Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRF_VdwNone_GeomW4P1_sse4_1_double.c
blobac6a2e4df66fb1674dca95e24462425c03ff5930
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
51 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwNone_GeomW4P1_VF_sse4_1_double
52 * Electrostatics interaction: ReactionField
53 * VdW interaction: None
54 * Geometry: Water4-Particle
55 * Calculate force/pot: PotentialAndForce
57 void
58 nb_kernel_ElecRF_VdwNone_GeomW4P1_VF_sse4_1_double
59 (t_nblist * gmx_restrict nlist,
60 rvec * gmx_restrict xx,
61 rvec * gmx_restrict ff,
62 t_forcerec * gmx_restrict fr,
63 t_mdatoms * gmx_restrict mdatoms,
64 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65 t_nrnb * gmx_restrict nrnb)
67 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68 * just 0 for non-waters.
69 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70 * jnr indices corresponding to data put in the four positions in the SIMD register.
72 int i_shift_offset,i_coord_offset,outeriter,inneriter;
73 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74 int jnrA,jnrB;
75 int j_coord_offsetA,j_coord_offsetB;
76 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
77 real rcutoff_scalar;
78 real *shiftvec,*fshift,*x,*f;
79 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80 int vdwioffset1;
81 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
82 int vdwioffset2;
83 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
84 int vdwioffset3;
85 __m128d ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
86 int vdwjidx0A,vdwjidx0B;
87 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90 __m128d dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
91 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
92 real *charge;
93 __m128d dummy_mask,cutoff_mask;
94 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
95 __m128d one = _mm_set1_pd(1.0);
96 __m128d two = _mm_set1_pd(2.0);
97 x = xx[0];
98 f = ff[0];
100 nri = nlist->nri;
101 iinr = nlist->iinr;
102 jindex = nlist->jindex;
103 jjnr = nlist->jjnr;
104 shiftidx = nlist->shift;
105 gid = nlist->gid;
106 shiftvec = fr->shift_vec[0];
107 fshift = fr->fshift[0];
108 facel = _mm_set1_pd(fr->epsfac);
109 charge = mdatoms->chargeA;
110 krf = _mm_set1_pd(fr->ic->k_rf);
111 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
112 crf = _mm_set1_pd(fr->ic->c_rf);
114 /* Setup water-specific parameters */
115 inr = nlist->iinr[0];
116 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
117 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
118 iq3 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
120 /* Avoid stupid compiler warnings */
121 jnrA = jnrB = 0;
122 j_coord_offsetA = 0;
123 j_coord_offsetB = 0;
125 outeriter = 0;
126 inneriter = 0;
128 /* Start outer loop over neighborlists */
129 for(iidx=0; iidx<nri; iidx++)
131 /* Load shift vector for this list */
132 i_shift_offset = DIM*shiftidx[iidx];
134 /* Load limits for loop over neighbors */
135 j_index_start = jindex[iidx];
136 j_index_end = jindex[iidx+1];
138 /* Get outer coordinate index */
139 inr = iinr[iidx];
140 i_coord_offset = DIM*inr;
142 /* Load i particle coords and add shift vector */
143 gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
144 &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
146 fix1 = _mm_setzero_pd();
147 fiy1 = _mm_setzero_pd();
148 fiz1 = _mm_setzero_pd();
149 fix2 = _mm_setzero_pd();
150 fiy2 = _mm_setzero_pd();
151 fiz2 = _mm_setzero_pd();
152 fix3 = _mm_setzero_pd();
153 fiy3 = _mm_setzero_pd();
154 fiz3 = _mm_setzero_pd();
156 /* Reset potential sums */
157 velecsum = _mm_setzero_pd();
159 /* Start inner kernel loop */
160 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
163 /* Get j neighbor index, and coordinate index */
164 jnrA = jjnr[jidx];
165 jnrB = jjnr[jidx+1];
166 j_coord_offsetA = DIM*jnrA;
167 j_coord_offsetB = DIM*jnrB;
169 /* load j atom coordinates */
170 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
171 &jx0,&jy0,&jz0);
173 /* Calculate displacement vector */
174 dx10 = _mm_sub_pd(ix1,jx0);
175 dy10 = _mm_sub_pd(iy1,jy0);
176 dz10 = _mm_sub_pd(iz1,jz0);
177 dx20 = _mm_sub_pd(ix2,jx0);
178 dy20 = _mm_sub_pd(iy2,jy0);
179 dz20 = _mm_sub_pd(iz2,jz0);
180 dx30 = _mm_sub_pd(ix3,jx0);
181 dy30 = _mm_sub_pd(iy3,jy0);
182 dz30 = _mm_sub_pd(iz3,jz0);
184 /* Calculate squared distance and things based on it */
185 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
186 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
187 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
189 rinv10 = gmx_mm_invsqrt_pd(rsq10);
190 rinv20 = gmx_mm_invsqrt_pd(rsq20);
191 rinv30 = gmx_mm_invsqrt_pd(rsq30);
193 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
194 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
195 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
197 /* Load parameters for j particles */
198 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
200 fjx0 = _mm_setzero_pd();
201 fjy0 = _mm_setzero_pd();
202 fjz0 = _mm_setzero_pd();
204 /**************************
205 * CALCULATE INTERACTIONS *
206 **************************/
208 /* Compute parameters for interactions between i and j atoms */
209 qq10 = _mm_mul_pd(iq1,jq0);
211 /* REACTION-FIELD ELECTROSTATICS */
212 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
213 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
215 /* Update potential sum for this i atom from the interaction with this j atom. */
216 velecsum = _mm_add_pd(velecsum,velec);
218 fscal = felec;
220 /* Calculate temporary vectorial force */
221 tx = _mm_mul_pd(fscal,dx10);
222 ty = _mm_mul_pd(fscal,dy10);
223 tz = _mm_mul_pd(fscal,dz10);
225 /* Update vectorial force */
226 fix1 = _mm_add_pd(fix1,tx);
227 fiy1 = _mm_add_pd(fiy1,ty);
228 fiz1 = _mm_add_pd(fiz1,tz);
230 fjx0 = _mm_add_pd(fjx0,tx);
231 fjy0 = _mm_add_pd(fjy0,ty);
232 fjz0 = _mm_add_pd(fjz0,tz);
234 /**************************
235 * CALCULATE INTERACTIONS *
236 **************************/
238 /* Compute parameters for interactions between i and j atoms */
239 qq20 = _mm_mul_pd(iq2,jq0);
241 /* REACTION-FIELD ELECTROSTATICS */
242 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
243 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
245 /* Update potential sum for this i atom from the interaction with this j atom. */
246 velecsum = _mm_add_pd(velecsum,velec);
248 fscal = felec;
250 /* Calculate temporary vectorial force */
251 tx = _mm_mul_pd(fscal,dx20);
252 ty = _mm_mul_pd(fscal,dy20);
253 tz = _mm_mul_pd(fscal,dz20);
255 /* Update vectorial force */
256 fix2 = _mm_add_pd(fix2,tx);
257 fiy2 = _mm_add_pd(fiy2,ty);
258 fiz2 = _mm_add_pd(fiz2,tz);
260 fjx0 = _mm_add_pd(fjx0,tx);
261 fjy0 = _mm_add_pd(fjy0,ty);
262 fjz0 = _mm_add_pd(fjz0,tz);
264 /**************************
265 * CALCULATE INTERACTIONS *
266 **************************/
268 /* Compute parameters for interactions between i and j atoms */
269 qq30 = _mm_mul_pd(iq3,jq0);
271 /* REACTION-FIELD ELECTROSTATICS */
272 velec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
273 felec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
275 /* Update potential sum for this i atom from the interaction with this j atom. */
276 velecsum = _mm_add_pd(velecsum,velec);
278 fscal = felec;
280 /* Calculate temporary vectorial force */
281 tx = _mm_mul_pd(fscal,dx30);
282 ty = _mm_mul_pd(fscal,dy30);
283 tz = _mm_mul_pd(fscal,dz30);
285 /* Update vectorial force */
286 fix3 = _mm_add_pd(fix3,tx);
287 fiy3 = _mm_add_pd(fiy3,ty);
288 fiz3 = _mm_add_pd(fiz3,tz);
290 fjx0 = _mm_add_pd(fjx0,tx);
291 fjy0 = _mm_add_pd(fjy0,ty);
292 fjz0 = _mm_add_pd(fjz0,tz);
294 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
296 /* Inner loop uses 99 flops */
299 if(jidx<j_index_end)
302 jnrA = jjnr[jidx];
303 j_coord_offsetA = DIM*jnrA;
305 /* load j atom coordinates */
306 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
307 &jx0,&jy0,&jz0);
309 /* Calculate displacement vector */
310 dx10 = _mm_sub_pd(ix1,jx0);
311 dy10 = _mm_sub_pd(iy1,jy0);
312 dz10 = _mm_sub_pd(iz1,jz0);
313 dx20 = _mm_sub_pd(ix2,jx0);
314 dy20 = _mm_sub_pd(iy2,jy0);
315 dz20 = _mm_sub_pd(iz2,jz0);
316 dx30 = _mm_sub_pd(ix3,jx0);
317 dy30 = _mm_sub_pd(iy3,jy0);
318 dz30 = _mm_sub_pd(iz3,jz0);
320 /* Calculate squared distance and things based on it */
321 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
322 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
323 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
325 rinv10 = gmx_mm_invsqrt_pd(rsq10);
326 rinv20 = gmx_mm_invsqrt_pd(rsq20);
327 rinv30 = gmx_mm_invsqrt_pd(rsq30);
329 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
330 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
331 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
333 /* Load parameters for j particles */
334 jq0 = _mm_load_sd(charge+jnrA+0);
336 fjx0 = _mm_setzero_pd();
337 fjy0 = _mm_setzero_pd();
338 fjz0 = _mm_setzero_pd();
340 /**************************
341 * CALCULATE INTERACTIONS *
342 **************************/
344 /* Compute parameters for interactions between i and j atoms */
345 qq10 = _mm_mul_pd(iq1,jq0);
347 /* REACTION-FIELD ELECTROSTATICS */
348 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
349 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
351 /* Update potential sum for this i atom from the interaction with this j atom. */
352 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
353 velecsum = _mm_add_pd(velecsum,velec);
355 fscal = felec;
357 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
359 /* Calculate temporary vectorial force */
360 tx = _mm_mul_pd(fscal,dx10);
361 ty = _mm_mul_pd(fscal,dy10);
362 tz = _mm_mul_pd(fscal,dz10);
364 /* Update vectorial force */
365 fix1 = _mm_add_pd(fix1,tx);
366 fiy1 = _mm_add_pd(fiy1,ty);
367 fiz1 = _mm_add_pd(fiz1,tz);
369 fjx0 = _mm_add_pd(fjx0,tx);
370 fjy0 = _mm_add_pd(fjy0,ty);
371 fjz0 = _mm_add_pd(fjz0,tz);
373 /**************************
374 * CALCULATE INTERACTIONS *
375 **************************/
377 /* Compute parameters for interactions between i and j atoms */
378 qq20 = _mm_mul_pd(iq2,jq0);
380 /* REACTION-FIELD ELECTROSTATICS */
381 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
382 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
384 /* Update potential sum for this i atom from the interaction with this j atom. */
385 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
386 velecsum = _mm_add_pd(velecsum,velec);
388 fscal = felec;
390 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
392 /* Calculate temporary vectorial force */
393 tx = _mm_mul_pd(fscal,dx20);
394 ty = _mm_mul_pd(fscal,dy20);
395 tz = _mm_mul_pd(fscal,dz20);
397 /* Update vectorial force */
398 fix2 = _mm_add_pd(fix2,tx);
399 fiy2 = _mm_add_pd(fiy2,ty);
400 fiz2 = _mm_add_pd(fiz2,tz);
402 fjx0 = _mm_add_pd(fjx0,tx);
403 fjy0 = _mm_add_pd(fjy0,ty);
404 fjz0 = _mm_add_pd(fjz0,tz);
406 /**************************
407 * CALCULATE INTERACTIONS *
408 **************************/
410 /* Compute parameters for interactions between i and j atoms */
411 qq30 = _mm_mul_pd(iq3,jq0);
413 /* REACTION-FIELD ELECTROSTATICS */
414 velec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
415 felec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
417 /* Update potential sum for this i atom from the interaction with this j atom. */
418 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
419 velecsum = _mm_add_pd(velecsum,velec);
421 fscal = felec;
423 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
425 /* Calculate temporary vectorial force */
426 tx = _mm_mul_pd(fscal,dx30);
427 ty = _mm_mul_pd(fscal,dy30);
428 tz = _mm_mul_pd(fscal,dz30);
430 /* Update vectorial force */
431 fix3 = _mm_add_pd(fix3,tx);
432 fiy3 = _mm_add_pd(fiy3,ty);
433 fiz3 = _mm_add_pd(fiz3,tz);
435 fjx0 = _mm_add_pd(fjx0,tx);
436 fjy0 = _mm_add_pd(fjy0,ty);
437 fjz0 = _mm_add_pd(fjz0,tz);
439 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
441 /* Inner loop uses 99 flops */
444 /* End of innermost loop */
446 gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
447 f+i_coord_offset+DIM,fshift+i_shift_offset);
449 ggid = gid[iidx];
450 /* Update potential energies */
451 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
453 /* Increment number of inner iterations */
454 inneriter += j_index_end - j_index_start;
456 /* Outer loop uses 19 flops */
459 /* Increment number of outer iterations */
460 outeriter += nri;
462 /* Update outer/inner flops */
464 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*99);
467 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwNone_GeomW4P1_F_sse4_1_double
468 * Electrostatics interaction: ReactionField
469 * VdW interaction: None
470 * Geometry: Water4-Particle
471 * Calculate force/pot: Force
473 void
474 nb_kernel_ElecRF_VdwNone_GeomW4P1_F_sse4_1_double
475 (t_nblist * gmx_restrict nlist,
476 rvec * gmx_restrict xx,
477 rvec * gmx_restrict ff,
478 t_forcerec * gmx_restrict fr,
479 t_mdatoms * gmx_restrict mdatoms,
480 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
481 t_nrnb * gmx_restrict nrnb)
483 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
484 * just 0 for non-waters.
485 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
486 * jnr indices corresponding to data put in the four positions in the SIMD register.
488 int i_shift_offset,i_coord_offset,outeriter,inneriter;
489 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
490 int jnrA,jnrB;
491 int j_coord_offsetA,j_coord_offsetB;
492 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
493 real rcutoff_scalar;
494 real *shiftvec,*fshift,*x,*f;
495 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
496 int vdwioffset1;
497 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
498 int vdwioffset2;
499 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
500 int vdwioffset3;
501 __m128d ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
502 int vdwjidx0A,vdwjidx0B;
503 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
504 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
505 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
506 __m128d dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
507 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
508 real *charge;
509 __m128d dummy_mask,cutoff_mask;
510 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
511 __m128d one = _mm_set1_pd(1.0);
512 __m128d two = _mm_set1_pd(2.0);
513 x = xx[0];
514 f = ff[0];
516 nri = nlist->nri;
517 iinr = nlist->iinr;
518 jindex = nlist->jindex;
519 jjnr = nlist->jjnr;
520 shiftidx = nlist->shift;
521 gid = nlist->gid;
522 shiftvec = fr->shift_vec[0];
523 fshift = fr->fshift[0];
524 facel = _mm_set1_pd(fr->epsfac);
525 charge = mdatoms->chargeA;
526 krf = _mm_set1_pd(fr->ic->k_rf);
527 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
528 crf = _mm_set1_pd(fr->ic->c_rf);
530 /* Setup water-specific parameters */
531 inr = nlist->iinr[0];
532 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
533 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
534 iq3 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
536 /* Avoid stupid compiler warnings */
537 jnrA = jnrB = 0;
538 j_coord_offsetA = 0;
539 j_coord_offsetB = 0;
541 outeriter = 0;
542 inneriter = 0;
544 /* Start outer loop over neighborlists */
545 for(iidx=0; iidx<nri; iidx++)
547 /* Load shift vector for this list */
548 i_shift_offset = DIM*shiftidx[iidx];
550 /* Load limits for loop over neighbors */
551 j_index_start = jindex[iidx];
552 j_index_end = jindex[iidx+1];
554 /* Get outer coordinate index */
555 inr = iinr[iidx];
556 i_coord_offset = DIM*inr;
558 /* Load i particle coords and add shift vector */
559 gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
560 &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
562 fix1 = _mm_setzero_pd();
563 fiy1 = _mm_setzero_pd();
564 fiz1 = _mm_setzero_pd();
565 fix2 = _mm_setzero_pd();
566 fiy2 = _mm_setzero_pd();
567 fiz2 = _mm_setzero_pd();
568 fix3 = _mm_setzero_pd();
569 fiy3 = _mm_setzero_pd();
570 fiz3 = _mm_setzero_pd();
572 /* Start inner kernel loop */
573 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
576 /* Get j neighbor index, and coordinate index */
577 jnrA = jjnr[jidx];
578 jnrB = jjnr[jidx+1];
579 j_coord_offsetA = DIM*jnrA;
580 j_coord_offsetB = DIM*jnrB;
582 /* load j atom coordinates */
583 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
584 &jx0,&jy0,&jz0);
586 /* Calculate displacement vector */
587 dx10 = _mm_sub_pd(ix1,jx0);
588 dy10 = _mm_sub_pd(iy1,jy0);
589 dz10 = _mm_sub_pd(iz1,jz0);
590 dx20 = _mm_sub_pd(ix2,jx0);
591 dy20 = _mm_sub_pd(iy2,jy0);
592 dz20 = _mm_sub_pd(iz2,jz0);
593 dx30 = _mm_sub_pd(ix3,jx0);
594 dy30 = _mm_sub_pd(iy3,jy0);
595 dz30 = _mm_sub_pd(iz3,jz0);
597 /* Calculate squared distance and things based on it */
598 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
599 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
600 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
602 rinv10 = gmx_mm_invsqrt_pd(rsq10);
603 rinv20 = gmx_mm_invsqrt_pd(rsq20);
604 rinv30 = gmx_mm_invsqrt_pd(rsq30);
606 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
607 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
608 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
610 /* Load parameters for j particles */
611 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
613 fjx0 = _mm_setzero_pd();
614 fjy0 = _mm_setzero_pd();
615 fjz0 = _mm_setzero_pd();
617 /**************************
618 * CALCULATE INTERACTIONS *
619 **************************/
621 /* Compute parameters for interactions between i and j atoms */
622 qq10 = _mm_mul_pd(iq1,jq0);
624 /* REACTION-FIELD ELECTROSTATICS */
625 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
627 fscal = felec;
629 /* Calculate temporary vectorial force */
630 tx = _mm_mul_pd(fscal,dx10);
631 ty = _mm_mul_pd(fscal,dy10);
632 tz = _mm_mul_pd(fscal,dz10);
634 /* Update vectorial force */
635 fix1 = _mm_add_pd(fix1,tx);
636 fiy1 = _mm_add_pd(fiy1,ty);
637 fiz1 = _mm_add_pd(fiz1,tz);
639 fjx0 = _mm_add_pd(fjx0,tx);
640 fjy0 = _mm_add_pd(fjy0,ty);
641 fjz0 = _mm_add_pd(fjz0,tz);
643 /**************************
644 * CALCULATE INTERACTIONS *
645 **************************/
647 /* Compute parameters for interactions between i and j atoms */
648 qq20 = _mm_mul_pd(iq2,jq0);
650 /* REACTION-FIELD ELECTROSTATICS */
651 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
653 fscal = felec;
655 /* Calculate temporary vectorial force */
656 tx = _mm_mul_pd(fscal,dx20);
657 ty = _mm_mul_pd(fscal,dy20);
658 tz = _mm_mul_pd(fscal,dz20);
660 /* Update vectorial force */
661 fix2 = _mm_add_pd(fix2,tx);
662 fiy2 = _mm_add_pd(fiy2,ty);
663 fiz2 = _mm_add_pd(fiz2,tz);
665 fjx0 = _mm_add_pd(fjx0,tx);
666 fjy0 = _mm_add_pd(fjy0,ty);
667 fjz0 = _mm_add_pd(fjz0,tz);
669 /**************************
670 * CALCULATE INTERACTIONS *
671 **************************/
673 /* Compute parameters for interactions between i and j atoms */
674 qq30 = _mm_mul_pd(iq3,jq0);
676 /* REACTION-FIELD ELECTROSTATICS */
677 felec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
679 fscal = felec;
681 /* Calculate temporary vectorial force */
682 tx = _mm_mul_pd(fscal,dx30);
683 ty = _mm_mul_pd(fscal,dy30);
684 tz = _mm_mul_pd(fscal,dz30);
686 /* Update vectorial force */
687 fix3 = _mm_add_pd(fix3,tx);
688 fiy3 = _mm_add_pd(fiy3,ty);
689 fiz3 = _mm_add_pd(fiz3,tz);
691 fjx0 = _mm_add_pd(fjx0,tx);
692 fjy0 = _mm_add_pd(fjy0,ty);
693 fjz0 = _mm_add_pd(fjz0,tz);
695 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
697 /* Inner loop uses 84 flops */
700 if(jidx<j_index_end)
703 jnrA = jjnr[jidx];
704 j_coord_offsetA = DIM*jnrA;
706 /* load j atom coordinates */
707 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
708 &jx0,&jy0,&jz0);
710 /* Calculate displacement vector */
711 dx10 = _mm_sub_pd(ix1,jx0);
712 dy10 = _mm_sub_pd(iy1,jy0);
713 dz10 = _mm_sub_pd(iz1,jz0);
714 dx20 = _mm_sub_pd(ix2,jx0);
715 dy20 = _mm_sub_pd(iy2,jy0);
716 dz20 = _mm_sub_pd(iz2,jz0);
717 dx30 = _mm_sub_pd(ix3,jx0);
718 dy30 = _mm_sub_pd(iy3,jy0);
719 dz30 = _mm_sub_pd(iz3,jz0);
721 /* Calculate squared distance and things based on it */
722 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
723 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
724 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
726 rinv10 = gmx_mm_invsqrt_pd(rsq10);
727 rinv20 = gmx_mm_invsqrt_pd(rsq20);
728 rinv30 = gmx_mm_invsqrt_pd(rsq30);
730 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
731 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
732 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
734 /* Load parameters for j particles */
735 jq0 = _mm_load_sd(charge+jnrA+0);
737 fjx0 = _mm_setzero_pd();
738 fjy0 = _mm_setzero_pd();
739 fjz0 = _mm_setzero_pd();
741 /**************************
742 * CALCULATE INTERACTIONS *
743 **************************/
745 /* Compute parameters for interactions between i and j atoms */
746 qq10 = _mm_mul_pd(iq1,jq0);
748 /* REACTION-FIELD ELECTROSTATICS */
749 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
751 fscal = felec;
753 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
755 /* Calculate temporary vectorial force */
756 tx = _mm_mul_pd(fscal,dx10);
757 ty = _mm_mul_pd(fscal,dy10);
758 tz = _mm_mul_pd(fscal,dz10);
760 /* Update vectorial force */
761 fix1 = _mm_add_pd(fix1,tx);
762 fiy1 = _mm_add_pd(fiy1,ty);
763 fiz1 = _mm_add_pd(fiz1,tz);
765 fjx0 = _mm_add_pd(fjx0,tx);
766 fjy0 = _mm_add_pd(fjy0,ty);
767 fjz0 = _mm_add_pd(fjz0,tz);
769 /**************************
770 * CALCULATE INTERACTIONS *
771 **************************/
773 /* Compute parameters for interactions between i and j atoms */
774 qq20 = _mm_mul_pd(iq2,jq0);
776 /* REACTION-FIELD ELECTROSTATICS */
777 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
779 fscal = felec;
781 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
783 /* Calculate temporary vectorial force */
784 tx = _mm_mul_pd(fscal,dx20);
785 ty = _mm_mul_pd(fscal,dy20);
786 tz = _mm_mul_pd(fscal,dz20);
788 /* Update vectorial force */
789 fix2 = _mm_add_pd(fix2,tx);
790 fiy2 = _mm_add_pd(fiy2,ty);
791 fiz2 = _mm_add_pd(fiz2,tz);
793 fjx0 = _mm_add_pd(fjx0,tx);
794 fjy0 = _mm_add_pd(fjy0,ty);
795 fjz0 = _mm_add_pd(fjz0,tz);
797 /**************************
798 * CALCULATE INTERACTIONS *
799 **************************/
801 /* Compute parameters for interactions between i and j atoms */
802 qq30 = _mm_mul_pd(iq3,jq0);
804 /* REACTION-FIELD ELECTROSTATICS */
805 felec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
807 fscal = felec;
809 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
811 /* Calculate temporary vectorial force */
812 tx = _mm_mul_pd(fscal,dx30);
813 ty = _mm_mul_pd(fscal,dy30);
814 tz = _mm_mul_pd(fscal,dz30);
816 /* Update vectorial force */
817 fix3 = _mm_add_pd(fix3,tx);
818 fiy3 = _mm_add_pd(fiy3,ty);
819 fiz3 = _mm_add_pd(fiz3,tz);
821 fjx0 = _mm_add_pd(fjx0,tx);
822 fjy0 = _mm_add_pd(fjy0,ty);
823 fjz0 = _mm_add_pd(fjz0,tz);
825 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
827 /* Inner loop uses 84 flops */
830 /* End of innermost loop */
832 gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
833 f+i_coord_offset+DIM,fshift+i_shift_offset);
835 /* Increment number of inner iterations */
836 inneriter += j_index_end - j_index_start;
838 /* Outer loop uses 18 flops */
841 /* Increment number of outer iterations */
842 outeriter += nri;
844 /* Update outer/inner flops */
846 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*84);