
501 bStateChanged = TRUE;
502 bNS = TRUE;
504 step = cr->nodeid*stepblocksize;
505 while (step < nsteps)
507 /* Initialize the second counter for random numbers using
508 * the insertion step index. This ensures that we get
509 * the same random numbers independently of how many
510 * MPI ranks we use. Also for the same seed, we get
511 * the same initial random sequence for different nsteps.
513 rnd_count = step*rnd_count_stride;
515 if (!bCavity)
517 /* Random insertion in the whole volume */
518 bNS = (step % inputrec->nstlist == 0);
519 if (bNS)
521 /* Generate a random position in the box */
522 gmx_rng_cycle_2uniform(frame_step, rnd_count++, seed, RND_SEED_TPI, rnd);
523 gmx_rng_cycle_2uniform(frame_step, rnd_count++, seed, RND_SEED_TPI, rnd+2);
524 for (d = 0; d < DIM; d++)
526 x_init[d] = rnd[d]*state->box[d][d];
529 if (inputrec->nstlist == 1)
531 copy_rvec(x_init, x_tp);
533 else
535 /* Generate coordinates within |dx|=drmax of x_init */
538 gmx_rng_cycle_2uniform(frame_step, rnd_count++, seed, RND_SEED_TPI, rnd);
539 gmx_rng_cycle_2uniform(frame_step, rnd_count++, seed, RND_SEED_TPI, rnd+2);
540 for (d = 0; d < DIM; d++)
542 dx[d] = (2*rnd[d] - 1)*drmax;
545 while (norm2(dx) > drmax*drmax);
546 rvec_add(x_init, dx, x_tp);
549 else
551 /* Random insertion around a cavity location
552 * given by the last coordinate of the trajectory.
554 if (step == 0)
556 if (nat_cavity == 1)
558 /* Copy the location of the cavity */
559 copy_rvec(rerun_fr.x[rerun_fr.natoms-1], x_init);
561 else
563 /* Determine the center of mass of the last molecule */
564 clear_rvec(x_init);
565 mass_tot = 0;
566 for (i = 0; i < nat_cavity; i++)
568 for (d = 0; d < DIM; d++)
570 x_init[d] +=
571 mass_cavity[i]*rerun_fr.x[rerun_fr.natoms-nat_cavity+i][d];
573 mass_tot += mass_cavity[i];
575 for (d = 0; d < DIM; d++)
577 x_init[d] /= mass_tot;
581 /* Generate coordinates within |dx|=drmax of x_init */
584 gmx_rng_cycle_2uniform(frame_step, rnd_count++, seed, RND_SEED_TPI, rnd);
585 gmx_rng_cycle_2uniform(frame_step, rnd_count++, seed, RND_SEED_TPI, rnd+2);
586 for (d = 0; d < DIM; d++)
588 dx[d] = (2*rnd[d] - 1)*drmax;
591 while (norm2(dx) > drmax*drmax);
592 rvec_add(x_init, dx, x_tp);
595 if (a_tp1 - a_tp0 == 1)
597 /* Insert a single atom, just copy the insertion location */
598 copy_rvec(x_tp, state->x[a_tp0]);
600 else
602 /* Copy the coordinates from the top file */
603 for (i = a_tp0; i < a_tp1; i++)
605 copy_rvec(x_mol[i-a_tp0], state->x[i]);
607 /* Rotate the molecule randomly */
608 gmx_rng_cycle_2uniform(frame_step, rnd_count++, seed, RND_SEED_TPI, rnd);
609 gmx_rng_cycle_2uniform(frame_step, rnd_count++, seed, RND_SEED_TPI, rnd+2);
610 rotate_conf(a_tp1-a_tp0, state->x+a_tp0, NULL,
611 2*M_PI*rnd[0],
612 2*M_PI*rnd[1],
613 2*M_PI*rnd[2]);
614 /* Shift to the insertion location */
615 for (i = a_tp0; i < a_tp1; i++)
617 rvec_inc(state->x[i], x_tp);
621 /* Clear some matrix variables */
622 clear_mat(force_vir);
623 clear_mat(shake_vir);
624 clear_mat(vir);
625 clear_mat(pres);
627 /* Set the charge group center of mass of the test particle */
628 copy_rvec(x_init, fr->cg_cm[top->cgs.nr-1]);
630 /* Calc energy (no forces) on new positions.
631 * Since we only need the intermolecular energy
632 * and the RF exclusion terms of the inserted molecule occur
633 * within a single charge group we can pass NULL for the graph.
634 * This also avoids shifts that would move charge groups
635 * out of the box.
637 * Some checks above ensure than we can not have
638 * twin-range interactions together with nstlist > 1,
639 * therefore we do not need to remember the LR energies.
641 /* Make do_force do a single node force calculation */
642 cr->nnodes = 1;
643 do_force(fplog, cr, inputrec,
644 step, nrnb, wcycle, top, &top_global->groups,
645 state->box, state->x, &state->hist,
646 f, force_vir, mdatoms, enerd, fcd,
647 state->lambda,
648 NULL, fr, NULL, mu_tot, t, NULL, NULL, FALSE,
649 GMX_FORCE_NONBONDED | GMX_FORCE_ENERGY |
650 (bNS ? GMX_FORCE_DYNAMICBOX | GMX_FORCE_NS | GMX_FORCE_DO_LR : 0) |
651 (bStateChanged ? GMX_FORCE_STATECHANGED : 0));
652 cr->nnodes = nnodes;
653 bStateChanged = FALSE;
654 bNS = FALSE;
656 /* Calculate long range corrections to pressure and energy */
657 calc_dispcorr(fplog, inputrec, fr, step, top_global->natoms, state->box,
658 lambda, pres, vir, &prescorr, &enercorr, &dvdlcorr);
659 /* figure out how to rearrange the next 4 lines MRS 8/4/2009 */
660 enerd->term[F_DISPCORR] = enercorr;
661 enerd->term[F_EPOT] += enercorr;
662 enerd->term[F_PRES] += prescorr;
663 enerd->term[F_DVDL_VDW] += dvdlcorr;
665 epot = enerd->term[F_EPOT];
666 bEnergyOutOfBounds = FALSE;
667 #ifdef GMX_SIMD_X86_SSE2_OR_HIGHER
668 /* With SSE the energy can overflow, check for this */
669 if (gmx_mm_check_and_reset_overflow())
671 if (debug)
673 fprintf(debug, "Found an SSE overflow, assuming the energy is out of bounds\n");
675 bEnergyOutOfBounds = TRUE;
677 #endif
678 /* If the compiler doesn't optimize this check away
679 * we catch the NAN energies.
680 * The epot>GMX_REAL_MAX check catches inf values,
681 * which should nicely result in embU=0 through the exp below,
682 * but it does not hurt to check anyhow.
684 /* Non-bonded Interaction usually diverge at r=0.
685 * With tabulated interaction functions the first few entries
686 * should be capped in a consistent fashion between
687 * repulsion, dispersion and Coulomb to avoid accidental
688 * negative values in the total energy.
689 * The table generation code in tables.c does this.
690 * With user tbales the user should take care of this.
692 if (epot != epot || epot > GMX_REAL_MAX)
694 bEnergyOutOfBounds = TRUE;
696 if (bEnergyOutOfBounds)
698 if (debug)
700 fprintf(debug, "\n time %.3f, step %d: non-finite energy %f, using exp(-bU)=0\n", t, (int)step, epot);
702 embU = 0;
704 else
706 embU = exp(-beta*epot);
707 sum_embU += embU;
708 /* Determine the weighted energy contributions of each energy group */
709 e = 0;
710 sum_UgembU[e++] += epot*embU;
711 if (fr->bBHAM)
713 for (i = 0; i < ngid; i++)
715 sum_UgembU[e++] +=
716 (enerd->grpp.ener[egBHAMSR][GID(i, gid_tp, ngid)] +
717 enerd->grpp.ener[egBHAMLR][GID(i, gid_tp, ngid)])*embU;
720 else
722 for (i = 0; i < ngid; i++)
724 sum_UgembU[e++] +=
725 (enerd->grpp.ener[egLJSR][GID(i, gid_tp, ngid)] +
726 enerd->grpp.ener[egLJLR][GID(i, gid_tp, ngid)])*embU;
729 if (bDispCorr)
731 sum_UgembU[e++] += enerd->term[F_DISPCORR]*embU;
733 if (bCharge)
735 for (i = 0; i < ngid; i++)
737 sum_UgembU[e++] +=
738 (enerd->grpp.ener[egCOULSR][GID(i, gid_tp, ngid)] +
739 enerd->grpp.ener[egCOULLR][GID(i, gid_tp, ngid)])*embU;
741 if (bRFExcl)
743 sum_UgembU[e++] += enerd->term[F_RF_EXCL]*embU;
745 if (EEL_FULL(fr->eeltype))
747 sum_UgembU[e++] += enerd->term[F_COUL_RECIP]*embU;
752 if (embU == 0 || beta*epot > bU_bin_limit)
754 bin[0]++;
756 else
758 i = (int)((bU_logV_bin_limit
759 - (beta*epot - logV + refvolshift))*invbinw
760 + 0.5);
761 if (i < 0)
763 i = 0;
765 if (i >= nbin)
767 realloc_bins(&bin, &nbin, i+10);
769 bin[i]++;
772 if (debug)
774 fprintf(debug, "TPI %7d %12.5e %12.5f %12.5f %12.5f\n",
775 (int)step, epot, x_tp[XX], x_tp[YY], x_tp[ZZ]);
778 if (dump_pdb && epot <= dump_ener)
780 sprintf(str, "t%g_step%d.pdb", t, (int)step);
781 sprintf(str2, "t: %f step %d ener: %f", t, (int)step, epot);
782 write_sto_conf_mtop(str, str2, top_global, state->x, state->v,
783 inputrec->ePBC, state->box);
786 step++;
787 if ((step/stepblocksize) % cr->nnodes != cr->nodeid)
789 /* Skip all steps assigned to the other MPI ranks */
790 step += (cr->nnodes - 1)*stepblocksize;
794 if (PAR(cr))
796 /* When running in parallel sum the energies over the processes */
797 gmx_sumd(1, &sum_embU, cr);
798 gmx_sumd(nener, sum_UgembU, cr);
801 frame++;
802 V_all += V;
803 VembU_all += V*sum_embU/nsteps;
805 if (fp_tpi)
807 if (bVerbose || frame%10 == 0 || frame < 10)
809 fprintf(stderr, "mu %10.3e <mu> %10.3e\n",
810 -log(sum_embU/nsteps)/beta, -log(VembU_all/V_all)/beta);
813 fprintf(fp_tpi, "%10.3f %12.5e %12.5e %12.5e %12.5e",
815 VembU_all == 0 ? 20/beta : -log(VembU_all/V_all)/beta,
816 sum_embU == 0 ? 20/beta : -log(sum_embU/nsteps)/beta,
817 sum_embU/nsteps, V);
818 for (e = 0; e < nener; e++)
820 fprintf(fp_tpi, " %12.5e", sum_UgembU[e]/nsteps);
822 fprintf(fp_tpi, "\n");
823 fflush(fp_tpi);
826 bNotLastFrame = read_next_frame(oenv, status, &rerun_fr);
827 } /* End of the loop */
828 walltime_accounting_end(walltime_accounting);
830 close_trj(status);
832 if (fp_tpi != NULL)
834 gmx_fio_fclose(fp_tpi);
837 if (fplog != NULL)
839 fprintf(fplog, "\n");
840 fprintf(fplog, " <V> = %12.5e nm^3\n", V_all/frame);
841 fprintf(fplog, " <mu> = %12.5e kJ/mol\n", -log(VembU_all/V_all)/beta);
844 /* Write the Boltzmann factor histogram */
845 if (PAR(cr))
847 /* When running in parallel sum the bins over the processes */
848 i = nbin;
849 global_max(cr, &i);
850 realloc_bins(&bin, &nbin, i);
851 gmx_sumd(nbin, bin, cr);
853 if (MASTER(cr))
855 fp_tpi = xvgropen(opt2fn("-tpid", nfile, fnm),
856 "TPI energy distribution",
857 "\\betaU - log(V/<V>)", "count", oenv);
858 sprintf(str, "number \\betaU > %g: %9.3e", bU_bin_limit, bin[0]);
859 xvgr_subtitle(fp_tpi, str, oenv);
860 xvgr_legend(fp_tpi, 2, (const char **)tpid_leg, oenv);
861 for (i = nbin-1; i > 0; i--)
863 bUlogV = -i/invbinw + bU_logV_bin_limit - refvolshift + log(V_all/frame);
864 fprintf(fp_tpi, "%6.2f %10d %12.5e\n",
865 bUlogV,
866 (int)(bin[i]+0.5),
867 bin[i]*exp(-bUlogV)*V_all/VembU_all);
869 gmx_fio_fclose(fp_tpi);
871 sfree(bin);
873 sfree(sum_UgembU);
875 walltime_accounting_set_nsteps_done(walltime_accounting, frame*inputrec->nsteps);
877 return 0;