Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_sse4_1_single.c
blobefa6ecac1147f183b9dfc299d8078ba4be587329
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
51 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sse4_1_single
52 * Electrostatics interaction: Ewald
53 * VdW interaction: LennardJones
54 * Geometry: Particle-Particle
55 * Calculate force/pot: PotentialAndForce
57 void
58 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sse4_1_single
59 (t_nblist * gmx_restrict nlist,
60 rvec * gmx_restrict xx,
61 rvec * gmx_restrict ff,
62 t_forcerec * gmx_restrict fr,
63 t_mdatoms * gmx_restrict mdatoms,
64 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65 t_nrnb * gmx_restrict nrnb)
67 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68 * just 0 for non-waters.
69 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70 * jnr indices corresponding to data put in the four positions in the SIMD register.
72 int i_shift_offset,i_coord_offset,outeriter,inneriter;
73 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74 int jnrA,jnrB,jnrC,jnrD;
75 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
78 real rcutoff_scalar;
79 real *shiftvec,*fshift,*x,*f;
80 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81 real scratch[4*DIM];
82 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83 int vdwioffset0;
84 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
89 real *charge;
90 int nvdwtype;
91 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92 int *vdwtype;
93 real *vdwparam;
94 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
95 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
96 __m128i ewitab;
97 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98 real *ewtab;
99 __m128 dummy_mask,cutoff_mask;
100 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101 __m128 one = _mm_set1_ps(1.0);
102 __m128 two = _mm_set1_ps(2.0);
103 x = xx[0];
104 f = ff[0];
106 nri = nlist->nri;
107 iinr = nlist->iinr;
108 jindex = nlist->jindex;
109 jjnr = nlist->jjnr;
110 shiftidx = nlist->shift;
111 gid = nlist->gid;
112 shiftvec = fr->shift_vec[0];
113 fshift = fr->fshift[0];
114 facel = _mm_set1_ps(fr->epsfac);
115 charge = mdatoms->chargeA;
116 nvdwtype = fr->ntype;
117 vdwparam = fr->nbfp;
118 vdwtype = mdatoms->typeA;
120 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
121 ewtab = fr->ic->tabq_coul_FDV0;
122 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
123 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
125 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
126 rcutoff_scalar = fr->rcoulomb;
127 rcutoff = _mm_set1_ps(rcutoff_scalar);
128 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
130 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
131 rvdw = _mm_set1_ps(fr->rvdw);
133 /* Avoid stupid compiler warnings */
134 jnrA = jnrB = jnrC = jnrD = 0;
135 j_coord_offsetA = 0;
136 j_coord_offsetB = 0;
137 j_coord_offsetC = 0;
138 j_coord_offsetD = 0;
140 outeriter = 0;
141 inneriter = 0;
143 for(iidx=0;iidx<4*DIM;iidx++)
145 scratch[iidx] = 0.0;
148 /* Start outer loop over neighborlists */
149 for(iidx=0; iidx<nri; iidx++)
151 /* Load shift vector for this list */
152 i_shift_offset = DIM*shiftidx[iidx];
154 /* Load limits for loop over neighbors */
155 j_index_start = jindex[iidx];
156 j_index_end = jindex[iidx+1];
158 /* Get outer coordinate index */
159 inr = iinr[iidx];
160 i_coord_offset = DIM*inr;
162 /* Load i particle coords and add shift vector */
163 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165 fix0 = _mm_setzero_ps();
166 fiy0 = _mm_setzero_ps();
167 fiz0 = _mm_setzero_ps();
169 /* Load parameters for i particles */
170 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
171 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
173 /* Reset potential sums */
174 velecsum = _mm_setzero_ps();
175 vvdwsum = _mm_setzero_ps();
177 /* Start inner kernel loop */
178 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
181 /* Get j neighbor index, and coordinate index */
182 jnrA = jjnr[jidx];
183 jnrB = jjnr[jidx+1];
184 jnrC = jjnr[jidx+2];
185 jnrD = jjnr[jidx+3];
186 j_coord_offsetA = DIM*jnrA;
187 j_coord_offsetB = DIM*jnrB;
188 j_coord_offsetC = DIM*jnrC;
189 j_coord_offsetD = DIM*jnrD;
191 /* load j atom coordinates */
192 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
193 x+j_coord_offsetC,x+j_coord_offsetD,
194 &jx0,&jy0,&jz0);
196 /* Calculate displacement vector */
197 dx00 = _mm_sub_ps(ix0,jx0);
198 dy00 = _mm_sub_ps(iy0,jy0);
199 dz00 = _mm_sub_ps(iz0,jz0);
201 /* Calculate squared distance and things based on it */
202 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
204 rinv00 = gmx_mm_invsqrt_ps(rsq00);
206 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
208 /* Load parameters for j particles */
209 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
210 charge+jnrC+0,charge+jnrD+0);
211 vdwjidx0A = 2*vdwtype[jnrA+0];
212 vdwjidx0B = 2*vdwtype[jnrB+0];
213 vdwjidx0C = 2*vdwtype[jnrC+0];
214 vdwjidx0D = 2*vdwtype[jnrD+0];
216 /**************************
217 * CALCULATE INTERACTIONS *
218 **************************/
220 if (gmx_mm_any_lt(rsq00,rcutoff2))
223 r00 = _mm_mul_ps(rsq00,rinv00);
225 /* Compute parameters for interactions between i and j atoms */
226 qq00 = _mm_mul_ps(iq0,jq0);
227 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
228 vdwparam+vdwioffset0+vdwjidx0B,
229 vdwparam+vdwioffset0+vdwjidx0C,
230 vdwparam+vdwioffset0+vdwjidx0D,
231 &c6_00,&c12_00);
233 /* EWALD ELECTROSTATICS */
235 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
236 ewrt = _mm_mul_ps(r00,ewtabscale);
237 ewitab = _mm_cvttps_epi32(ewrt);
238 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
239 ewitab = _mm_slli_epi32(ewitab,2);
240 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
241 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
242 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
243 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
244 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
245 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
246 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
247 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
248 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
250 /* LENNARD-JONES DISPERSION/REPULSION */
252 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
253 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
254 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
255 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
256 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
257 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
259 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
261 /* Update potential sum for this i atom from the interaction with this j atom. */
262 velec = _mm_and_ps(velec,cutoff_mask);
263 velecsum = _mm_add_ps(velecsum,velec);
264 vvdw = _mm_and_ps(vvdw,cutoff_mask);
265 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
267 fscal = _mm_add_ps(felec,fvdw);
269 fscal = _mm_and_ps(fscal,cutoff_mask);
271 /* Calculate temporary vectorial force */
272 tx = _mm_mul_ps(fscal,dx00);
273 ty = _mm_mul_ps(fscal,dy00);
274 tz = _mm_mul_ps(fscal,dz00);
276 /* Update vectorial force */
277 fix0 = _mm_add_ps(fix0,tx);
278 fiy0 = _mm_add_ps(fiy0,ty);
279 fiz0 = _mm_add_ps(fiz0,tz);
281 fjptrA = f+j_coord_offsetA;
282 fjptrB = f+j_coord_offsetB;
283 fjptrC = f+j_coord_offsetC;
284 fjptrD = f+j_coord_offsetD;
285 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
289 /* Inner loop uses 64 flops */
292 if(jidx<j_index_end)
295 /* Get j neighbor index, and coordinate index */
296 jnrlistA = jjnr[jidx];
297 jnrlistB = jjnr[jidx+1];
298 jnrlistC = jjnr[jidx+2];
299 jnrlistD = jjnr[jidx+3];
300 /* Sign of each element will be negative for non-real atoms.
301 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
302 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
304 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
305 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
306 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
307 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
308 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
309 j_coord_offsetA = DIM*jnrA;
310 j_coord_offsetB = DIM*jnrB;
311 j_coord_offsetC = DIM*jnrC;
312 j_coord_offsetD = DIM*jnrD;
314 /* load j atom coordinates */
315 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
316 x+j_coord_offsetC,x+j_coord_offsetD,
317 &jx0,&jy0,&jz0);
319 /* Calculate displacement vector */
320 dx00 = _mm_sub_ps(ix0,jx0);
321 dy00 = _mm_sub_ps(iy0,jy0);
322 dz00 = _mm_sub_ps(iz0,jz0);
324 /* Calculate squared distance and things based on it */
325 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
327 rinv00 = gmx_mm_invsqrt_ps(rsq00);
329 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
331 /* Load parameters for j particles */
332 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
333 charge+jnrC+0,charge+jnrD+0);
334 vdwjidx0A = 2*vdwtype[jnrA+0];
335 vdwjidx0B = 2*vdwtype[jnrB+0];
336 vdwjidx0C = 2*vdwtype[jnrC+0];
337 vdwjidx0D = 2*vdwtype[jnrD+0];
339 /**************************
340 * CALCULATE INTERACTIONS *
341 **************************/
343 if (gmx_mm_any_lt(rsq00,rcutoff2))
346 r00 = _mm_mul_ps(rsq00,rinv00);
347 r00 = _mm_andnot_ps(dummy_mask,r00);
349 /* Compute parameters for interactions between i and j atoms */
350 qq00 = _mm_mul_ps(iq0,jq0);
351 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
352 vdwparam+vdwioffset0+vdwjidx0B,
353 vdwparam+vdwioffset0+vdwjidx0C,
354 vdwparam+vdwioffset0+vdwjidx0D,
355 &c6_00,&c12_00);
357 /* EWALD ELECTROSTATICS */
359 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
360 ewrt = _mm_mul_ps(r00,ewtabscale);
361 ewitab = _mm_cvttps_epi32(ewrt);
362 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
363 ewitab = _mm_slli_epi32(ewitab,2);
364 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
365 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
366 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
367 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
368 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
369 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
370 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
371 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
372 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
374 /* LENNARD-JONES DISPERSION/REPULSION */
376 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
377 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
378 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
379 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
380 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
381 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
383 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
385 /* Update potential sum for this i atom from the interaction with this j atom. */
386 velec = _mm_and_ps(velec,cutoff_mask);
387 velec = _mm_andnot_ps(dummy_mask,velec);
388 velecsum = _mm_add_ps(velecsum,velec);
389 vvdw = _mm_and_ps(vvdw,cutoff_mask);
390 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
391 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
393 fscal = _mm_add_ps(felec,fvdw);
395 fscal = _mm_and_ps(fscal,cutoff_mask);
397 fscal = _mm_andnot_ps(dummy_mask,fscal);
399 /* Calculate temporary vectorial force */
400 tx = _mm_mul_ps(fscal,dx00);
401 ty = _mm_mul_ps(fscal,dy00);
402 tz = _mm_mul_ps(fscal,dz00);
404 /* Update vectorial force */
405 fix0 = _mm_add_ps(fix0,tx);
406 fiy0 = _mm_add_ps(fiy0,ty);
407 fiz0 = _mm_add_ps(fiz0,tz);
409 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
410 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
411 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
412 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
413 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
417 /* Inner loop uses 65 flops */
420 /* End of innermost loop */
422 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
423 f+i_coord_offset,fshift+i_shift_offset);
425 ggid = gid[iidx];
426 /* Update potential energies */
427 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
428 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
430 /* Increment number of inner iterations */
431 inneriter += j_index_end - j_index_start;
433 /* Outer loop uses 9 flops */
436 /* Increment number of outer iterations */
437 outeriter += nri;
439 /* Update outer/inner flops */
441 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*65);
444 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sse4_1_single
445 * Electrostatics interaction: Ewald
446 * VdW interaction: LennardJones
447 * Geometry: Particle-Particle
448 * Calculate force/pot: Force
450 void
451 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sse4_1_single
452 (t_nblist * gmx_restrict nlist,
453 rvec * gmx_restrict xx,
454 rvec * gmx_restrict ff,
455 t_forcerec * gmx_restrict fr,
456 t_mdatoms * gmx_restrict mdatoms,
457 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
458 t_nrnb * gmx_restrict nrnb)
460 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
461 * just 0 for non-waters.
462 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
463 * jnr indices corresponding to data put in the four positions in the SIMD register.
465 int i_shift_offset,i_coord_offset,outeriter,inneriter;
466 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
467 int jnrA,jnrB,jnrC,jnrD;
468 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
469 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
470 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
471 real rcutoff_scalar;
472 real *shiftvec,*fshift,*x,*f;
473 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
474 real scratch[4*DIM];
475 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
476 int vdwioffset0;
477 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
478 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
479 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
480 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
481 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
482 real *charge;
483 int nvdwtype;
484 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
485 int *vdwtype;
486 real *vdwparam;
487 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
488 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
489 __m128i ewitab;
490 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
491 real *ewtab;
492 __m128 dummy_mask,cutoff_mask;
493 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
494 __m128 one = _mm_set1_ps(1.0);
495 __m128 two = _mm_set1_ps(2.0);
496 x = xx[0];
497 f = ff[0];
499 nri = nlist->nri;
500 iinr = nlist->iinr;
501 jindex = nlist->jindex;
502 jjnr = nlist->jjnr;
503 shiftidx = nlist->shift;
504 gid = nlist->gid;
505 shiftvec = fr->shift_vec[0];
506 fshift = fr->fshift[0];
507 facel = _mm_set1_ps(fr->epsfac);
508 charge = mdatoms->chargeA;
509 nvdwtype = fr->ntype;
510 vdwparam = fr->nbfp;
511 vdwtype = mdatoms->typeA;
513 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
514 ewtab = fr->ic->tabq_coul_F;
515 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
516 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
518 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
519 rcutoff_scalar = fr->rcoulomb;
520 rcutoff = _mm_set1_ps(rcutoff_scalar);
521 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
523 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
524 rvdw = _mm_set1_ps(fr->rvdw);
526 /* Avoid stupid compiler warnings */
527 jnrA = jnrB = jnrC = jnrD = 0;
528 j_coord_offsetA = 0;
529 j_coord_offsetB = 0;
530 j_coord_offsetC = 0;
531 j_coord_offsetD = 0;
533 outeriter = 0;
534 inneriter = 0;
536 for(iidx=0;iidx<4*DIM;iidx++)
538 scratch[iidx] = 0.0;
541 /* Start outer loop over neighborlists */
542 for(iidx=0; iidx<nri; iidx++)
544 /* Load shift vector for this list */
545 i_shift_offset = DIM*shiftidx[iidx];
547 /* Load limits for loop over neighbors */
548 j_index_start = jindex[iidx];
549 j_index_end = jindex[iidx+1];
551 /* Get outer coordinate index */
552 inr = iinr[iidx];
553 i_coord_offset = DIM*inr;
555 /* Load i particle coords and add shift vector */
556 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
558 fix0 = _mm_setzero_ps();
559 fiy0 = _mm_setzero_ps();
560 fiz0 = _mm_setzero_ps();
562 /* Load parameters for i particles */
563 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
564 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
566 /* Start inner kernel loop */
567 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
570 /* Get j neighbor index, and coordinate index */
571 jnrA = jjnr[jidx];
572 jnrB = jjnr[jidx+1];
573 jnrC = jjnr[jidx+2];
574 jnrD = jjnr[jidx+3];
575 j_coord_offsetA = DIM*jnrA;
576 j_coord_offsetB = DIM*jnrB;
577 j_coord_offsetC = DIM*jnrC;
578 j_coord_offsetD = DIM*jnrD;
580 /* load j atom coordinates */
581 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
582 x+j_coord_offsetC,x+j_coord_offsetD,
583 &jx0,&jy0,&jz0);
585 /* Calculate displacement vector */
586 dx00 = _mm_sub_ps(ix0,jx0);
587 dy00 = _mm_sub_ps(iy0,jy0);
588 dz00 = _mm_sub_ps(iz0,jz0);
590 /* Calculate squared distance and things based on it */
591 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
593 rinv00 = gmx_mm_invsqrt_ps(rsq00);
595 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
597 /* Load parameters for j particles */
598 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
599 charge+jnrC+0,charge+jnrD+0);
600 vdwjidx0A = 2*vdwtype[jnrA+0];
601 vdwjidx0B = 2*vdwtype[jnrB+0];
602 vdwjidx0C = 2*vdwtype[jnrC+0];
603 vdwjidx0D = 2*vdwtype[jnrD+0];
605 /**************************
606 * CALCULATE INTERACTIONS *
607 **************************/
609 if (gmx_mm_any_lt(rsq00,rcutoff2))
612 r00 = _mm_mul_ps(rsq00,rinv00);
614 /* Compute parameters for interactions between i and j atoms */
615 qq00 = _mm_mul_ps(iq0,jq0);
616 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
617 vdwparam+vdwioffset0+vdwjidx0B,
618 vdwparam+vdwioffset0+vdwjidx0C,
619 vdwparam+vdwioffset0+vdwjidx0D,
620 &c6_00,&c12_00);
622 /* EWALD ELECTROSTATICS */
624 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
625 ewrt = _mm_mul_ps(r00,ewtabscale);
626 ewitab = _mm_cvttps_epi32(ewrt);
627 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
628 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
629 ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
630 &ewtabF,&ewtabFn);
631 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
632 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
634 /* LENNARD-JONES DISPERSION/REPULSION */
636 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
637 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
639 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
641 fscal = _mm_add_ps(felec,fvdw);
643 fscal = _mm_and_ps(fscal,cutoff_mask);
645 /* Calculate temporary vectorial force */
646 tx = _mm_mul_ps(fscal,dx00);
647 ty = _mm_mul_ps(fscal,dy00);
648 tz = _mm_mul_ps(fscal,dz00);
650 /* Update vectorial force */
651 fix0 = _mm_add_ps(fix0,tx);
652 fiy0 = _mm_add_ps(fiy0,ty);
653 fiz0 = _mm_add_ps(fiz0,tz);
655 fjptrA = f+j_coord_offsetA;
656 fjptrB = f+j_coord_offsetB;
657 fjptrC = f+j_coord_offsetC;
658 fjptrD = f+j_coord_offsetD;
659 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
663 /* Inner loop uses 46 flops */
666 if(jidx<j_index_end)
669 /* Get j neighbor index, and coordinate index */
670 jnrlistA = jjnr[jidx];
671 jnrlistB = jjnr[jidx+1];
672 jnrlistC = jjnr[jidx+2];
673 jnrlistD = jjnr[jidx+3];
674 /* Sign of each element will be negative for non-real atoms.
675 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
676 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
678 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
679 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
680 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
681 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
682 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
683 j_coord_offsetA = DIM*jnrA;
684 j_coord_offsetB = DIM*jnrB;
685 j_coord_offsetC = DIM*jnrC;
686 j_coord_offsetD = DIM*jnrD;
688 /* load j atom coordinates */
689 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
690 x+j_coord_offsetC,x+j_coord_offsetD,
691 &jx0,&jy0,&jz0);
693 /* Calculate displacement vector */
694 dx00 = _mm_sub_ps(ix0,jx0);
695 dy00 = _mm_sub_ps(iy0,jy0);
696 dz00 = _mm_sub_ps(iz0,jz0);
698 /* Calculate squared distance and things based on it */
699 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
701 rinv00 = gmx_mm_invsqrt_ps(rsq00);
703 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
705 /* Load parameters for j particles */
706 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
707 charge+jnrC+0,charge+jnrD+0);
708 vdwjidx0A = 2*vdwtype[jnrA+0];
709 vdwjidx0B = 2*vdwtype[jnrB+0];
710 vdwjidx0C = 2*vdwtype[jnrC+0];
711 vdwjidx0D = 2*vdwtype[jnrD+0];
713 /**************************
714 * CALCULATE INTERACTIONS *
715 **************************/
717 if (gmx_mm_any_lt(rsq00,rcutoff2))
720 r00 = _mm_mul_ps(rsq00,rinv00);
721 r00 = _mm_andnot_ps(dummy_mask,r00);
723 /* Compute parameters for interactions between i and j atoms */
724 qq00 = _mm_mul_ps(iq0,jq0);
725 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
726 vdwparam+vdwioffset0+vdwjidx0B,
727 vdwparam+vdwioffset0+vdwjidx0C,
728 vdwparam+vdwioffset0+vdwjidx0D,
729 &c6_00,&c12_00);
731 /* EWALD ELECTROSTATICS */
733 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
734 ewrt = _mm_mul_ps(r00,ewtabscale);
735 ewitab = _mm_cvttps_epi32(ewrt);
736 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
737 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
738 ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
739 &ewtabF,&ewtabFn);
740 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
741 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
743 /* LENNARD-JONES DISPERSION/REPULSION */
745 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
746 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
748 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
750 fscal = _mm_add_ps(felec,fvdw);
752 fscal = _mm_and_ps(fscal,cutoff_mask);
754 fscal = _mm_andnot_ps(dummy_mask,fscal);
756 /* Calculate temporary vectorial force */
757 tx = _mm_mul_ps(fscal,dx00);
758 ty = _mm_mul_ps(fscal,dy00);
759 tz = _mm_mul_ps(fscal,dz00);
761 /* Update vectorial force */
762 fix0 = _mm_add_ps(fix0,tx);
763 fiy0 = _mm_add_ps(fiy0,ty);
764 fiz0 = _mm_add_ps(fiz0,tz);
766 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
767 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
768 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
769 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
770 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
774 /* Inner loop uses 47 flops */
777 /* End of innermost loop */
779 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
780 f+i_coord_offset,fshift+i_shift_offset);
782 /* Increment number of inner iterations */
783 inneriter += j_index_end - j_index_start;
785 /* Outer loop uses 7 flops */
788 /* Increment number of outer iterations */
789 outeriter += nri;
791 /* Update outer/inner flops */
793 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*47);