Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwNone_GeomP1P1_sse4_1_double.c
blobe2f663b6b1556225252829575b007c44ff398b3d
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
47 #include "gromacs/simd/math_x86_sse4_1_double.h"
48 #include "kernelutil_x86_sse4_1_double.h"
51 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_sse4_1_double
52 * Electrostatics interaction: Ewald
53 * VdW interaction: None
54 * Geometry: Particle-Particle
55 * Calculate force/pot: PotentialAndForce
57 void
58 nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_sse4_1_double
59 (t_nblist * gmx_restrict nlist,
60 rvec * gmx_restrict xx,
61 rvec * gmx_restrict ff,
62 t_forcerec * gmx_restrict fr,
63 t_mdatoms * gmx_restrict mdatoms,
64 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65 t_nrnb * gmx_restrict nrnb)
67 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68 * just 0 for non-waters.
69 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70 * jnr indices corresponding to data put in the four positions in the SIMD register.
72 int i_shift_offset,i_coord_offset,outeriter,inneriter;
73 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74 int jnrA,jnrB;
75 int j_coord_offsetA,j_coord_offsetB;
76 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
77 real rcutoff_scalar;
78 real *shiftvec,*fshift,*x,*f;
79 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80 int vdwioffset0;
81 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82 int vdwjidx0A,vdwjidx0B;
83 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
86 real *charge;
87 __m128i ewitab;
88 __m128d ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
89 real *ewtab;
90 __m128d dummy_mask,cutoff_mask;
91 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
92 __m128d one = _mm_set1_pd(1.0);
93 __m128d two = _mm_set1_pd(2.0);
94 x = xx[0];
95 f = ff[0];
97 nri = nlist->nri;
98 iinr = nlist->iinr;
99 jindex = nlist->jindex;
100 jjnr = nlist->jjnr;
101 shiftidx = nlist->shift;
102 gid = nlist->gid;
103 shiftvec = fr->shift_vec[0];
104 fshift = fr->fshift[0];
105 facel = _mm_set1_pd(fr->epsfac);
106 charge = mdatoms->chargeA;
108 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
109 ewtab = fr->ic->tabq_coul_FDV0;
110 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
111 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
113 /* Avoid stupid compiler warnings */
114 jnrA = jnrB = 0;
115 j_coord_offsetA = 0;
116 j_coord_offsetB = 0;
118 outeriter = 0;
119 inneriter = 0;
121 /* Start outer loop over neighborlists */
122 for(iidx=0; iidx<nri; iidx++)
124 /* Load shift vector for this list */
125 i_shift_offset = DIM*shiftidx[iidx];
127 /* Load limits for loop over neighbors */
128 j_index_start = jindex[iidx];
129 j_index_end = jindex[iidx+1];
131 /* Get outer coordinate index */
132 inr = iinr[iidx];
133 i_coord_offset = DIM*inr;
135 /* Load i particle coords and add shift vector */
136 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
138 fix0 = _mm_setzero_pd();
139 fiy0 = _mm_setzero_pd();
140 fiz0 = _mm_setzero_pd();
142 /* Load parameters for i particles */
143 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
145 /* Reset potential sums */
146 velecsum = _mm_setzero_pd();
148 /* Start inner kernel loop */
149 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
152 /* Get j neighbor index, and coordinate index */
153 jnrA = jjnr[jidx];
154 jnrB = jjnr[jidx+1];
155 j_coord_offsetA = DIM*jnrA;
156 j_coord_offsetB = DIM*jnrB;
158 /* load j atom coordinates */
159 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
160 &jx0,&jy0,&jz0);
162 /* Calculate displacement vector */
163 dx00 = _mm_sub_pd(ix0,jx0);
164 dy00 = _mm_sub_pd(iy0,jy0);
165 dz00 = _mm_sub_pd(iz0,jz0);
167 /* Calculate squared distance and things based on it */
168 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
170 rinv00 = gmx_mm_invsqrt_pd(rsq00);
172 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
174 /* Load parameters for j particles */
175 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
177 /**************************
178 * CALCULATE INTERACTIONS *
179 **************************/
181 r00 = _mm_mul_pd(rsq00,rinv00);
183 /* Compute parameters for interactions between i and j atoms */
184 qq00 = _mm_mul_pd(iq0,jq0);
186 /* EWALD ELECTROSTATICS */
188 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
189 ewrt = _mm_mul_pd(r00,ewtabscale);
190 ewitab = _mm_cvttpd_epi32(ewrt);
191 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
192 ewitab = _mm_slli_epi32(ewitab,2);
193 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
194 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
195 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
196 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
197 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
198 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
199 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
200 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
201 velec = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
202 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
204 /* Update potential sum for this i atom from the interaction with this j atom. */
205 velecsum = _mm_add_pd(velecsum,velec);
207 fscal = felec;
209 /* Calculate temporary vectorial force */
210 tx = _mm_mul_pd(fscal,dx00);
211 ty = _mm_mul_pd(fscal,dy00);
212 tz = _mm_mul_pd(fscal,dz00);
214 /* Update vectorial force */
215 fix0 = _mm_add_pd(fix0,tx);
216 fiy0 = _mm_add_pd(fiy0,ty);
217 fiz0 = _mm_add_pd(fiz0,tz);
219 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
221 /* Inner loop uses 41 flops */
224 if(jidx<j_index_end)
227 jnrA = jjnr[jidx];
228 j_coord_offsetA = DIM*jnrA;
230 /* load j atom coordinates */
231 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
232 &jx0,&jy0,&jz0);
234 /* Calculate displacement vector */
235 dx00 = _mm_sub_pd(ix0,jx0);
236 dy00 = _mm_sub_pd(iy0,jy0);
237 dz00 = _mm_sub_pd(iz0,jz0);
239 /* Calculate squared distance and things based on it */
240 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
242 rinv00 = gmx_mm_invsqrt_pd(rsq00);
244 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
246 /* Load parameters for j particles */
247 jq0 = _mm_load_sd(charge+jnrA+0);
249 /**************************
250 * CALCULATE INTERACTIONS *
251 **************************/
253 r00 = _mm_mul_pd(rsq00,rinv00);
255 /* Compute parameters for interactions between i and j atoms */
256 qq00 = _mm_mul_pd(iq0,jq0);
258 /* EWALD ELECTROSTATICS */
260 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
261 ewrt = _mm_mul_pd(r00,ewtabscale);
262 ewitab = _mm_cvttpd_epi32(ewrt);
263 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
264 ewitab = _mm_slli_epi32(ewitab,2);
265 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
266 ewtabD = _mm_setzero_pd();
267 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
268 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
269 ewtabFn = _mm_setzero_pd();
270 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
271 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
272 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
273 velec = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
274 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
276 /* Update potential sum for this i atom from the interaction with this j atom. */
277 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
278 velecsum = _mm_add_pd(velecsum,velec);
280 fscal = felec;
282 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
284 /* Calculate temporary vectorial force */
285 tx = _mm_mul_pd(fscal,dx00);
286 ty = _mm_mul_pd(fscal,dy00);
287 tz = _mm_mul_pd(fscal,dz00);
289 /* Update vectorial force */
290 fix0 = _mm_add_pd(fix0,tx);
291 fiy0 = _mm_add_pd(fiy0,ty);
292 fiz0 = _mm_add_pd(fiz0,tz);
294 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
296 /* Inner loop uses 41 flops */
299 /* End of innermost loop */
301 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
302 f+i_coord_offset,fshift+i_shift_offset);
304 ggid = gid[iidx];
305 /* Update potential energies */
306 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
308 /* Increment number of inner iterations */
309 inneriter += j_index_end - j_index_start;
311 /* Outer loop uses 8 flops */
314 /* Increment number of outer iterations */
315 outeriter += nri;
317 /* Update outer/inner flops */
319 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*41);
322 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwNone_GeomP1P1_F_sse4_1_double
323 * Electrostatics interaction: Ewald
324 * VdW interaction: None
325 * Geometry: Particle-Particle
326 * Calculate force/pot: Force
328 void
329 nb_kernel_ElecEw_VdwNone_GeomP1P1_F_sse4_1_double
330 (t_nblist * gmx_restrict nlist,
331 rvec * gmx_restrict xx,
332 rvec * gmx_restrict ff,
333 t_forcerec * gmx_restrict fr,
334 t_mdatoms * gmx_restrict mdatoms,
335 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
336 t_nrnb * gmx_restrict nrnb)
338 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
339 * just 0 for non-waters.
340 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
341 * jnr indices corresponding to data put in the four positions in the SIMD register.
343 int i_shift_offset,i_coord_offset,outeriter,inneriter;
344 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
345 int jnrA,jnrB;
346 int j_coord_offsetA,j_coord_offsetB;
347 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
348 real rcutoff_scalar;
349 real *shiftvec,*fshift,*x,*f;
350 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
351 int vdwioffset0;
352 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
353 int vdwjidx0A,vdwjidx0B;
354 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
355 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
356 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
357 real *charge;
358 __m128i ewitab;
359 __m128d ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
360 real *ewtab;
361 __m128d dummy_mask,cutoff_mask;
362 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
363 __m128d one = _mm_set1_pd(1.0);
364 __m128d two = _mm_set1_pd(2.0);
365 x = xx[0];
366 f = ff[0];
368 nri = nlist->nri;
369 iinr = nlist->iinr;
370 jindex = nlist->jindex;
371 jjnr = nlist->jjnr;
372 shiftidx = nlist->shift;
373 gid = nlist->gid;
374 shiftvec = fr->shift_vec[0];
375 fshift = fr->fshift[0];
376 facel = _mm_set1_pd(fr->epsfac);
377 charge = mdatoms->chargeA;
379 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
380 ewtab = fr->ic->tabq_coul_F;
381 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
382 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
384 /* Avoid stupid compiler warnings */
385 jnrA = jnrB = 0;
386 j_coord_offsetA = 0;
387 j_coord_offsetB = 0;
389 outeriter = 0;
390 inneriter = 0;
392 /* Start outer loop over neighborlists */
393 for(iidx=0; iidx<nri; iidx++)
395 /* Load shift vector for this list */
396 i_shift_offset = DIM*shiftidx[iidx];
398 /* Load limits for loop over neighbors */
399 j_index_start = jindex[iidx];
400 j_index_end = jindex[iidx+1];
402 /* Get outer coordinate index */
403 inr = iinr[iidx];
404 i_coord_offset = DIM*inr;
406 /* Load i particle coords and add shift vector */
407 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
409 fix0 = _mm_setzero_pd();
410 fiy0 = _mm_setzero_pd();
411 fiz0 = _mm_setzero_pd();
413 /* Load parameters for i particles */
414 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
416 /* Start inner kernel loop */
417 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
420 /* Get j neighbor index, and coordinate index */
421 jnrA = jjnr[jidx];
422 jnrB = jjnr[jidx+1];
423 j_coord_offsetA = DIM*jnrA;
424 j_coord_offsetB = DIM*jnrB;
426 /* load j atom coordinates */
427 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
428 &jx0,&jy0,&jz0);
430 /* Calculate displacement vector */
431 dx00 = _mm_sub_pd(ix0,jx0);
432 dy00 = _mm_sub_pd(iy0,jy0);
433 dz00 = _mm_sub_pd(iz0,jz0);
435 /* Calculate squared distance and things based on it */
436 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
438 rinv00 = gmx_mm_invsqrt_pd(rsq00);
440 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
442 /* Load parameters for j particles */
443 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
445 /**************************
446 * CALCULATE INTERACTIONS *
447 **************************/
449 r00 = _mm_mul_pd(rsq00,rinv00);
451 /* Compute parameters for interactions between i and j atoms */
452 qq00 = _mm_mul_pd(iq0,jq0);
454 /* EWALD ELECTROSTATICS */
456 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
457 ewrt = _mm_mul_pd(r00,ewtabscale);
458 ewitab = _mm_cvttpd_epi32(ewrt);
459 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
460 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
461 &ewtabF,&ewtabFn);
462 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
463 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
465 fscal = felec;
467 /* Calculate temporary vectorial force */
468 tx = _mm_mul_pd(fscal,dx00);
469 ty = _mm_mul_pd(fscal,dy00);
470 tz = _mm_mul_pd(fscal,dz00);
472 /* Update vectorial force */
473 fix0 = _mm_add_pd(fix0,tx);
474 fiy0 = _mm_add_pd(fiy0,ty);
475 fiz0 = _mm_add_pd(fiz0,tz);
477 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
479 /* Inner loop uses 36 flops */
482 if(jidx<j_index_end)
485 jnrA = jjnr[jidx];
486 j_coord_offsetA = DIM*jnrA;
488 /* load j atom coordinates */
489 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
490 &jx0,&jy0,&jz0);
492 /* Calculate displacement vector */
493 dx00 = _mm_sub_pd(ix0,jx0);
494 dy00 = _mm_sub_pd(iy0,jy0);
495 dz00 = _mm_sub_pd(iz0,jz0);
497 /* Calculate squared distance and things based on it */
498 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
500 rinv00 = gmx_mm_invsqrt_pd(rsq00);
502 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
504 /* Load parameters for j particles */
505 jq0 = _mm_load_sd(charge+jnrA+0);
507 /**************************
508 * CALCULATE INTERACTIONS *
509 **************************/
511 r00 = _mm_mul_pd(rsq00,rinv00);
513 /* Compute parameters for interactions between i and j atoms */
514 qq00 = _mm_mul_pd(iq0,jq0);
516 /* EWALD ELECTROSTATICS */
518 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
519 ewrt = _mm_mul_pd(r00,ewtabscale);
520 ewitab = _mm_cvttpd_epi32(ewrt);
521 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
522 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
523 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
524 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
526 fscal = felec;
528 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
530 /* Calculate temporary vectorial force */
531 tx = _mm_mul_pd(fscal,dx00);
532 ty = _mm_mul_pd(fscal,dy00);
533 tz = _mm_mul_pd(fscal,dz00);
535 /* Update vectorial force */
536 fix0 = _mm_add_pd(fix0,tx);
537 fiy0 = _mm_add_pd(fiy0,ty);
538 fiz0 = _mm_add_pd(fiz0,tz);
540 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
542 /* Inner loop uses 36 flops */
545 /* End of innermost loop */
547 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
548 f+i_coord_offset,fshift+i_shift_offset);
550 /* Increment number of inner iterations */
551 inneriter += j_index_end - j_index_start;
553 /* Outer loop uses 7 flops */
556 /* Increment number of outer iterations */
557 outeriter += nri;
559 /* Update outer/inner flops */
561 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*36);