Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_sse2_single.c
blob599c0040fac552320afef49d81ab60ab04089751
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_single kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
51 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse2_single
52 * Electrostatics interaction: Ewald
53 * VdW interaction: LJEwald
54 * Geometry: Particle-Particle
55 * Calculate force/pot: PotentialAndForce
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_sse2_single
59 (t_nblist * gmx_restrict nlist,
60 rvec * gmx_restrict xx,
61 rvec * gmx_restrict ff,
62 t_forcerec * gmx_restrict fr,
63 t_mdatoms * gmx_restrict mdatoms,
64 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65 t_nrnb * gmx_restrict nrnb)
67 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68 * just 0 for non-waters.
69 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70 * jnr indices corresponding to data put in the four positions in the SIMD register.
72 int i_shift_offset,i_coord_offset,outeriter,inneriter;
73 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74 int jnrA,jnrB,jnrC,jnrD;
75 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
78 real rcutoff_scalar;
79 real *shiftvec,*fshift,*x,*f;
80 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81 real scratch[4*DIM];
82 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83 int vdwioffset0;
84 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
89 real *charge;
90 int nvdwtype;
91 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92 int *vdwtype;
93 real *vdwparam;
94 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
95 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
96 __m128 c6grid_00;
97 __m128 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
98 real *vdwgridparam;
99 __m128 one_half = _mm_set1_ps(0.5);
100 __m128 minus_one = _mm_set1_ps(-1.0);
101 __m128i ewitab;
102 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103 real *ewtab;
104 __m128 dummy_mask,cutoff_mask;
105 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106 __m128 one = _mm_set1_ps(1.0);
107 __m128 two = _mm_set1_ps(2.0);
108 x = xx[0];
109 f = ff[0];
111 nri = nlist->nri;
112 iinr = nlist->iinr;
113 jindex = nlist->jindex;
114 jjnr = nlist->jjnr;
115 shiftidx = nlist->shift;
116 gid = nlist->gid;
117 shiftvec = fr->shift_vec[0];
118 fshift = fr->fshift[0];
119 facel = _mm_set1_ps(fr->epsfac);
120 charge = mdatoms->chargeA;
121 nvdwtype = fr->ntype;
122 vdwparam = fr->nbfp;
123 vdwtype = mdatoms->typeA;
124 vdwgridparam = fr->ljpme_c6grid;
125 sh_lj_ewald = _mm_set1_ps(fr->ic->sh_lj_ewald);
126 ewclj = _mm_set1_ps(fr->ewaldcoeff_lj);
127 ewclj2 = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
129 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
130 ewtab = fr->ic->tabq_coul_FDV0;
131 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
132 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
134 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
135 rcutoff_scalar = fr->rcoulomb;
136 rcutoff = _mm_set1_ps(rcutoff_scalar);
137 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
139 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
140 rvdw = _mm_set1_ps(fr->rvdw);
142 /* Avoid stupid compiler warnings */
143 jnrA = jnrB = jnrC = jnrD = 0;
144 j_coord_offsetA = 0;
145 j_coord_offsetB = 0;
146 j_coord_offsetC = 0;
147 j_coord_offsetD = 0;
149 outeriter = 0;
150 inneriter = 0;
152 for(iidx=0;iidx<4*DIM;iidx++)
154 scratch[iidx] = 0.0;
157 /* Start outer loop over neighborlists */
158 for(iidx=0; iidx<nri; iidx++)
160 /* Load shift vector for this list */
161 i_shift_offset = DIM*shiftidx[iidx];
163 /* Load limits for loop over neighbors */
164 j_index_start = jindex[iidx];
165 j_index_end = jindex[iidx+1];
167 /* Get outer coordinate index */
168 inr = iinr[iidx];
169 i_coord_offset = DIM*inr;
171 /* Load i particle coords and add shift vector */
172 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
174 fix0 = _mm_setzero_ps();
175 fiy0 = _mm_setzero_ps();
176 fiz0 = _mm_setzero_ps();
178 /* Load parameters for i particles */
179 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
180 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
182 /* Reset potential sums */
183 velecsum = _mm_setzero_ps();
184 vvdwsum = _mm_setzero_ps();
186 /* Start inner kernel loop */
187 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
190 /* Get j neighbor index, and coordinate index */
191 jnrA = jjnr[jidx];
192 jnrB = jjnr[jidx+1];
193 jnrC = jjnr[jidx+2];
194 jnrD = jjnr[jidx+3];
195 j_coord_offsetA = DIM*jnrA;
196 j_coord_offsetB = DIM*jnrB;
197 j_coord_offsetC = DIM*jnrC;
198 j_coord_offsetD = DIM*jnrD;
200 /* load j atom coordinates */
201 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202 x+j_coord_offsetC,x+j_coord_offsetD,
203 &jx0,&jy0,&jz0);
205 /* Calculate displacement vector */
206 dx00 = _mm_sub_ps(ix0,jx0);
207 dy00 = _mm_sub_ps(iy0,jy0);
208 dz00 = _mm_sub_ps(iz0,jz0);
210 /* Calculate squared distance and things based on it */
211 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
213 rinv00 = gmx_mm_invsqrt_ps(rsq00);
215 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
217 /* Load parameters for j particles */
218 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
219 charge+jnrC+0,charge+jnrD+0);
220 vdwjidx0A = 2*vdwtype[jnrA+0];
221 vdwjidx0B = 2*vdwtype[jnrB+0];
222 vdwjidx0C = 2*vdwtype[jnrC+0];
223 vdwjidx0D = 2*vdwtype[jnrD+0];
225 /**************************
226 * CALCULATE INTERACTIONS *
227 **************************/
229 if (gmx_mm_any_lt(rsq00,rcutoff2))
232 r00 = _mm_mul_ps(rsq00,rinv00);
234 /* Compute parameters for interactions between i and j atoms */
235 qq00 = _mm_mul_ps(iq0,jq0);
236 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
237 vdwparam+vdwioffset0+vdwjidx0B,
238 vdwparam+vdwioffset0+vdwjidx0C,
239 vdwparam+vdwioffset0+vdwjidx0D,
240 &c6_00,&c12_00);
241 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
242 vdwgridparam+vdwioffset0+vdwjidx0B,
243 vdwgridparam+vdwioffset0+vdwjidx0C,
244 vdwgridparam+vdwioffset0+vdwjidx0D);
246 /* EWALD ELECTROSTATICS */
248 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
249 ewrt = _mm_mul_ps(r00,ewtabscale);
250 ewitab = _mm_cvttps_epi32(ewrt);
251 eweps = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
252 ewitab = _mm_slli_epi32(ewitab,2);
253 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
254 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
255 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
256 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
257 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
258 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
259 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
260 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
261 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
263 /* Analytical LJ-PME */
264 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
265 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
266 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
267 exponent = gmx_simd_exp_r(ewcljrsq);
268 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
269 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
270 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
271 vvdw6 = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
272 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
273 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
274 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
275 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
276 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
278 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
280 /* Update potential sum for this i atom from the interaction with this j atom. */
281 velec = _mm_and_ps(velec,cutoff_mask);
282 velecsum = _mm_add_ps(velecsum,velec);
283 vvdw = _mm_and_ps(vvdw,cutoff_mask);
284 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
286 fscal = _mm_add_ps(felec,fvdw);
288 fscal = _mm_and_ps(fscal,cutoff_mask);
290 /* Calculate temporary vectorial force */
291 tx = _mm_mul_ps(fscal,dx00);
292 ty = _mm_mul_ps(fscal,dy00);
293 tz = _mm_mul_ps(fscal,dz00);
295 /* Update vectorial force */
296 fix0 = _mm_add_ps(fix0,tx);
297 fiy0 = _mm_add_ps(fiy0,ty);
298 fiz0 = _mm_add_ps(fiz0,tz);
300 fjptrA = f+j_coord_offsetA;
301 fjptrB = f+j_coord_offsetB;
302 fjptrC = f+j_coord_offsetC;
303 fjptrD = f+j_coord_offsetD;
304 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
308 /* Inner loop uses 82 flops */
311 if(jidx<j_index_end)
314 /* Get j neighbor index, and coordinate index */
315 jnrlistA = jjnr[jidx];
316 jnrlistB = jjnr[jidx+1];
317 jnrlistC = jjnr[jidx+2];
318 jnrlistD = jjnr[jidx+3];
319 /* Sign of each element will be negative for non-real atoms.
320 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
321 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
323 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
324 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
325 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
326 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
327 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
328 j_coord_offsetA = DIM*jnrA;
329 j_coord_offsetB = DIM*jnrB;
330 j_coord_offsetC = DIM*jnrC;
331 j_coord_offsetD = DIM*jnrD;
333 /* load j atom coordinates */
334 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
335 x+j_coord_offsetC,x+j_coord_offsetD,
336 &jx0,&jy0,&jz0);
338 /* Calculate displacement vector */
339 dx00 = _mm_sub_ps(ix0,jx0);
340 dy00 = _mm_sub_ps(iy0,jy0);
341 dz00 = _mm_sub_ps(iz0,jz0);
343 /* Calculate squared distance and things based on it */
344 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
346 rinv00 = gmx_mm_invsqrt_ps(rsq00);
348 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
350 /* Load parameters for j particles */
351 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
352 charge+jnrC+0,charge+jnrD+0);
353 vdwjidx0A = 2*vdwtype[jnrA+0];
354 vdwjidx0B = 2*vdwtype[jnrB+0];
355 vdwjidx0C = 2*vdwtype[jnrC+0];
356 vdwjidx0D = 2*vdwtype[jnrD+0];
358 /**************************
359 * CALCULATE INTERACTIONS *
360 **************************/
362 if (gmx_mm_any_lt(rsq00,rcutoff2))
365 r00 = _mm_mul_ps(rsq00,rinv00);
366 r00 = _mm_andnot_ps(dummy_mask,r00);
368 /* Compute parameters for interactions between i and j atoms */
369 qq00 = _mm_mul_ps(iq0,jq0);
370 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
371 vdwparam+vdwioffset0+vdwjidx0B,
372 vdwparam+vdwioffset0+vdwjidx0C,
373 vdwparam+vdwioffset0+vdwjidx0D,
374 &c6_00,&c12_00);
375 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
376 vdwgridparam+vdwioffset0+vdwjidx0B,
377 vdwgridparam+vdwioffset0+vdwjidx0C,
378 vdwgridparam+vdwioffset0+vdwjidx0D);
380 /* EWALD ELECTROSTATICS */
382 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
383 ewrt = _mm_mul_ps(r00,ewtabscale);
384 ewitab = _mm_cvttps_epi32(ewrt);
385 eweps = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
386 ewitab = _mm_slli_epi32(ewitab,2);
387 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
388 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
389 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
390 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
391 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
392 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
393 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
394 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
395 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
397 /* Analytical LJ-PME */
398 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
399 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
400 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
401 exponent = gmx_simd_exp_r(ewcljrsq);
402 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
403 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
404 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
405 vvdw6 = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
406 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
407 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
408 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
409 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
410 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
412 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
414 /* Update potential sum for this i atom from the interaction with this j atom. */
415 velec = _mm_and_ps(velec,cutoff_mask);
416 velec = _mm_andnot_ps(dummy_mask,velec);
417 velecsum = _mm_add_ps(velecsum,velec);
418 vvdw = _mm_and_ps(vvdw,cutoff_mask);
419 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
420 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
422 fscal = _mm_add_ps(felec,fvdw);
424 fscal = _mm_and_ps(fscal,cutoff_mask);
426 fscal = _mm_andnot_ps(dummy_mask,fscal);
428 /* Calculate temporary vectorial force */
429 tx = _mm_mul_ps(fscal,dx00);
430 ty = _mm_mul_ps(fscal,dy00);
431 tz = _mm_mul_ps(fscal,dz00);
433 /* Update vectorial force */
434 fix0 = _mm_add_ps(fix0,tx);
435 fiy0 = _mm_add_ps(fiy0,ty);
436 fiz0 = _mm_add_ps(fiz0,tz);
438 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
439 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
440 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
441 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
442 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
446 /* Inner loop uses 83 flops */
449 /* End of innermost loop */
451 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
452 f+i_coord_offset,fshift+i_shift_offset);
454 ggid = gid[iidx];
455 /* Update potential energies */
456 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
457 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
459 /* Increment number of inner iterations */
460 inneriter += j_index_end - j_index_start;
462 /* Outer loop uses 9 flops */
465 /* Increment number of outer iterations */
466 outeriter += nri;
468 /* Update outer/inner flops */
470 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*83);
473 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse2_single
474 * Electrostatics interaction: Ewald
475 * VdW interaction: LJEwald
476 * Geometry: Particle-Particle
477 * Calculate force/pot: Force
479 void
480 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_sse2_single
481 (t_nblist * gmx_restrict nlist,
482 rvec * gmx_restrict xx,
483 rvec * gmx_restrict ff,
484 t_forcerec * gmx_restrict fr,
485 t_mdatoms * gmx_restrict mdatoms,
486 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
487 t_nrnb * gmx_restrict nrnb)
489 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
490 * just 0 for non-waters.
491 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
492 * jnr indices corresponding to data put in the four positions in the SIMD register.
494 int i_shift_offset,i_coord_offset,outeriter,inneriter;
495 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
496 int jnrA,jnrB,jnrC,jnrD;
497 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
498 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
499 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
500 real rcutoff_scalar;
501 real *shiftvec,*fshift,*x,*f;
502 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
503 real scratch[4*DIM];
504 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
505 int vdwioffset0;
506 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
507 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
508 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
509 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
510 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
511 real *charge;
512 int nvdwtype;
513 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
514 int *vdwtype;
515 real *vdwparam;
516 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
517 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
518 __m128 c6grid_00;
519 __m128 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
520 real *vdwgridparam;
521 __m128 one_half = _mm_set1_ps(0.5);
522 __m128 minus_one = _mm_set1_ps(-1.0);
523 __m128i ewitab;
524 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
525 real *ewtab;
526 __m128 dummy_mask,cutoff_mask;
527 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
528 __m128 one = _mm_set1_ps(1.0);
529 __m128 two = _mm_set1_ps(2.0);
530 x = xx[0];
531 f = ff[0];
533 nri = nlist->nri;
534 iinr = nlist->iinr;
535 jindex = nlist->jindex;
536 jjnr = nlist->jjnr;
537 shiftidx = nlist->shift;
538 gid = nlist->gid;
539 shiftvec = fr->shift_vec[0];
540 fshift = fr->fshift[0];
541 facel = _mm_set1_ps(fr->epsfac);
542 charge = mdatoms->chargeA;
543 nvdwtype = fr->ntype;
544 vdwparam = fr->nbfp;
545 vdwtype = mdatoms->typeA;
546 vdwgridparam = fr->ljpme_c6grid;
547 sh_lj_ewald = _mm_set1_ps(fr->ic->sh_lj_ewald);
548 ewclj = _mm_set1_ps(fr->ewaldcoeff_lj);
549 ewclj2 = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
551 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
552 ewtab = fr->ic->tabq_coul_F;
553 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
554 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
556 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
557 rcutoff_scalar = fr->rcoulomb;
558 rcutoff = _mm_set1_ps(rcutoff_scalar);
559 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
561 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
562 rvdw = _mm_set1_ps(fr->rvdw);
564 /* Avoid stupid compiler warnings */
565 jnrA = jnrB = jnrC = jnrD = 0;
566 j_coord_offsetA = 0;
567 j_coord_offsetB = 0;
568 j_coord_offsetC = 0;
569 j_coord_offsetD = 0;
571 outeriter = 0;
572 inneriter = 0;
574 for(iidx=0;iidx<4*DIM;iidx++)
576 scratch[iidx] = 0.0;
579 /* Start outer loop over neighborlists */
580 for(iidx=0; iidx<nri; iidx++)
582 /* Load shift vector for this list */
583 i_shift_offset = DIM*shiftidx[iidx];
585 /* Load limits for loop over neighbors */
586 j_index_start = jindex[iidx];
587 j_index_end = jindex[iidx+1];
589 /* Get outer coordinate index */
590 inr = iinr[iidx];
591 i_coord_offset = DIM*inr;
593 /* Load i particle coords and add shift vector */
594 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
596 fix0 = _mm_setzero_ps();
597 fiy0 = _mm_setzero_ps();
598 fiz0 = _mm_setzero_ps();
600 /* Load parameters for i particles */
601 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
602 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
604 /* Start inner kernel loop */
605 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
608 /* Get j neighbor index, and coordinate index */
609 jnrA = jjnr[jidx];
610 jnrB = jjnr[jidx+1];
611 jnrC = jjnr[jidx+2];
612 jnrD = jjnr[jidx+3];
613 j_coord_offsetA = DIM*jnrA;
614 j_coord_offsetB = DIM*jnrB;
615 j_coord_offsetC = DIM*jnrC;
616 j_coord_offsetD = DIM*jnrD;
618 /* load j atom coordinates */
619 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
620 x+j_coord_offsetC,x+j_coord_offsetD,
621 &jx0,&jy0,&jz0);
623 /* Calculate displacement vector */
624 dx00 = _mm_sub_ps(ix0,jx0);
625 dy00 = _mm_sub_ps(iy0,jy0);
626 dz00 = _mm_sub_ps(iz0,jz0);
628 /* Calculate squared distance and things based on it */
629 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
631 rinv00 = gmx_mm_invsqrt_ps(rsq00);
633 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
635 /* Load parameters for j particles */
636 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
637 charge+jnrC+0,charge+jnrD+0);
638 vdwjidx0A = 2*vdwtype[jnrA+0];
639 vdwjidx0B = 2*vdwtype[jnrB+0];
640 vdwjidx0C = 2*vdwtype[jnrC+0];
641 vdwjidx0D = 2*vdwtype[jnrD+0];
643 /**************************
644 * CALCULATE INTERACTIONS *
645 **************************/
647 if (gmx_mm_any_lt(rsq00,rcutoff2))
650 r00 = _mm_mul_ps(rsq00,rinv00);
652 /* Compute parameters for interactions between i and j atoms */
653 qq00 = _mm_mul_ps(iq0,jq0);
654 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
655 vdwparam+vdwioffset0+vdwjidx0B,
656 vdwparam+vdwioffset0+vdwjidx0C,
657 vdwparam+vdwioffset0+vdwjidx0D,
658 &c6_00,&c12_00);
659 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
660 vdwgridparam+vdwioffset0+vdwjidx0B,
661 vdwgridparam+vdwioffset0+vdwjidx0C,
662 vdwgridparam+vdwioffset0+vdwjidx0D);
664 /* EWALD ELECTROSTATICS */
666 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
667 ewrt = _mm_mul_ps(r00,ewtabscale);
668 ewitab = _mm_cvttps_epi32(ewrt);
669 eweps = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
670 gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
671 ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
672 &ewtabF,&ewtabFn);
673 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
674 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
676 /* Analytical LJ-PME */
677 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
678 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
679 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
680 exponent = gmx_simd_exp_r(ewcljrsq);
681 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
682 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
683 /* f6A = 6 * C6grid * (1 - poly) */
684 f6A = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
685 /* f6B = C6grid * exponent * beta^6 */
686 f6B = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
687 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
688 fvdw = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
690 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
692 fscal = _mm_add_ps(felec,fvdw);
694 fscal = _mm_and_ps(fscal,cutoff_mask);
696 /* Calculate temporary vectorial force */
697 tx = _mm_mul_ps(fscal,dx00);
698 ty = _mm_mul_ps(fscal,dy00);
699 tz = _mm_mul_ps(fscal,dz00);
701 /* Update vectorial force */
702 fix0 = _mm_add_ps(fix0,tx);
703 fiy0 = _mm_add_ps(fiy0,ty);
704 fiz0 = _mm_add_ps(fiz0,tz);
706 fjptrA = f+j_coord_offsetA;
707 fjptrB = f+j_coord_offsetB;
708 fjptrC = f+j_coord_offsetC;
709 fjptrD = f+j_coord_offsetD;
710 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
714 /* Inner loop uses 62 flops */
717 if(jidx<j_index_end)
720 /* Get j neighbor index, and coordinate index */
721 jnrlistA = jjnr[jidx];
722 jnrlistB = jjnr[jidx+1];
723 jnrlistC = jjnr[jidx+2];
724 jnrlistD = jjnr[jidx+3];
725 /* Sign of each element will be negative for non-real atoms.
726 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
727 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
729 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
730 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
731 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
732 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
733 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
734 j_coord_offsetA = DIM*jnrA;
735 j_coord_offsetB = DIM*jnrB;
736 j_coord_offsetC = DIM*jnrC;
737 j_coord_offsetD = DIM*jnrD;
739 /* load j atom coordinates */
740 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
741 x+j_coord_offsetC,x+j_coord_offsetD,
742 &jx0,&jy0,&jz0);
744 /* Calculate displacement vector */
745 dx00 = _mm_sub_ps(ix0,jx0);
746 dy00 = _mm_sub_ps(iy0,jy0);
747 dz00 = _mm_sub_ps(iz0,jz0);
749 /* Calculate squared distance and things based on it */
750 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
752 rinv00 = gmx_mm_invsqrt_ps(rsq00);
754 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
756 /* Load parameters for j particles */
757 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
758 charge+jnrC+0,charge+jnrD+0);
759 vdwjidx0A = 2*vdwtype[jnrA+0];
760 vdwjidx0B = 2*vdwtype[jnrB+0];
761 vdwjidx0C = 2*vdwtype[jnrC+0];
762 vdwjidx0D = 2*vdwtype[jnrD+0];
764 /**************************
765 * CALCULATE INTERACTIONS *
766 **************************/
768 if (gmx_mm_any_lt(rsq00,rcutoff2))
771 r00 = _mm_mul_ps(rsq00,rinv00);
772 r00 = _mm_andnot_ps(dummy_mask,r00);
774 /* Compute parameters for interactions between i and j atoms */
775 qq00 = _mm_mul_ps(iq0,jq0);
776 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
777 vdwparam+vdwioffset0+vdwjidx0B,
778 vdwparam+vdwioffset0+vdwjidx0C,
779 vdwparam+vdwioffset0+vdwjidx0D,
780 &c6_00,&c12_00);
781 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
782 vdwgridparam+vdwioffset0+vdwjidx0B,
783 vdwgridparam+vdwioffset0+vdwjidx0C,
784 vdwgridparam+vdwioffset0+vdwjidx0D);
786 /* EWALD ELECTROSTATICS */
788 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
789 ewrt = _mm_mul_ps(r00,ewtabscale);
790 ewitab = _mm_cvttps_epi32(ewrt);
791 eweps = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
792 gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
793 ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
794 &ewtabF,&ewtabFn);
795 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
796 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
798 /* Analytical LJ-PME */
799 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
800 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
801 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
802 exponent = gmx_simd_exp_r(ewcljrsq);
803 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
804 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
805 /* f6A = 6 * C6grid * (1 - poly) */
806 f6A = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
807 /* f6B = C6grid * exponent * beta^6 */
808 f6B = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
809 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
810 fvdw = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
812 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
814 fscal = _mm_add_ps(felec,fvdw);
816 fscal = _mm_and_ps(fscal,cutoff_mask);
818 fscal = _mm_andnot_ps(dummy_mask,fscal);
820 /* Calculate temporary vectorial force */
821 tx = _mm_mul_ps(fscal,dx00);
822 ty = _mm_mul_ps(fscal,dy00);
823 tz = _mm_mul_ps(fscal,dz00);
825 /* Update vectorial force */
826 fix0 = _mm_add_ps(fix0,tx);
827 fiy0 = _mm_add_ps(fiy0,ty);
828 fiz0 = _mm_add_ps(fiz0,tz);
830 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
831 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
832 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
833 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
834 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
838 /* Inner loop uses 63 flops */
841 /* End of innermost loop */
843 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
844 f+i_coord_offset,fshift+i_shift_offset);
846 /* Increment number of inner iterations */
847 inneriter += j_index_end - j_index_start;
849 /* Outer loop uses 7 flops */
852 /* Increment number of outer iterations */
853 outeriter += nri;
855 /* Update outer/inner flops */
857 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);