Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_sse4_1_single.c
bloba1ed5cb854542def6dd29c6cb01ee2cbb09e47ce
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
51 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse4_1_single
52 * Electrostatics interaction: ReactionField
53 * VdW interaction: CubicSplineTable
54 * Geometry: Particle-Particle
55 * Calculate force/pot: PotentialAndForce
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse4_1_single
59 (t_nblist * gmx_restrict nlist,
60 rvec * gmx_restrict xx,
61 rvec * gmx_restrict ff,
62 t_forcerec * gmx_restrict fr,
63 t_mdatoms * gmx_restrict mdatoms,
64 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65 t_nrnb * gmx_restrict nrnb)
67 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68 * just 0 for non-waters.
69 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70 * jnr indices corresponding to data put in the four positions in the SIMD register.
72 int i_shift_offset,i_coord_offset,outeriter,inneriter;
73 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74 int jnrA,jnrB,jnrC,jnrD;
75 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
78 real rcutoff_scalar;
79 real *shiftvec,*fshift,*x,*f;
80 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81 real scratch[4*DIM];
82 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83 int vdwioffset0;
84 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
89 real *charge;
90 int nvdwtype;
91 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92 int *vdwtype;
93 real *vdwparam;
94 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
95 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
96 __m128i vfitab;
97 __m128i ifour = _mm_set1_epi32(4);
98 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
99 real *vftab;
100 __m128 dummy_mask,cutoff_mask;
101 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102 __m128 one = _mm_set1_ps(1.0);
103 __m128 two = _mm_set1_ps(2.0);
104 x = xx[0];
105 f = ff[0];
107 nri = nlist->nri;
108 iinr = nlist->iinr;
109 jindex = nlist->jindex;
110 jjnr = nlist->jjnr;
111 shiftidx = nlist->shift;
112 gid = nlist->gid;
113 shiftvec = fr->shift_vec[0];
114 fshift = fr->fshift[0];
115 facel = _mm_set1_ps(fr->epsfac);
116 charge = mdatoms->chargeA;
117 krf = _mm_set1_ps(fr->ic->k_rf);
118 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
119 crf = _mm_set1_ps(fr->ic->c_rf);
120 nvdwtype = fr->ntype;
121 vdwparam = fr->nbfp;
122 vdwtype = mdatoms->typeA;
124 vftab = kernel_data->table_vdw->data;
125 vftabscale = _mm_set1_ps(kernel_data->table_vdw->scale);
127 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128 rcutoff_scalar = fr->rcoulomb;
129 rcutoff = _mm_set1_ps(rcutoff_scalar);
130 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
132 /* Avoid stupid compiler warnings */
133 jnrA = jnrB = jnrC = jnrD = 0;
134 j_coord_offsetA = 0;
135 j_coord_offsetB = 0;
136 j_coord_offsetC = 0;
137 j_coord_offsetD = 0;
139 outeriter = 0;
140 inneriter = 0;
142 for(iidx=0;iidx<4*DIM;iidx++)
144 scratch[iidx] = 0.0;
147 /* Start outer loop over neighborlists */
148 for(iidx=0; iidx<nri; iidx++)
150 /* Load shift vector for this list */
151 i_shift_offset = DIM*shiftidx[iidx];
153 /* Load limits for loop over neighbors */
154 j_index_start = jindex[iidx];
155 j_index_end = jindex[iidx+1];
157 /* Get outer coordinate index */
158 inr = iinr[iidx];
159 i_coord_offset = DIM*inr;
161 /* Load i particle coords and add shift vector */
162 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
164 fix0 = _mm_setzero_ps();
165 fiy0 = _mm_setzero_ps();
166 fiz0 = _mm_setzero_ps();
168 /* Load parameters for i particles */
169 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
170 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
172 /* Reset potential sums */
173 velecsum = _mm_setzero_ps();
174 vvdwsum = _mm_setzero_ps();
176 /* Start inner kernel loop */
177 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180 /* Get j neighbor index, and coordinate index */
181 jnrA = jjnr[jidx];
182 jnrB = jjnr[jidx+1];
183 jnrC = jjnr[jidx+2];
184 jnrD = jjnr[jidx+3];
185 j_coord_offsetA = DIM*jnrA;
186 j_coord_offsetB = DIM*jnrB;
187 j_coord_offsetC = DIM*jnrC;
188 j_coord_offsetD = DIM*jnrD;
190 /* load j atom coordinates */
191 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192 x+j_coord_offsetC,x+j_coord_offsetD,
193 &jx0,&jy0,&jz0);
195 /* Calculate displacement vector */
196 dx00 = _mm_sub_ps(ix0,jx0);
197 dy00 = _mm_sub_ps(iy0,jy0);
198 dz00 = _mm_sub_ps(iz0,jz0);
200 /* Calculate squared distance and things based on it */
201 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
203 rinv00 = gmx_mm_invsqrt_ps(rsq00);
205 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
207 /* Load parameters for j particles */
208 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
209 charge+jnrC+0,charge+jnrD+0);
210 vdwjidx0A = 2*vdwtype[jnrA+0];
211 vdwjidx0B = 2*vdwtype[jnrB+0];
212 vdwjidx0C = 2*vdwtype[jnrC+0];
213 vdwjidx0D = 2*vdwtype[jnrD+0];
215 /**************************
216 * CALCULATE INTERACTIONS *
217 **************************/
219 if (gmx_mm_any_lt(rsq00,rcutoff2))
222 r00 = _mm_mul_ps(rsq00,rinv00);
224 /* Compute parameters for interactions between i and j atoms */
225 qq00 = _mm_mul_ps(iq0,jq0);
226 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
227 vdwparam+vdwioffset0+vdwjidx0B,
228 vdwparam+vdwioffset0+vdwjidx0C,
229 vdwparam+vdwioffset0+vdwjidx0D,
230 &c6_00,&c12_00);
232 /* Calculate table index by multiplying r with table scale and truncate to integer */
233 rt = _mm_mul_ps(r00,vftabscale);
234 vfitab = _mm_cvttps_epi32(rt);
235 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
236 vfitab = _mm_slli_epi32(vfitab,3);
238 /* REACTION-FIELD ELECTROSTATICS */
239 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
240 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
242 /* CUBIC SPLINE TABLE DISPERSION */
243 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
244 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
245 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
246 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
247 _MM_TRANSPOSE4_PS(Y,F,G,H);
248 Heps = _mm_mul_ps(vfeps,H);
249 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
250 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
251 vvdw6 = _mm_mul_ps(c6_00,VV);
252 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
253 fvdw6 = _mm_mul_ps(c6_00,FF);
255 /* CUBIC SPLINE TABLE REPULSION */
256 vfitab = _mm_add_epi32(vfitab,ifour);
257 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
258 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
259 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
260 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
261 _MM_TRANSPOSE4_PS(Y,F,G,H);
262 Heps = _mm_mul_ps(vfeps,H);
263 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
264 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
265 vvdw12 = _mm_mul_ps(c12_00,VV);
266 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
267 fvdw12 = _mm_mul_ps(c12_00,FF);
268 vvdw = _mm_add_ps(vvdw12,vvdw6);
269 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
271 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
273 /* Update potential sum for this i atom from the interaction with this j atom. */
274 velec = _mm_and_ps(velec,cutoff_mask);
275 velecsum = _mm_add_ps(velecsum,velec);
276 vvdw = _mm_and_ps(vvdw,cutoff_mask);
277 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
279 fscal = _mm_add_ps(felec,fvdw);
281 fscal = _mm_and_ps(fscal,cutoff_mask);
283 /* Calculate temporary vectorial force */
284 tx = _mm_mul_ps(fscal,dx00);
285 ty = _mm_mul_ps(fscal,dy00);
286 tz = _mm_mul_ps(fscal,dz00);
288 /* Update vectorial force */
289 fix0 = _mm_add_ps(fix0,tx);
290 fiy0 = _mm_add_ps(fiy0,ty);
291 fiz0 = _mm_add_ps(fiz0,tz);
293 fjptrA = f+j_coord_offsetA;
294 fjptrB = f+j_coord_offsetB;
295 fjptrC = f+j_coord_offsetC;
296 fjptrD = f+j_coord_offsetD;
297 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
301 /* Inner loop uses 72 flops */
304 if(jidx<j_index_end)
307 /* Get j neighbor index, and coordinate index */
308 jnrlistA = jjnr[jidx];
309 jnrlistB = jjnr[jidx+1];
310 jnrlistC = jjnr[jidx+2];
311 jnrlistD = jjnr[jidx+3];
312 /* Sign of each element will be negative for non-real atoms.
313 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
314 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
316 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
317 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
318 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
319 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
320 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
321 j_coord_offsetA = DIM*jnrA;
322 j_coord_offsetB = DIM*jnrB;
323 j_coord_offsetC = DIM*jnrC;
324 j_coord_offsetD = DIM*jnrD;
326 /* load j atom coordinates */
327 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
328 x+j_coord_offsetC,x+j_coord_offsetD,
329 &jx0,&jy0,&jz0);
331 /* Calculate displacement vector */
332 dx00 = _mm_sub_ps(ix0,jx0);
333 dy00 = _mm_sub_ps(iy0,jy0);
334 dz00 = _mm_sub_ps(iz0,jz0);
336 /* Calculate squared distance and things based on it */
337 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
339 rinv00 = gmx_mm_invsqrt_ps(rsq00);
341 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
343 /* Load parameters for j particles */
344 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
345 charge+jnrC+0,charge+jnrD+0);
346 vdwjidx0A = 2*vdwtype[jnrA+0];
347 vdwjidx0B = 2*vdwtype[jnrB+0];
348 vdwjidx0C = 2*vdwtype[jnrC+0];
349 vdwjidx0D = 2*vdwtype[jnrD+0];
351 /**************************
352 * CALCULATE INTERACTIONS *
353 **************************/
355 if (gmx_mm_any_lt(rsq00,rcutoff2))
358 r00 = _mm_mul_ps(rsq00,rinv00);
359 r00 = _mm_andnot_ps(dummy_mask,r00);
361 /* Compute parameters for interactions between i and j atoms */
362 qq00 = _mm_mul_ps(iq0,jq0);
363 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
364 vdwparam+vdwioffset0+vdwjidx0B,
365 vdwparam+vdwioffset0+vdwjidx0C,
366 vdwparam+vdwioffset0+vdwjidx0D,
367 &c6_00,&c12_00);
369 /* Calculate table index by multiplying r with table scale and truncate to integer */
370 rt = _mm_mul_ps(r00,vftabscale);
371 vfitab = _mm_cvttps_epi32(rt);
372 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
373 vfitab = _mm_slli_epi32(vfitab,3);
375 /* REACTION-FIELD ELECTROSTATICS */
376 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
377 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
379 /* CUBIC SPLINE TABLE DISPERSION */
380 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
381 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
382 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
383 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
384 _MM_TRANSPOSE4_PS(Y,F,G,H);
385 Heps = _mm_mul_ps(vfeps,H);
386 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
387 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
388 vvdw6 = _mm_mul_ps(c6_00,VV);
389 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
390 fvdw6 = _mm_mul_ps(c6_00,FF);
392 /* CUBIC SPLINE TABLE REPULSION */
393 vfitab = _mm_add_epi32(vfitab,ifour);
394 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
395 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
396 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
397 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
398 _MM_TRANSPOSE4_PS(Y,F,G,H);
399 Heps = _mm_mul_ps(vfeps,H);
400 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
401 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
402 vvdw12 = _mm_mul_ps(c12_00,VV);
403 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
404 fvdw12 = _mm_mul_ps(c12_00,FF);
405 vvdw = _mm_add_ps(vvdw12,vvdw6);
406 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
408 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
410 /* Update potential sum for this i atom from the interaction with this j atom. */
411 velec = _mm_and_ps(velec,cutoff_mask);
412 velec = _mm_andnot_ps(dummy_mask,velec);
413 velecsum = _mm_add_ps(velecsum,velec);
414 vvdw = _mm_and_ps(vvdw,cutoff_mask);
415 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
416 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
418 fscal = _mm_add_ps(felec,fvdw);
420 fscal = _mm_and_ps(fscal,cutoff_mask);
422 fscal = _mm_andnot_ps(dummy_mask,fscal);
424 /* Calculate temporary vectorial force */
425 tx = _mm_mul_ps(fscal,dx00);
426 ty = _mm_mul_ps(fscal,dy00);
427 tz = _mm_mul_ps(fscal,dz00);
429 /* Update vectorial force */
430 fix0 = _mm_add_ps(fix0,tx);
431 fiy0 = _mm_add_ps(fiy0,ty);
432 fiz0 = _mm_add_ps(fiz0,tz);
434 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
435 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
436 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
437 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
438 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
442 /* Inner loop uses 73 flops */
445 /* End of innermost loop */
447 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
448 f+i_coord_offset,fshift+i_shift_offset);
450 ggid = gid[iidx];
451 /* Update potential energies */
452 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
453 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
455 /* Increment number of inner iterations */
456 inneriter += j_index_end - j_index_start;
458 /* Outer loop uses 9 flops */
461 /* Increment number of outer iterations */
462 outeriter += nri;
464 /* Update outer/inner flops */
466 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
469 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse4_1_single
470 * Electrostatics interaction: ReactionField
471 * VdW interaction: CubicSplineTable
472 * Geometry: Particle-Particle
473 * Calculate force/pot: Force
475 void
476 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse4_1_single
477 (t_nblist * gmx_restrict nlist,
478 rvec * gmx_restrict xx,
479 rvec * gmx_restrict ff,
480 t_forcerec * gmx_restrict fr,
481 t_mdatoms * gmx_restrict mdatoms,
482 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
483 t_nrnb * gmx_restrict nrnb)
485 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
486 * just 0 for non-waters.
487 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
488 * jnr indices corresponding to data put in the four positions in the SIMD register.
490 int i_shift_offset,i_coord_offset,outeriter,inneriter;
491 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
492 int jnrA,jnrB,jnrC,jnrD;
493 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
494 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
495 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
496 real rcutoff_scalar;
497 real *shiftvec,*fshift,*x,*f;
498 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
499 real scratch[4*DIM];
500 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
501 int vdwioffset0;
502 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
503 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
504 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
505 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
506 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
507 real *charge;
508 int nvdwtype;
509 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
510 int *vdwtype;
511 real *vdwparam;
512 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
513 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
514 __m128i vfitab;
515 __m128i ifour = _mm_set1_epi32(4);
516 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
517 real *vftab;
518 __m128 dummy_mask,cutoff_mask;
519 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
520 __m128 one = _mm_set1_ps(1.0);
521 __m128 two = _mm_set1_ps(2.0);
522 x = xx[0];
523 f = ff[0];
525 nri = nlist->nri;
526 iinr = nlist->iinr;
527 jindex = nlist->jindex;
528 jjnr = nlist->jjnr;
529 shiftidx = nlist->shift;
530 gid = nlist->gid;
531 shiftvec = fr->shift_vec[0];
532 fshift = fr->fshift[0];
533 facel = _mm_set1_ps(fr->epsfac);
534 charge = mdatoms->chargeA;
535 krf = _mm_set1_ps(fr->ic->k_rf);
536 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
537 crf = _mm_set1_ps(fr->ic->c_rf);
538 nvdwtype = fr->ntype;
539 vdwparam = fr->nbfp;
540 vdwtype = mdatoms->typeA;
542 vftab = kernel_data->table_vdw->data;
543 vftabscale = _mm_set1_ps(kernel_data->table_vdw->scale);
545 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
546 rcutoff_scalar = fr->rcoulomb;
547 rcutoff = _mm_set1_ps(rcutoff_scalar);
548 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
550 /* Avoid stupid compiler warnings */
551 jnrA = jnrB = jnrC = jnrD = 0;
552 j_coord_offsetA = 0;
553 j_coord_offsetB = 0;
554 j_coord_offsetC = 0;
555 j_coord_offsetD = 0;
557 outeriter = 0;
558 inneriter = 0;
560 for(iidx=0;iidx<4*DIM;iidx++)
562 scratch[iidx] = 0.0;
565 /* Start outer loop over neighborlists */
566 for(iidx=0; iidx<nri; iidx++)
568 /* Load shift vector for this list */
569 i_shift_offset = DIM*shiftidx[iidx];
571 /* Load limits for loop over neighbors */
572 j_index_start = jindex[iidx];
573 j_index_end = jindex[iidx+1];
575 /* Get outer coordinate index */
576 inr = iinr[iidx];
577 i_coord_offset = DIM*inr;
579 /* Load i particle coords and add shift vector */
580 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
582 fix0 = _mm_setzero_ps();
583 fiy0 = _mm_setzero_ps();
584 fiz0 = _mm_setzero_ps();
586 /* Load parameters for i particles */
587 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
588 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
590 /* Start inner kernel loop */
591 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
594 /* Get j neighbor index, and coordinate index */
595 jnrA = jjnr[jidx];
596 jnrB = jjnr[jidx+1];
597 jnrC = jjnr[jidx+2];
598 jnrD = jjnr[jidx+3];
599 j_coord_offsetA = DIM*jnrA;
600 j_coord_offsetB = DIM*jnrB;
601 j_coord_offsetC = DIM*jnrC;
602 j_coord_offsetD = DIM*jnrD;
604 /* load j atom coordinates */
605 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
606 x+j_coord_offsetC,x+j_coord_offsetD,
607 &jx0,&jy0,&jz0);
609 /* Calculate displacement vector */
610 dx00 = _mm_sub_ps(ix0,jx0);
611 dy00 = _mm_sub_ps(iy0,jy0);
612 dz00 = _mm_sub_ps(iz0,jz0);
614 /* Calculate squared distance and things based on it */
615 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
617 rinv00 = gmx_mm_invsqrt_ps(rsq00);
619 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
621 /* Load parameters for j particles */
622 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
623 charge+jnrC+0,charge+jnrD+0);
624 vdwjidx0A = 2*vdwtype[jnrA+0];
625 vdwjidx0B = 2*vdwtype[jnrB+0];
626 vdwjidx0C = 2*vdwtype[jnrC+0];
627 vdwjidx0D = 2*vdwtype[jnrD+0];
629 /**************************
630 * CALCULATE INTERACTIONS *
631 **************************/
633 if (gmx_mm_any_lt(rsq00,rcutoff2))
636 r00 = _mm_mul_ps(rsq00,rinv00);
638 /* Compute parameters for interactions between i and j atoms */
639 qq00 = _mm_mul_ps(iq0,jq0);
640 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
641 vdwparam+vdwioffset0+vdwjidx0B,
642 vdwparam+vdwioffset0+vdwjidx0C,
643 vdwparam+vdwioffset0+vdwjidx0D,
644 &c6_00,&c12_00);
646 /* Calculate table index by multiplying r with table scale and truncate to integer */
647 rt = _mm_mul_ps(r00,vftabscale);
648 vfitab = _mm_cvttps_epi32(rt);
649 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
650 vfitab = _mm_slli_epi32(vfitab,3);
652 /* REACTION-FIELD ELECTROSTATICS */
653 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
655 /* CUBIC SPLINE TABLE DISPERSION */
656 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
657 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
658 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
659 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
660 _MM_TRANSPOSE4_PS(Y,F,G,H);
661 Heps = _mm_mul_ps(vfeps,H);
662 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
663 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
664 fvdw6 = _mm_mul_ps(c6_00,FF);
666 /* CUBIC SPLINE TABLE REPULSION */
667 vfitab = _mm_add_epi32(vfitab,ifour);
668 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
669 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
670 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
671 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
672 _MM_TRANSPOSE4_PS(Y,F,G,H);
673 Heps = _mm_mul_ps(vfeps,H);
674 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
675 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
676 fvdw12 = _mm_mul_ps(c12_00,FF);
677 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
679 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
681 fscal = _mm_add_ps(felec,fvdw);
683 fscal = _mm_and_ps(fscal,cutoff_mask);
685 /* Calculate temporary vectorial force */
686 tx = _mm_mul_ps(fscal,dx00);
687 ty = _mm_mul_ps(fscal,dy00);
688 tz = _mm_mul_ps(fscal,dz00);
690 /* Update vectorial force */
691 fix0 = _mm_add_ps(fix0,tx);
692 fiy0 = _mm_add_ps(fiy0,ty);
693 fiz0 = _mm_add_ps(fiz0,tz);
695 fjptrA = f+j_coord_offsetA;
696 fjptrB = f+j_coord_offsetB;
697 fjptrC = f+j_coord_offsetC;
698 fjptrD = f+j_coord_offsetD;
699 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
703 /* Inner loop uses 57 flops */
706 if(jidx<j_index_end)
709 /* Get j neighbor index, and coordinate index */
710 jnrlistA = jjnr[jidx];
711 jnrlistB = jjnr[jidx+1];
712 jnrlistC = jjnr[jidx+2];
713 jnrlistD = jjnr[jidx+3];
714 /* Sign of each element will be negative for non-real atoms.
715 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
716 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
718 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
719 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
720 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
721 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
722 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
723 j_coord_offsetA = DIM*jnrA;
724 j_coord_offsetB = DIM*jnrB;
725 j_coord_offsetC = DIM*jnrC;
726 j_coord_offsetD = DIM*jnrD;
728 /* load j atom coordinates */
729 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
730 x+j_coord_offsetC,x+j_coord_offsetD,
731 &jx0,&jy0,&jz0);
733 /* Calculate displacement vector */
734 dx00 = _mm_sub_ps(ix0,jx0);
735 dy00 = _mm_sub_ps(iy0,jy0);
736 dz00 = _mm_sub_ps(iz0,jz0);
738 /* Calculate squared distance and things based on it */
739 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
741 rinv00 = gmx_mm_invsqrt_ps(rsq00);
743 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
745 /* Load parameters for j particles */
746 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
747 charge+jnrC+0,charge+jnrD+0);
748 vdwjidx0A = 2*vdwtype[jnrA+0];
749 vdwjidx0B = 2*vdwtype[jnrB+0];
750 vdwjidx0C = 2*vdwtype[jnrC+0];
751 vdwjidx0D = 2*vdwtype[jnrD+0];
753 /**************************
754 * CALCULATE INTERACTIONS *
755 **************************/
757 if (gmx_mm_any_lt(rsq00,rcutoff2))
760 r00 = _mm_mul_ps(rsq00,rinv00);
761 r00 = _mm_andnot_ps(dummy_mask,r00);
763 /* Compute parameters for interactions between i and j atoms */
764 qq00 = _mm_mul_ps(iq0,jq0);
765 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
766 vdwparam+vdwioffset0+vdwjidx0B,
767 vdwparam+vdwioffset0+vdwjidx0C,
768 vdwparam+vdwioffset0+vdwjidx0D,
769 &c6_00,&c12_00);
771 /* Calculate table index by multiplying r with table scale and truncate to integer */
772 rt = _mm_mul_ps(r00,vftabscale);
773 vfitab = _mm_cvttps_epi32(rt);
774 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
775 vfitab = _mm_slli_epi32(vfitab,3);
777 /* REACTION-FIELD ELECTROSTATICS */
778 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
780 /* CUBIC SPLINE TABLE DISPERSION */
781 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
782 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
783 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
784 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
785 _MM_TRANSPOSE4_PS(Y,F,G,H);
786 Heps = _mm_mul_ps(vfeps,H);
787 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
788 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
789 fvdw6 = _mm_mul_ps(c6_00,FF);
791 /* CUBIC SPLINE TABLE REPULSION */
792 vfitab = _mm_add_epi32(vfitab,ifour);
793 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
794 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
795 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
796 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
797 _MM_TRANSPOSE4_PS(Y,F,G,H);
798 Heps = _mm_mul_ps(vfeps,H);
799 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
800 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
801 fvdw12 = _mm_mul_ps(c12_00,FF);
802 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
804 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
806 fscal = _mm_add_ps(felec,fvdw);
808 fscal = _mm_and_ps(fscal,cutoff_mask);
810 fscal = _mm_andnot_ps(dummy_mask,fscal);
812 /* Calculate temporary vectorial force */
813 tx = _mm_mul_ps(fscal,dx00);
814 ty = _mm_mul_ps(fscal,dy00);
815 tz = _mm_mul_ps(fscal,dz00);
817 /* Update vectorial force */
818 fix0 = _mm_add_ps(fix0,tx);
819 fiy0 = _mm_add_ps(fiy0,ty);
820 fiz0 = _mm_add_ps(fiz0,tz);
822 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
823 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
824 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
825 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
826 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
830 /* Inner loop uses 58 flops */
833 /* End of innermost loop */
835 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
836 f+i_coord_offset,fshift+i_shift_offset);
838 /* Increment number of inner iterations */
839 inneriter += j_index_end - j_index_start;
841 /* Outer loop uses 7 flops */
844 /* Increment number of outer iterations */
845 outeriter += nri;
847 /* Update outer/inner flops */
849 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);