Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_sse4_1_single.c
blobe2581d69bfcc8ffae95980a7cdf1d2ca83a1a222
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
51 * Gromacs nonbonded kernel: nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse4_1_single
52 * Electrostatics interaction: Ewald
53 * VdW interaction: LennardJones
54 * Geometry: Particle-Particle
55 * Calculate force/pot: PotentialAndForce
57 void
58 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse4_1_single
59 (t_nblist * gmx_restrict nlist,
60 rvec * gmx_restrict xx,
61 rvec * gmx_restrict ff,
62 t_forcerec * gmx_restrict fr,
63 t_mdatoms * gmx_restrict mdatoms,
64 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65 t_nrnb * gmx_restrict nrnb)
67 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68 * just 0 for non-waters.
69 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70 * jnr indices corresponding to data put in the four positions in the SIMD register.
72 int i_shift_offset,i_coord_offset,outeriter,inneriter;
73 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74 int jnrA,jnrB,jnrC,jnrD;
75 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
78 real rcutoff_scalar;
79 real *shiftvec,*fshift,*x,*f;
80 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81 real scratch[4*DIM];
82 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83 int vdwioffset0;
84 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
89 real *charge;
90 int nvdwtype;
91 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92 int *vdwtype;
93 real *vdwparam;
94 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
95 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
96 __m128i ewitab;
97 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98 real *ewtab;
99 __m128 rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
100 real rswitch_scalar,d_scalar;
101 __m128 dummy_mask,cutoff_mask;
102 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103 __m128 one = _mm_set1_ps(1.0);
104 __m128 two = _mm_set1_ps(2.0);
105 x = xx[0];
106 f = ff[0];
108 nri = nlist->nri;
109 iinr = nlist->iinr;
110 jindex = nlist->jindex;
111 jjnr = nlist->jjnr;
112 shiftidx = nlist->shift;
113 gid = nlist->gid;
114 shiftvec = fr->shift_vec[0];
115 fshift = fr->fshift[0];
116 facel = _mm_set1_ps(fr->epsfac);
117 charge = mdatoms->chargeA;
118 nvdwtype = fr->ntype;
119 vdwparam = fr->nbfp;
120 vdwtype = mdatoms->typeA;
122 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
123 ewtab = fr->ic->tabq_coul_FDV0;
124 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
125 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
127 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128 rcutoff_scalar = fr->rcoulomb;
129 rcutoff = _mm_set1_ps(rcutoff_scalar);
130 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
132 rswitch_scalar = fr->rcoulomb_switch;
133 rswitch = _mm_set1_ps(rswitch_scalar);
134 /* Setup switch parameters */
135 d_scalar = rcutoff_scalar-rswitch_scalar;
136 d = _mm_set1_ps(d_scalar);
137 swV3 = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
138 swV4 = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139 swV5 = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140 swF2 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
141 swF3 = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
142 swF4 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
144 /* Avoid stupid compiler warnings */
145 jnrA = jnrB = jnrC = jnrD = 0;
146 j_coord_offsetA = 0;
147 j_coord_offsetB = 0;
148 j_coord_offsetC = 0;
149 j_coord_offsetD = 0;
151 outeriter = 0;
152 inneriter = 0;
154 for(iidx=0;iidx<4*DIM;iidx++)
156 scratch[iidx] = 0.0;
159 /* Start outer loop over neighborlists */
160 for(iidx=0; iidx<nri; iidx++)
162 /* Load shift vector for this list */
163 i_shift_offset = DIM*shiftidx[iidx];
165 /* Load limits for loop over neighbors */
166 j_index_start = jindex[iidx];
167 j_index_end = jindex[iidx+1];
169 /* Get outer coordinate index */
170 inr = iinr[iidx];
171 i_coord_offset = DIM*inr;
173 /* Load i particle coords and add shift vector */
174 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
176 fix0 = _mm_setzero_ps();
177 fiy0 = _mm_setzero_ps();
178 fiz0 = _mm_setzero_ps();
180 /* Load parameters for i particles */
181 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
182 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
184 /* Reset potential sums */
185 velecsum = _mm_setzero_ps();
186 vvdwsum = _mm_setzero_ps();
188 /* Start inner kernel loop */
189 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192 /* Get j neighbor index, and coordinate index */
193 jnrA = jjnr[jidx];
194 jnrB = jjnr[jidx+1];
195 jnrC = jjnr[jidx+2];
196 jnrD = jjnr[jidx+3];
197 j_coord_offsetA = DIM*jnrA;
198 j_coord_offsetB = DIM*jnrB;
199 j_coord_offsetC = DIM*jnrC;
200 j_coord_offsetD = DIM*jnrD;
202 /* load j atom coordinates */
203 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
204 x+j_coord_offsetC,x+j_coord_offsetD,
205 &jx0,&jy0,&jz0);
207 /* Calculate displacement vector */
208 dx00 = _mm_sub_ps(ix0,jx0);
209 dy00 = _mm_sub_ps(iy0,jy0);
210 dz00 = _mm_sub_ps(iz0,jz0);
212 /* Calculate squared distance and things based on it */
213 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
215 rinv00 = gmx_mm_invsqrt_ps(rsq00);
217 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
219 /* Load parameters for j particles */
220 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
221 charge+jnrC+0,charge+jnrD+0);
222 vdwjidx0A = 2*vdwtype[jnrA+0];
223 vdwjidx0B = 2*vdwtype[jnrB+0];
224 vdwjidx0C = 2*vdwtype[jnrC+0];
225 vdwjidx0D = 2*vdwtype[jnrD+0];
227 /**************************
228 * CALCULATE INTERACTIONS *
229 **************************/
231 if (gmx_mm_any_lt(rsq00,rcutoff2))
234 r00 = _mm_mul_ps(rsq00,rinv00);
236 /* Compute parameters for interactions between i and j atoms */
237 qq00 = _mm_mul_ps(iq0,jq0);
238 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
239 vdwparam+vdwioffset0+vdwjidx0B,
240 vdwparam+vdwioffset0+vdwjidx0C,
241 vdwparam+vdwioffset0+vdwjidx0D,
242 &c6_00,&c12_00);
244 /* EWALD ELECTROSTATICS */
246 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
247 ewrt = _mm_mul_ps(r00,ewtabscale);
248 ewitab = _mm_cvttps_epi32(ewrt);
249 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
250 ewitab = _mm_slli_epi32(ewitab,2);
251 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
252 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
253 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
254 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
255 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
256 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
257 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
258 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
259 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
261 /* LENNARD-JONES DISPERSION/REPULSION */
263 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
264 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
265 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
266 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
267 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
269 d = _mm_sub_ps(r00,rswitch);
270 d = _mm_max_ps(d,_mm_setzero_ps());
271 d2 = _mm_mul_ps(d,d);
272 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
274 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
276 /* Evaluate switch function */
277 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
278 felec = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
279 fvdw = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
280 velec = _mm_mul_ps(velec,sw);
281 vvdw = _mm_mul_ps(vvdw,sw);
282 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
284 /* Update potential sum for this i atom from the interaction with this j atom. */
285 velec = _mm_and_ps(velec,cutoff_mask);
286 velecsum = _mm_add_ps(velecsum,velec);
287 vvdw = _mm_and_ps(vvdw,cutoff_mask);
288 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
290 fscal = _mm_add_ps(felec,fvdw);
292 fscal = _mm_and_ps(fscal,cutoff_mask);
294 /* Calculate temporary vectorial force */
295 tx = _mm_mul_ps(fscal,dx00);
296 ty = _mm_mul_ps(fscal,dy00);
297 tz = _mm_mul_ps(fscal,dz00);
299 /* Update vectorial force */
300 fix0 = _mm_add_ps(fix0,tx);
301 fiy0 = _mm_add_ps(fiy0,ty);
302 fiz0 = _mm_add_ps(fiz0,tz);
304 fjptrA = f+j_coord_offsetA;
305 fjptrB = f+j_coord_offsetB;
306 fjptrC = f+j_coord_offsetC;
307 fjptrD = f+j_coord_offsetD;
308 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
312 /* Inner loop uses 83 flops */
315 if(jidx<j_index_end)
318 /* Get j neighbor index, and coordinate index */
319 jnrlistA = jjnr[jidx];
320 jnrlistB = jjnr[jidx+1];
321 jnrlistC = jjnr[jidx+2];
322 jnrlistD = jjnr[jidx+3];
323 /* Sign of each element will be negative for non-real atoms.
324 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
325 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
327 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
328 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
329 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
330 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
331 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
332 j_coord_offsetA = DIM*jnrA;
333 j_coord_offsetB = DIM*jnrB;
334 j_coord_offsetC = DIM*jnrC;
335 j_coord_offsetD = DIM*jnrD;
337 /* load j atom coordinates */
338 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
339 x+j_coord_offsetC,x+j_coord_offsetD,
340 &jx0,&jy0,&jz0);
342 /* Calculate displacement vector */
343 dx00 = _mm_sub_ps(ix0,jx0);
344 dy00 = _mm_sub_ps(iy0,jy0);
345 dz00 = _mm_sub_ps(iz0,jz0);
347 /* Calculate squared distance and things based on it */
348 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
350 rinv00 = gmx_mm_invsqrt_ps(rsq00);
352 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
354 /* Load parameters for j particles */
355 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
356 charge+jnrC+0,charge+jnrD+0);
357 vdwjidx0A = 2*vdwtype[jnrA+0];
358 vdwjidx0B = 2*vdwtype[jnrB+0];
359 vdwjidx0C = 2*vdwtype[jnrC+0];
360 vdwjidx0D = 2*vdwtype[jnrD+0];
362 /**************************
363 * CALCULATE INTERACTIONS *
364 **************************/
366 if (gmx_mm_any_lt(rsq00,rcutoff2))
369 r00 = _mm_mul_ps(rsq00,rinv00);
370 r00 = _mm_andnot_ps(dummy_mask,r00);
372 /* Compute parameters for interactions between i and j atoms */
373 qq00 = _mm_mul_ps(iq0,jq0);
374 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
375 vdwparam+vdwioffset0+vdwjidx0B,
376 vdwparam+vdwioffset0+vdwjidx0C,
377 vdwparam+vdwioffset0+vdwjidx0D,
378 &c6_00,&c12_00);
380 /* EWALD ELECTROSTATICS */
382 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
383 ewrt = _mm_mul_ps(r00,ewtabscale);
384 ewitab = _mm_cvttps_epi32(ewrt);
385 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
386 ewitab = _mm_slli_epi32(ewitab,2);
387 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
388 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
389 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
390 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
391 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
392 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
393 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
394 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
395 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
397 /* LENNARD-JONES DISPERSION/REPULSION */
399 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
400 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
401 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
402 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
403 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
405 d = _mm_sub_ps(r00,rswitch);
406 d = _mm_max_ps(d,_mm_setzero_ps());
407 d2 = _mm_mul_ps(d,d);
408 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
410 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
412 /* Evaluate switch function */
413 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
414 felec = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
415 fvdw = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
416 velec = _mm_mul_ps(velec,sw);
417 vvdw = _mm_mul_ps(vvdw,sw);
418 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
420 /* Update potential sum for this i atom from the interaction with this j atom. */
421 velec = _mm_and_ps(velec,cutoff_mask);
422 velec = _mm_andnot_ps(dummy_mask,velec);
423 velecsum = _mm_add_ps(velecsum,velec);
424 vvdw = _mm_and_ps(vvdw,cutoff_mask);
425 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
426 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
428 fscal = _mm_add_ps(felec,fvdw);
430 fscal = _mm_and_ps(fscal,cutoff_mask);
432 fscal = _mm_andnot_ps(dummy_mask,fscal);
434 /* Calculate temporary vectorial force */
435 tx = _mm_mul_ps(fscal,dx00);
436 ty = _mm_mul_ps(fscal,dy00);
437 tz = _mm_mul_ps(fscal,dz00);
439 /* Update vectorial force */
440 fix0 = _mm_add_ps(fix0,tx);
441 fiy0 = _mm_add_ps(fiy0,ty);
442 fiz0 = _mm_add_ps(fiz0,tz);
444 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
445 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
446 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
447 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
448 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
452 /* Inner loop uses 84 flops */
455 /* End of innermost loop */
457 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
458 f+i_coord_offset,fshift+i_shift_offset);
460 ggid = gid[iidx];
461 /* Update potential energies */
462 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
463 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
465 /* Increment number of inner iterations */
466 inneriter += j_index_end - j_index_start;
468 /* Outer loop uses 9 flops */
471 /* Increment number of outer iterations */
472 outeriter += nri;
474 /* Update outer/inner flops */
476 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*84);
479 * Gromacs nonbonded kernel: nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse4_1_single
480 * Electrostatics interaction: Ewald
481 * VdW interaction: LennardJones
482 * Geometry: Particle-Particle
483 * Calculate force/pot: Force
485 void
486 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse4_1_single
487 (t_nblist * gmx_restrict nlist,
488 rvec * gmx_restrict xx,
489 rvec * gmx_restrict ff,
490 t_forcerec * gmx_restrict fr,
491 t_mdatoms * gmx_restrict mdatoms,
492 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
493 t_nrnb * gmx_restrict nrnb)
495 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
496 * just 0 for non-waters.
497 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
498 * jnr indices corresponding to data put in the four positions in the SIMD register.
500 int i_shift_offset,i_coord_offset,outeriter,inneriter;
501 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
502 int jnrA,jnrB,jnrC,jnrD;
503 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
504 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
505 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
506 real rcutoff_scalar;
507 real *shiftvec,*fshift,*x,*f;
508 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
509 real scratch[4*DIM];
510 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
511 int vdwioffset0;
512 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
513 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
514 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
515 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
516 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
517 real *charge;
518 int nvdwtype;
519 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
520 int *vdwtype;
521 real *vdwparam;
522 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
523 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
524 __m128i ewitab;
525 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
526 real *ewtab;
527 __m128 rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
528 real rswitch_scalar,d_scalar;
529 __m128 dummy_mask,cutoff_mask;
530 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
531 __m128 one = _mm_set1_ps(1.0);
532 __m128 two = _mm_set1_ps(2.0);
533 x = xx[0];
534 f = ff[0];
536 nri = nlist->nri;
537 iinr = nlist->iinr;
538 jindex = nlist->jindex;
539 jjnr = nlist->jjnr;
540 shiftidx = nlist->shift;
541 gid = nlist->gid;
542 shiftvec = fr->shift_vec[0];
543 fshift = fr->fshift[0];
544 facel = _mm_set1_ps(fr->epsfac);
545 charge = mdatoms->chargeA;
546 nvdwtype = fr->ntype;
547 vdwparam = fr->nbfp;
548 vdwtype = mdatoms->typeA;
550 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
551 ewtab = fr->ic->tabq_coul_FDV0;
552 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
553 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
555 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
556 rcutoff_scalar = fr->rcoulomb;
557 rcutoff = _mm_set1_ps(rcutoff_scalar);
558 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
560 rswitch_scalar = fr->rcoulomb_switch;
561 rswitch = _mm_set1_ps(rswitch_scalar);
562 /* Setup switch parameters */
563 d_scalar = rcutoff_scalar-rswitch_scalar;
564 d = _mm_set1_ps(d_scalar);
565 swV3 = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
566 swV4 = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
567 swV5 = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
568 swF2 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
569 swF3 = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
570 swF4 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
572 /* Avoid stupid compiler warnings */
573 jnrA = jnrB = jnrC = jnrD = 0;
574 j_coord_offsetA = 0;
575 j_coord_offsetB = 0;
576 j_coord_offsetC = 0;
577 j_coord_offsetD = 0;
579 outeriter = 0;
580 inneriter = 0;
582 for(iidx=0;iidx<4*DIM;iidx++)
584 scratch[iidx] = 0.0;
587 /* Start outer loop over neighborlists */
588 for(iidx=0; iidx<nri; iidx++)
590 /* Load shift vector for this list */
591 i_shift_offset = DIM*shiftidx[iidx];
593 /* Load limits for loop over neighbors */
594 j_index_start = jindex[iidx];
595 j_index_end = jindex[iidx+1];
597 /* Get outer coordinate index */
598 inr = iinr[iidx];
599 i_coord_offset = DIM*inr;
601 /* Load i particle coords and add shift vector */
602 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
604 fix0 = _mm_setzero_ps();
605 fiy0 = _mm_setzero_ps();
606 fiz0 = _mm_setzero_ps();
608 /* Load parameters for i particles */
609 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
610 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
612 /* Start inner kernel loop */
613 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
616 /* Get j neighbor index, and coordinate index */
617 jnrA = jjnr[jidx];
618 jnrB = jjnr[jidx+1];
619 jnrC = jjnr[jidx+2];
620 jnrD = jjnr[jidx+3];
621 j_coord_offsetA = DIM*jnrA;
622 j_coord_offsetB = DIM*jnrB;
623 j_coord_offsetC = DIM*jnrC;
624 j_coord_offsetD = DIM*jnrD;
626 /* load j atom coordinates */
627 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
628 x+j_coord_offsetC,x+j_coord_offsetD,
629 &jx0,&jy0,&jz0);
631 /* Calculate displacement vector */
632 dx00 = _mm_sub_ps(ix0,jx0);
633 dy00 = _mm_sub_ps(iy0,jy0);
634 dz00 = _mm_sub_ps(iz0,jz0);
636 /* Calculate squared distance and things based on it */
637 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
639 rinv00 = gmx_mm_invsqrt_ps(rsq00);
641 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
643 /* Load parameters for j particles */
644 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
645 charge+jnrC+0,charge+jnrD+0);
646 vdwjidx0A = 2*vdwtype[jnrA+0];
647 vdwjidx0B = 2*vdwtype[jnrB+0];
648 vdwjidx0C = 2*vdwtype[jnrC+0];
649 vdwjidx0D = 2*vdwtype[jnrD+0];
651 /**************************
652 * CALCULATE INTERACTIONS *
653 **************************/
655 if (gmx_mm_any_lt(rsq00,rcutoff2))
658 r00 = _mm_mul_ps(rsq00,rinv00);
660 /* Compute parameters for interactions between i and j atoms */
661 qq00 = _mm_mul_ps(iq0,jq0);
662 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
663 vdwparam+vdwioffset0+vdwjidx0B,
664 vdwparam+vdwioffset0+vdwjidx0C,
665 vdwparam+vdwioffset0+vdwjidx0D,
666 &c6_00,&c12_00);
668 /* EWALD ELECTROSTATICS */
670 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
671 ewrt = _mm_mul_ps(r00,ewtabscale);
672 ewitab = _mm_cvttps_epi32(ewrt);
673 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
674 ewitab = _mm_slli_epi32(ewitab,2);
675 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
676 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
677 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
678 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
679 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
680 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
681 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
682 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
683 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
685 /* LENNARD-JONES DISPERSION/REPULSION */
687 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
688 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
689 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
690 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
691 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
693 d = _mm_sub_ps(r00,rswitch);
694 d = _mm_max_ps(d,_mm_setzero_ps());
695 d2 = _mm_mul_ps(d,d);
696 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
698 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
700 /* Evaluate switch function */
701 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
702 felec = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
703 fvdw = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
704 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
706 fscal = _mm_add_ps(felec,fvdw);
708 fscal = _mm_and_ps(fscal,cutoff_mask);
710 /* Calculate temporary vectorial force */
711 tx = _mm_mul_ps(fscal,dx00);
712 ty = _mm_mul_ps(fscal,dy00);
713 tz = _mm_mul_ps(fscal,dz00);
715 /* Update vectorial force */
716 fix0 = _mm_add_ps(fix0,tx);
717 fiy0 = _mm_add_ps(fiy0,ty);
718 fiz0 = _mm_add_ps(fiz0,tz);
720 fjptrA = f+j_coord_offsetA;
721 fjptrB = f+j_coord_offsetB;
722 fjptrC = f+j_coord_offsetC;
723 fjptrD = f+j_coord_offsetD;
724 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
728 /* Inner loop uses 77 flops */
731 if(jidx<j_index_end)
734 /* Get j neighbor index, and coordinate index */
735 jnrlistA = jjnr[jidx];
736 jnrlistB = jjnr[jidx+1];
737 jnrlistC = jjnr[jidx+2];
738 jnrlistD = jjnr[jidx+3];
739 /* Sign of each element will be negative for non-real atoms.
740 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
741 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
743 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
744 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
745 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
746 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
747 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
748 j_coord_offsetA = DIM*jnrA;
749 j_coord_offsetB = DIM*jnrB;
750 j_coord_offsetC = DIM*jnrC;
751 j_coord_offsetD = DIM*jnrD;
753 /* load j atom coordinates */
754 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
755 x+j_coord_offsetC,x+j_coord_offsetD,
756 &jx0,&jy0,&jz0);
758 /* Calculate displacement vector */
759 dx00 = _mm_sub_ps(ix0,jx0);
760 dy00 = _mm_sub_ps(iy0,jy0);
761 dz00 = _mm_sub_ps(iz0,jz0);
763 /* Calculate squared distance and things based on it */
764 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
766 rinv00 = gmx_mm_invsqrt_ps(rsq00);
768 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
770 /* Load parameters for j particles */
771 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
772 charge+jnrC+0,charge+jnrD+0);
773 vdwjidx0A = 2*vdwtype[jnrA+0];
774 vdwjidx0B = 2*vdwtype[jnrB+0];
775 vdwjidx0C = 2*vdwtype[jnrC+0];
776 vdwjidx0D = 2*vdwtype[jnrD+0];
778 /**************************
779 * CALCULATE INTERACTIONS *
780 **************************/
782 if (gmx_mm_any_lt(rsq00,rcutoff2))
785 r00 = _mm_mul_ps(rsq00,rinv00);
786 r00 = _mm_andnot_ps(dummy_mask,r00);
788 /* Compute parameters for interactions between i and j atoms */
789 qq00 = _mm_mul_ps(iq0,jq0);
790 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
791 vdwparam+vdwioffset0+vdwjidx0B,
792 vdwparam+vdwioffset0+vdwjidx0C,
793 vdwparam+vdwioffset0+vdwjidx0D,
794 &c6_00,&c12_00);
796 /* EWALD ELECTROSTATICS */
798 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
799 ewrt = _mm_mul_ps(r00,ewtabscale);
800 ewitab = _mm_cvttps_epi32(ewrt);
801 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
802 ewitab = _mm_slli_epi32(ewitab,2);
803 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
804 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
805 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
806 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
807 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
808 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
809 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
810 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
811 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
813 /* LENNARD-JONES DISPERSION/REPULSION */
815 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
816 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
817 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
818 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
819 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
821 d = _mm_sub_ps(r00,rswitch);
822 d = _mm_max_ps(d,_mm_setzero_ps());
823 d2 = _mm_mul_ps(d,d);
824 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
826 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
828 /* Evaluate switch function */
829 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
830 felec = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
831 fvdw = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
832 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
834 fscal = _mm_add_ps(felec,fvdw);
836 fscal = _mm_and_ps(fscal,cutoff_mask);
838 fscal = _mm_andnot_ps(dummy_mask,fscal);
840 /* Calculate temporary vectorial force */
841 tx = _mm_mul_ps(fscal,dx00);
842 ty = _mm_mul_ps(fscal,dy00);
843 tz = _mm_mul_ps(fscal,dz00);
845 /* Update vectorial force */
846 fix0 = _mm_add_ps(fix0,tx);
847 fiy0 = _mm_add_ps(fiy0,ty);
848 fiz0 = _mm_add_ps(fiz0,tz);
850 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
851 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
852 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
853 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
854 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
858 /* Inner loop uses 78 flops */
861 /* End of innermost loop */
863 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
864 f+i_coord_offset,fshift+i_shift_offset);
866 /* Increment number of inner iterations */
867 inneriter += j_index_end - j_index_start;
869 /* Outer loop uses 7 flops */
872 /* Increment number of outer iterations */
873 outeriter += nri;
875 /* Update outer/inner flops */
877 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*78);