Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCoul_VdwLJ_GeomW4P1_sse2_single.c
blobf9f7a2c00fb0fe9af4cb7dd6722079c360945d02
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse2_single kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
51 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_sse2_single
52 * Electrostatics interaction: Coulomb
53 * VdW interaction: LennardJones
54 * Geometry: Water4-Particle
55 * Calculate force/pot: PotentialAndForce
57 void
58 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_sse2_single
59 (t_nblist * gmx_restrict nlist,
60 rvec * gmx_restrict xx,
61 rvec * gmx_restrict ff,
62 t_forcerec * gmx_restrict fr,
63 t_mdatoms * gmx_restrict mdatoms,
64 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65 t_nrnb * gmx_restrict nrnb)
67 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68 * just 0 for non-waters.
69 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70 * jnr indices corresponding to data put in the four positions in the SIMD register.
72 int i_shift_offset,i_coord_offset,outeriter,inneriter;
73 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74 int jnrA,jnrB,jnrC,jnrD;
75 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
78 real rcutoff_scalar;
79 real *shiftvec,*fshift,*x,*f;
80 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81 real scratch[4*DIM];
82 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83 int vdwioffset0;
84 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85 int vdwioffset1;
86 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87 int vdwioffset2;
88 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89 int vdwioffset3;
90 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
98 real *charge;
99 int nvdwtype;
100 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101 int *vdwtype;
102 real *vdwparam;
103 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
104 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
105 __m128 dummy_mask,cutoff_mask;
106 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
107 __m128 one = _mm_set1_ps(1.0);
108 __m128 two = _mm_set1_ps(2.0);
109 x = xx[0];
110 f = ff[0];
112 nri = nlist->nri;
113 iinr = nlist->iinr;
114 jindex = nlist->jindex;
115 jjnr = nlist->jjnr;
116 shiftidx = nlist->shift;
117 gid = nlist->gid;
118 shiftvec = fr->shift_vec[0];
119 fshift = fr->fshift[0];
120 facel = _mm_set1_ps(fr->epsfac);
121 charge = mdatoms->chargeA;
122 nvdwtype = fr->ntype;
123 vdwparam = fr->nbfp;
124 vdwtype = mdatoms->typeA;
126 /* Setup water-specific parameters */
127 inr = nlist->iinr[0];
128 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
129 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
130 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
131 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
133 /* Avoid stupid compiler warnings */
134 jnrA = jnrB = jnrC = jnrD = 0;
135 j_coord_offsetA = 0;
136 j_coord_offsetB = 0;
137 j_coord_offsetC = 0;
138 j_coord_offsetD = 0;
140 outeriter = 0;
141 inneriter = 0;
143 for(iidx=0;iidx<4*DIM;iidx++)
145 scratch[iidx] = 0.0;
148 /* Start outer loop over neighborlists */
149 for(iidx=0; iidx<nri; iidx++)
151 /* Load shift vector for this list */
152 i_shift_offset = DIM*shiftidx[iidx];
154 /* Load limits for loop over neighbors */
155 j_index_start = jindex[iidx];
156 j_index_end = jindex[iidx+1];
158 /* Get outer coordinate index */
159 inr = iinr[iidx];
160 i_coord_offset = DIM*inr;
162 /* Load i particle coords and add shift vector */
163 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
164 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
166 fix0 = _mm_setzero_ps();
167 fiy0 = _mm_setzero_ps();
168 fiz0 = _mm_setzero_ps();
169 fix1 = _mm_setzero_ps();
170 fiy1 = _mm_setzero_ps();
171 fiz1 = _mm_setzero_ps();
172 fix2 = _mm_setzero_ps();
173 fiy2 = _mm_setzero_ps();
174 fiz2 = _mm_setzero_ps();
175 fix3 = _mm_setzero_ps();
176 fiy3 = _mm_setzero_ps();
177 fiz3 = _mm_setzero_ps();
179 /* Reset potential sums */
180 velecsum = _mm_setzero_ps();
181 vvdwsum = _mm_setzero_ps();
183 /* Start inner kernel loop */
184 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187 /* Get j neighbor index, and coordinate index */
188 jnrA = jjnr[jidx];
189 jnrB = jjnr[jidx+1];
190 jnrC = jjnr[jidx+2];
191 jnrD = jjnr[jidx+3];
192 j_coord_offsetA = DIM*jnrA;
193 j_coord_offsetB = DIM*jnrB;
194 j_coord_offsetC = DIM*jnrC;
195 j_coord_offsetD = DIM*jnrD;
197 /* load j atom coordinates */
198 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199 x+j_coord_offsetC,x+j_coord_offsetD,
200 &jx0,&jy0,&jz0);
202 /* Calculate displacement vector */
203 dx00 = _mm_sub_ps(ix0,jx0);
204 dy00 = _mm_sub_ps(iy0,jy0);
205 dz00 = _mm_sub_ps(iz0,jz0);
206 dx10 = _mm_sub_ps(ix1,jx0);
207 dy10 = _mm_sub_ps(iy1,jy0);
208 dz10 = _mm_sub_ps(iz1,jz0);
209 dx20 = _mm_sub_ps(ix2,jx0);
210 dy20 = _mm_sub_ps(iy2,jy0);
211 dz20 = _mm_sub_ps(iz2,jz0);
212 dx30 = _mm_sub_ps(ix3,jx0);
213 dy30 = _mm_sub_ps(iy3,jy0);
214 dz30 = _mm_sub_ps(iz3,jz0);
216 /* Calculate squared distance and things based on it */
217 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
218 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
219 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
220 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
222 rinv10 = gmx_mm_invsqrt_ps(rsq10);
223 rinv20 = gmx_mm_invsqrt_ps(rsq20);
224 rinv30 = gmx_mm_invsqrt_ps(rsq30);
226 rinvsq00 = gmx_mm_inv_ps(rsq00);
227 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
228 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
229 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
231 /* Load parameters for j particles */
232 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
233 charge+jnrC+0,charge+jnrD+0);
234 vdwjidx0A = 2*vdwtype[jnrA+0];
235 vdwjidx0B = 2*vdwtype[jnrB+0];
236 vdwjidx0C = 2*vdwtype[jnrC+0];
237 vdwjidx0D = 2*vdwtype[jnrD+0];
239 fjx0 = _mm_setzero_ps();
240 fjy0 = _mm_setzero_ps();
241 fjz0 = _mm_setzero_ps();
243 /**************************
244 * CALCULATE INTERACTIONS *
245 **************************/
247 /* Compute parameters for interactions between i and j atoms */
248 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
249 vdwparam+vdwioffset0+vdwjidx0B,
250 vdwparam+vdwioffset0+vdwjidx0C,
251 vdwparam+vdwioffset0+vdwjidx0D,
252 &c6_00,&c12_00);
254 /* LENNARD-JONES DISPERSION/REPULSION */
256 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
257 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
258 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
259 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
260 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
262 /* Update potential sum for this i atom from the interaction with this j atom. */
263 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
265 fscal = fvdw;
267 /* Calculate temporary vectorial force */
268 tx = _mm_mul_ps(fscal,dx00);
269 ty = _mm_mul_ps(fscal,dy00);
270 tz = _mm_mul_ps(fscal,dz00);
272 /* Update vectorial force */
273 fix0 = _mm_add_ps(fix0,tx);
274 fiy0 = _mm_add_ps(fiy0,ty);
275 fiz0 = _mm_add_ps(fiz0,tz);
277 fjx0 = _mm_add_ps(fjx0,tx);
278 fjy0 = _mm_add_ps(fjy0,ty);
279 fjz0 = _mm_add_ps(fjz0,tz);
281 /**************************
282 * CALCULATE INTERACTIONS *
283 **************************/
285 /* Compute parameters for interactions between i and j atoms */
286 qq10 = _mm_mul_ps(iq1,jq0);
288 /* COULOMB ELECTROSTATICS */
289 velec = _mm_mul_ps(qq10,rinv10);
290 felec = _mm_mul_ps(velec,rinvsq10);
292 /* Update potential sum for this i atom from the interaction with this j atom. */
293 velecsum = _mm_add_ps(velecsum,velec);
295 fscal = felec;
297 /* Calculate temporary vectorial force */
298 tx = _mm_mul_ps(fscal,dx10);
299 ty = _mm_mul_ps(fscal,dy10);
300 tz = _mm_mul_ps(fscal,dz10);
302 /* Update vectorial force */
303 fix1 = _mm_add_ps(fix1,tx);
304 fiy1 = _mm_add_ps(fiy1,ty);
305 fiz1 = _mm_add_ps(fiz1,tz);
307 fjx0 = _mm_add_ps(fjx0,tx);
308 fjy0 = _mm_add_ps(fjy0,ty);
309 fjz0 = _mm_add_ps(fjz0,tz);
311 /**************************
312 * CALCULATE INTERACTIONS *
313 **************************/
315 /* Compute parameters for interactions between i and j atoms */
316 qq20 = _mm_mul_ps(iq2,jq0);
318 /* COULOMB ELECTROSTATICS */
319 velec = _mm_mul_ps(qq20,rinv20);
320 felec = _mm_mul_ps(velec,rinvsq20);
322 /* Update potential sum for this i atom from the interaction with this j atom. */
323 velecsum = _mm_add_ps(velecsum,velec);
325 fscal = felec;
327 /* Calculate temporary vectorial force */
328 tx = _mm_mul_ps(fscal,dx20);
329 ty = _mm_mul_ps(fscal,dy20);
330 tz = _mm_mul_ps(fscal,dz20);
332 /* Update vectorial force */
333 fix2 = _mm_add_ps(fix2,tx);
334 fiy2 = _mm_add_ps(fiy2,ty);
335 fiz2 = _mm_add_ps(fiz2,tz);
337 fjx0 = _mm_add_ps(fjx0,tx);
338 fjy0 = _mm_add_ps(fjy0,ty);
339 fjz0 = _mm_add_ps(fjz0,tz);
341 /**************************
342 * CALCULATE INTERACTIONS *
343 **************************/
345 /* Compute parameters for interactions between i and j atoms */
346 qq30 = _mm_mul_ps(iq3,jq0);
348 /* COULOMB ELECTROSTATICS */
349 velec = _mm_mul_ps(qq30,rinv30);
350 felec = _mm_mul_ps(velec,rinvsq30);
352 /* Update potential sum for this i atom from the interaction with this j atom. */
353 velecsum = _mm_add_ps(velecsum,velec);
355 fscal = felec;
357 /* Calculate temporary vectorial force */
358 tx = _mm_mul_ps(fscal,dx30);
359 ty = _mm_mul_ps(fscal,dy30);
360 tz = _mm_mul_ps(fscal,dz30);
362 /* Update vectorial force */
363 fix3 = _mm_add_ps(fix3,tx);
364 fiy3 = _mm_add_ps(fiy3,ty);
365 fiz3 = _mm_add_ps(fiz3,tz);
367 fjx0 = _mm_add_ps(fjx0,tx);
368 fjy0 = _mm_add_ps(fjy0,ty);
369 fjz0 = _mm_add_ps(fjz0,tz);
371 fjptrA = f+j_coord_offsetA;
372 fjptrB = f+j_coord_offsetB;
373 fjptrC = f+j_coord_offsetC;
374 fjptrD = f+j_coord_offsetD;
376 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
378 /* Inner loop uses 116 flops */
381 if(jidx<j_index_end)
384 /* Get j neighbor index, and coordinate index */
385 jnrlistA = jjnr[jidx];
386 jnrlistB = jjnr[jidx+1];
387 jnrlistC = jjnr[jidx+2];
388 jnrlistD = jjnr[jidx+3];
389 /* Sign of each element will be negative for non-real atoms.
390 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
391 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
393 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
394 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
395 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
396 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
397 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
398 j_coord_offsetA = DIM*jnrA;
399 j_coord_offsetB = DIM*jnrB;
400 j_coord_offsetC = DIM*jnrC;
401 j_coord_offsetD = DIM*jnrD;
403 /* load j atom coordinates */
404 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
405 x+j_coord_offsetC,x+j_coord_offsetD,
406 &jx0,&jy0,&jz0);
408 /* Calculate displacement vector */
409 dx00 = _mm_sub_ps(ix0,jx0);
410 dy00 = _mm_sub_ps(iy0,jy0);
411 dz00 = _mm_sub_ps(iz0,jz0);
412 dx10 = _mm_sub_ps(ix1,jx0);
413 dy10 = _mm_sub_ps(iy1,jy0);
414 dz10 = _mm_sub_ps(iz1,jz0);
415 dx20 = _mm_sub_ps(ix2,jx0);
416 dy20 = _mm_sub_ps(iy2,jy0);
417 dz20 = _mm_sub_ps(iz2,jz0);
418 dx30 = _mm_sub_ps(ix3,jx0);
419 dy30 = _mm_sub_ps(iy3,jy0);
420 dz30 = _mm_sub_ps(iz3,jz0);
422 /* Calculate squared distance and things based on it */
423 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
424 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
425 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
426 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
428 rinv10 = gmx_mm_invsqrt_ps(rsq10);
429 rinv20 = gmx_mm_invsqrt_ps(rsq20);
430 rinv30 = gmx_mm_invsqrt_ps(rsq30);
432 rinvsq00 = gmx_mm_inv_ps(rsq00);
433 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
434 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
435 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
437 /* Load parameters for j particles */
438 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
439 charge+jnrC+0,charge+jnrD+0);
440 vdwjidx0A = 2*vdwtype[jnrA+0];
441 vdwjidx0B = 2*vdwtype[jnrB+0];
442 vdwjidx0C = 2*vdwtype[jnrC+0];
443 vdwjidx0D = 2*vdwtype[jnrD+0];
445 fjx0 = _mm_setzero_ps();
446 fjy0 = _mm_setzero_ps();
447 fjz0 = _mm_setzero_ps();
449 /**************************
450 * CALCULATE INTERACTIONS *
451 **************************/
453 /* Compute parameters for interactions between i and j atoms */
454 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
455 vdwparam+vdwioffset0+vdwjidx0B,
456 vdwparam+vdwioffset0+vdwjidx0C,
457 vdwparam+vdwioffset0+vdwjidx0D,
458 &c6_00,&c12_00);
460 /* LENNARD-JONES DISPERSION/REPULSION */
462 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
463 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
464 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
465 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
466 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
468 /* Update potential sum for this i atom from the interaction with this j atom. */
469 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
470 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
472 fscal = fvdw;
474 fscal = _mm_andnot_ps(dummy_mask,fscal);
476 /* Calculate temporary vectorial force */
477 tx = _mm_mul_ps(fscal,dx00);
478 ty = _mm_mul_ps(fscal,dy00);
479 tz = _mm_mul_ps(fscal,dz00);
481 /* Update vectorial force */
482 fix0 = _mm_add_ps(fix0,tx);
483 fiy0 = _mm_add_ps(fiy0,ty);
484 fiz0 = _mm_add_ps(fiz0,tz);
486 fjx0 = _mm_add_ps(fjx0,tx);
487 fjy0 = _mm_add_ps(fjy0,ty);
488 fjz0 = _mm_add_ps(fjz0,tz);
490 /**************************
491 * CALCULATE INTERACTIONS *
492 **************************/
494 /* Compute parameters for interactions between i and j atoms */
495 qq10 = _mm_mul_ps(iq1,jq0);
497 /* COULOMB ELECTROSTATICS */
498 velec = _mm_mul_ps(qq10,rinv10);
499 felec = _mm_mul_ps(velec,rinvsq10);
501 /* Update potential sum for this i atom from the interaction with this j atom. */
502 velec = _mm_andnot_ps(dummy_mask,velec);
503 velecsum = _mm_add_ps(velecsum,velec);
505 fscal = felec;
507 fscal = _mm_andnot_ps(dummy_mask,fscal);
509 /* Calculate temporary vectorial force */
510 tx = _mm_mul_ps(fscal,dx10);
511 ty = _mm_mul_ps(fscal,dy10);
512 tz = _mm_mul_ps(fscal,dz10);
514 /* Update vectorial force */
515 fix1 = _mm_add_ps(fix1,tx);
516 fiy1 = _mm_add_ps(fiy1,ty);
517 fiz1 = _mm_add_ps(fiz1,tz);
519 fjx0 = _mm_add_ps(fjx0,tx);
520 fjy0 = _mm_add_ps(fjy0,ty);
521 fjz0 = _mm_add_ps(fjz0,tz);
523 /**************************
524 * CALCULATE INTERACTIONS *
525 **************************/
527 /* Compute parameters for interactions between i and j atoms */
528 qq20 = _mm_mul_ps(iq2,jq0);
530 /* COULOMB ELECTROSTATICS */
531 velec = _mm_mul_ps(qq20,rinv20);
532 felec = _mm_mul_ps(velec,rinvsq20);
534 /* Update potential sum for this i atom from the interaction with this j atom. */
535 velec = _mm_andnot_ps(dummy_mask,velec);
536 velecsum = _mm_add_ps(velecsum,velec);
538 fscal = felec;
540 fscal = _mm_andnot_ps(dummy_mask,fscal);
542 /* Calculate temporary vectorial force */
543 tx = _mm_mul_ps(fscal,dx20);
544 ty = _mm_mul_ps(fscal,dy20);
545 tz = _mm_mul_ps(fscal,dz20);
547 /* Update vectorial force */
548 fix2 = _mm_add_ps(fix2,tx);
549 fiy2 = _mm_add_ps(fiy2,ty);
550 fiz2 = _mm_add_ps(fiz2,tz);
552 fjx0 = _mm_add_ps(fjx0,tx);
553 fjy0 = _mm_add_ps(fjy0,ty);
554 fjz0 = _mm_add_ps(fjz0,tz);
556 /**************************
557 * CALCULATE INTERACTIONS *
558 **************************/
560 /* Compute parameters for interactions between i and j atoms */
561 qq30 = _mm_mul_ps(iq3,jq0);
563 /* COULOMB ELECTROSTATICS */
564 velec = _mm_mul_ps(qq30,rinv30);
565 felec = _mm_mul_ps(velec,rinvsq30);
567 /* Update potential sum for this i atom from the interaction with this j atom. */
568 velec = _mm_andnot_ps(dummy_mask,velec);
569 velecsum = _mm_add_ps(velecsum,velec);
571 fscal = felec;
573 fscal = _mm_andnot_ps(dummy_mask,fscal);
575 /* Calculate temporary vectorial force */
576 tx = _mm_mul_ps(fscal,dx30);
577 ty = _mm_mul_ps(fscal,dy30);
578 tz = _mm_mul_ps(fscal,dz30);
580 /* Update vectorial force */
581 fix3 = _mm_add_ps(fix3,tx);
582 fiy3 = _mm_add_ps(fiy3,ty);
583 fiz3 = _mm_add_ps(fiz3,tz);
585 fjx0 = _mm_add_ps(fjx0,tx);
586 fjy0 = _mm_add_ps(fjy0,ty);
587 fjz0 = _mm_add_ps(fjz0,tz);
589 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
590 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
591 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
592 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
594 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
596 /* Inner loop uses 116 flops */
599 /* End of innermost loop */
601 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
602 f+i_coord_offset,fshift+i_shift_offset);
604 ggid = gid[iidx];
605 /* Update potential energies */
606 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
607 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
609 /* Increment number of inner iterations */
610 inneriter += j_index_end - j_index_start;
612 /* Outer loop uses 26 flops */
615 /* Increment number of outer iterations */
616 outeriter += nri;
618 /* Update outer/inner flops */
620 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*116);
623 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_sse2_single
624 * Electrostatics interaction: Coulomb
625 * VdW interaction: LennardJones
626 * Geometry: Water4-Particle
627 * Calculate force/pot: Force
629 void
630 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_sse2_single
631 (t_nblist * gmx_restrict nlist,
632 rvec * gmx_restrict xx,
633 rvec * gmx_restrict ff,
634 t_forcerec * gmx_restrict fr,
635 t_mdatoms * gmx_restrict mdatoms,
636 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
637 t_nrnb * gmx_restrict nrnb)
639 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
640 * just 0 for non-waters.
641 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
642 * jnr indices corresponding to data put in the four positions in the SIMD register.
644 int i_shift_offset,i_coord_offset,outeriter,inneriter;
645 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
646 int jnrA,jnrB,jnrC,jnrD;
647 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
648 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
649 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
650 real rcutoff_scalar;
651 real *shiftvec,*fshift,*x,*f;
652 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
653 real scratch[4*DIM];
654 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
655 int vdwioffset0;
656 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
657 int vdwioffset1;
658 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
659 int vdwioffset2;
660 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
661 int vdwioffset3;
662 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
663 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
664 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
665 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
666 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
667 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
668 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
669 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
670 real *charge;
671 int nvdwtype;
672 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
673 int *vdwtype;
674 real *vdwparam;
675 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
676 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
677 __m128 dummy_mask,cutoff_mask;
678 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
679 __m128 one = _mm_set1_ps(1.0);
680 __m128 two = _mm_set1_ps(2.0);
681 x = xx[0];
682 f = ff[0];
684 nri = nlist->nri;
685 iinr = nlist->iinr;
686 jindex = nlist->jindex;
687 jjnr = nlist->jjnr;
688 shiftidx = nlist->shift;
689 gid = nlist->gid;
690 shiftvec = fr->shift_vec[0];
691 fshift = fr->fshift[0];
692 facel = _mm_set1_ps(fr->epsfac);
693 charge = mdatoms->chargeA;
694 nvdwtype = fr->ntype;
695 vdwparam = fr->nbfp;
696 vdwtype = mdatoms->typeA;
698 /* Setup water-specific parameters */
699 inr = nlist->iinr[0];
700 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
701 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
702 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
703 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
705 /* Avoid stupid compiler warnings */
706 jnrA = jnrB = jnrC = jnrD = 0;
707 j_coord_offsetA = 0;
708 j_coord_offsetB = 0;
709 j_coord_offsetC = 0;
710 j_coord_offsetD = 0;
712 outeriter = 0;
713 inneriter = 0;
715 for(iidx=0;iidx<4*DIM;iidx++)
717 scratch[iidx] = 0.0;
720 /* Start outer loop over neighborlists */
721 for(iidx=0; iidx<nri; iidx++)
723 /* Load shift vector for this list */
724 i_shift_offset = DIM*shiftidx[iidx];
726 /* Load limits for loop over neighbors */
727 j_index_start = jindex[iidx];
728 j_index_end = jindex[iidx+1];
730 /* Get outer coordinate index */
731 inr = iinr[iidx];
732 i_coord_offset = DIM*inr;
734 /* Load i particle coords and add shift vector */
735 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
736 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
738 fix0 = _mm_setzero_ps();
739 fiy0 = _mm_setzero_ps();
740 fiz0 = _mm_setzero_ps();
741 fix1 = _mm_setzero_ps();
742 fiy1 = _mm_setzero_ps();
743 fiz1 = _mm_setzero_ps();
744 fix2 = _mm_setzero_ps();
745 fiy2 = _mm_setzero_ps();
746 fiz2 = _mm_setzero_ps();
747 fix3 = _mm_setzero_ps();
748 fiy3 = _mm_setzero_ps();
749 fiz3 = _mm_setzero_ps();
751 /* Start inner kernel loop */
752 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
755 /* Get j neighbor index, and coordinate index */
756 jnrA = jjnr[jidx];
757 jnrB = jjnr[jidx+1];
758 jnrC = jjnr[jidx+2];
759 jnrD = jjnr[jidx+3];
760 j_coord_offsetA = DIM*jnrA;
761 j_coord_offsetB = DIM*jnrB;
762 j_coord_offsetC = DIM*jnrC;
763 j_coord_offsetD = DIM*jnrD;
765 /* load j atom coordinates */
766 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
767 x+j_coord_offsetC,x+j_coord_offsetD,
768 &jx0,&jy0,&jz0);
770 /* Calculate displacement vector */
771 dx00 = _mm_sub_ps(ix0,jx0);
772 dy00 = _mm_sub_ps(iy0,jy0);
773 dz00 = _mm_sub_ps(iz0,jz0);
774 dx10 = _mm_sub_ps(ix1,jx0);
775 dy10 = _mm_sub_ps(iy1,jy0);
776 dz10 = _mm_sub_ps(iz1,jz0);
777 dx20 = _mm_sub_ps(ix2,jx0);
778 dy20 = _mm_sub_ps(iy2,jy0);
779 dz20 = _mm_sub_ps(iz2,jz0);
780 dx30 = _mm_sub_ps(ix3,jx0);
781 dy30 = _mm_sub_ps(iy3,jy0);
782 dz30 = _mm_sub_ps(iz3,jz0);
784 /* Calculate squared distance and things based on it */
785 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
786 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
787 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
788 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
790 rinv10 = gmx_mm_invsqrt_ps(rsq10);
791 rinv20 = gmx_mm_invsqrt_ps(rsq20);
792 rinv30 = gmx_mm_invsqrt_ps(rsq30);
794 rinvsq00 = gmx_mm_inv_ps(rsq00);
795 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
796 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
797 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
799 /* Load parameters for j particles */
800 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
801 charge+jnrC+0,charge+jnrD+0);
802 vdwjidx0A = 2*vdwtype[jnrA+0];
803 vdwjidx0B = 2*vdwtype[jnrB+0];
804 vdwjidx0C = 2*vdwtype[jnrC+0];
805 vdwjidx0D = 2*vdwtype[jnrD+0];
807 fjx0 = _mm_setzero_ps();
808 fjy0 = _mm_setzero_ps();
809 fjz0 = _mm_setzero_ps();
811 /**************************
812 * CALCULATE INTERACTIONS *
813 **************************/
815 /* Compute parameters for interactions between i and j atoms */
816 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
817 vdwparam+vdwioffset0+vdwjidx0B,
818 vdwparam+vdwioffset0+vdwjidx0C,
819 vdwparam+vdwioffset0+vdwjidx0D,
820 &c6_00,&c12_00);
822 /* LENNARD-JONES DISPERSION/REPULSION */
824 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
825 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
827 fscal = fvdw;
829 /* Calculate temporary vectorial force */
830 tx = _mm_mul_ps(fscal,dx00);
831 ty = _mm_mul_ps(fscal,dy00);
832 tz = _mm_mul_ps(fscal,dz00);
834 /* Update vectorial force */
835 fix0 = _mm_add_ps(fix0,tx);
836 fiy0 = _mm_add_ps(fiy0,ty);
837 fiz0 = _mm_add_ps(fiz0,tz);
839 fjx0 = _mm_add_ps(fjx0,tx);
840 fjy0 = _mm_add_ps(fjy0,ty);
841 fjz0 = _mm_add_ps(fjz0,tz);
843 /**************************
844 * CALCULATE INTERACTIONS *
845 **************************/
847 /* Compute parameters for interactions between i and j atoms */
848 qq10 = _mm_mul_ps(iq1,jq0);
850 /* COULOMB ELECTROSTATICS */
851 velec = _mm_mul_ps(qq10,rinv10);
852 felec = _mm_mul_ps(velec,rinvsq10);
854 fscal = felec;
856 /* Calculate temporary vectorial force */
857 tx = _mm_mul_ps(fscal,dx10);
858 ty = _mm_mul_ps(fscal,dy10);
859 tz = _mm_mul_ps(fscal,dz10);
861 /* Update vectorial force */
862 fix1 = _mm_add_ps(fix1,tx);
863 fiy1 = _mm_add_ps(fiy1,ty);
864 fiz1 = _mm_add_ps(fiz1,tz);
866 fjx0 = _mm_add_ps(fjx0,tx);
867 fjy0 = _mm_add_ps(fjy0,ty);
868 fjz0 = _mm_add_ps(fjz0,tz);
870 /**************************
871 * CALCULATE INTERACTIONS *
872 **************************/
874 /* Compute parameters for interactions between i and j atoms */
875 qq20 = _mm_mul_ps(iq2,jq0);
877 /* COULOMB ELECTROSTATICS */
878 velec = _mm_mul_ps(qq20,rinv20);
879 felec = _mm_mul_ps(velec,rinvsq20);
881 fscal = felec;
883 /* Calculate temporary vectorial force */
884 tx = _mm_mul_ps(fscal,dx20);
885 ty = _mm_mul_ps(fscal,dy20);
886 tz = _mm_mul_ps(fscal,dz20);
888 /* Update vectorial force */
889 fix2 = _mm_add_ps(fix2,tx);
890 fiy2 = _mm_add_ps(fiy2,ty);
891 fiz2 = _mm_add_ps(fiz2,tz);
893 fjx0 = _mm_add_ps(fjx0,tx);
894 fjy0 = _mm_add_ps(fjy0,ty);
895 fjz0 = _mm_add_ps(fjz0,tz);
897 /**************************
898 * CALCULATE INTERACTIONS *
899 **************************/
901 /* Compute parameters for interactions between i and j atoms */
902 qq30 = _mm_mul_ps(iq3,jq0);
904 /* COULOMB ELECTROSTATICS */
905 velec = _mm_mul_ps(qq30,rinv30);
906 felec = _mm_mul_ps(velec,rinvsq30);
908 fscal = felec;
910 /* Calculate temporary vectorial force */
911 tx = _mm_mul_ps(fscal,dx30);
912 ty = _mm_mul_ps(fscal,dy30);
913 tz = _mm_mul_ps(fscal,dz30);
915 /* Update vectorial force */
916 fix3 = _mm_add_ps(fix3,tx);
917 fiy3 = _mm_add_ps(fiy3,ty);
918 fiz3 = _mm_add_ps(fiz3,tz);
920 fjx0 = _mm_add_ps(fjx0,tx);
921 fjy0 = _mm_add_ps(fjy0,ty);
922 fjz0 = _mm_add_ps(fjz0,tz);
924 fjptrA = f+j_coord_offsetA;
925 fjptrB = f+j_coord_offsetB;
926 fjptrC = f+j_coord_offsetC;
927 fjptrD = f+j_coord_offsetD;
929 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
931 /* Inner loop uses 108 flops */
934 if(jidx<j_index_end)
937 /* Get j neighbor index, and coordinate index */
938 jnrlistA = jjnr[jidx];
939 jnrlistB = jjnr[jidx+1];
940 jnrlistC = jjnr[jidx+2];
941 jnrlistD = jjnr[jidx+3];
942 /* Sign of each element will be negative for non-real atoms.
943 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
944 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
946 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
947 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
948 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
949 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
950 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
951 j_coord_offsetA = DIM*jnrA;
952 j_coord_offsetB = DIM*jnrB;
953 j_coord_offsetC = DIM*jnrC;
954 j_coord_offsetD = DIM*jnrD;
956 /* load j atom coordinates */
957 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
958 x+j_coord_offsetC,x+j_coord_offsetD,
959 &jx0,&jy0,&jz0);
961 /* Calculate displacement vector */
962 dx00 = _mm_sub_ps(ix0,jx0);
963 dy00 = _mm_sub_ps(iy0,jy0);
964 dz00 = _mm_sub_ps(iz0,jz0);
965 dx10 = _mm_sub_ps(ix1,jx0);
966 dy10 = _mm_sub_ps(iy1,jy0);
967 dz10 = _mm_sub_ps(iz1,jz0);
968 dx20 = _mm_sub_ps(ix2,jx0);
969 dy20 = _mm_sub_ps(iy2,jy0);
970 dz20 = _mm_sub_ps(iz2,jz0);
971 dx30 = _mm_sub_ps(ix3,jx0);
972 dy30 = _mm_sub_ps(iy3,jy0);
973 dz30 = _mm_sub_ps(iz3,jz0);
975 /* Calculate squared distance and things based on it */
976 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
977 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
978 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
979 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
981 rinv10 = gmx_mm_invsqrt_ps(rsq10);
982 rinv20 = gmx_mm_invsqrt_ps(rsq20);
983 rinv30 = gmx_mm_invsqrt_ps(rsq30);
985 rinvsq00 = gmx_mm_inv_ps(rsq00);
986 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
987 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
988 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
990 /* Load parameters for j particles */
991 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
992 charge+jnrC+0,charge+jnrD+0);
993 vdwjidx0A = 2*vdwtype[jnrA+0];
994 vdwjidx0B = 2*vdwtype[jnrB+0];
995 vdwjidx0C = 2*vdwtype[jnrC+0];
996 vdwjidx0D = 2*vdwtype[jnrD+0];
998 fjx0 = _mm_setzero_ps();
999 fjy0 = _mm_setzero_ps();
1000 fjz0 = _mm_setzero_ps();
1002 /**************************
1003 * CALCULATE INTERACTIONS *
1004 **************************/
1006 /* Compute parameters for interactions between i and j atoms */
1007 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1008 vdwparam+vdwioffset0+vdwjidx0B,
1009 vdwparam+vdwioffset0+vdwjidx0C,
1010 vdwparam+vdwioffset0+vdwjidx0D,
1011 &c6_00,&c12_00);
1013 /* LENNARD-JONES DISPERSION/REPULSION */
1015 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1016 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1018 fscal = fvdw;
1020 fscal = _mm_andnot_ps(dummy_mask,fscal);
1022 /* Calculate temporary vectorial force */
1023 tx = _mm_mul_ps(fscal,dx00);
1024 ty = _mm_mul_ps(fscal,dy00);
1025 tz = _mm_mul_ps(fscal,dz00);
1027 /* Update vectorial force */
1028 fix0 = _mm_add_ps(fix0,tx);
1029 fiy0 = _mm_add_ps(fiy0,ty);
1030 fiz0 = _mm_add_ps(fiz0,tz);
1032 fjx0 = _mm_add_ps(fjx0,tx);
1033 fjy0 = _mm_add_ps(fjy0,ty);
1034 fjz0 = _mm_add_ps(fjz0,tz);
1036 /**************************
1037 * CALCULATE INTERACTIONS *
1038 **************************/
1040 /* Compute parameters for interactions between i and j atoms */
1041 qq10 = _mm_mul_ps(iq1,jq0);
1043 /* COULOMB ELECTROSTATICS */
1044 velec = _mm_mul_ps(qq10,rinv10);
1045 felec = _mm_mul_ps(velec,rinvsq10);
1047 fscal = felec;
1049 fscal = _mm_andnot_ps(dummy_mask,fscal);
1051 /* Calculate temporary vectorial force */
1052 tx = _mm_mul_ps(fscal,dx10);
1053 ty = _mm_mul_ps(fscal,dy10);
1054 tz = _mm_mul_ps(fscal,dz10);
1056 /* Update vectorial force */
1057 fix1 = _mm_add_ps(fix1,tx);
1058 fiy1 = _mm_add_ps(fiy1,ty);
1059 fiz1 = _mm_add_ps(fiz1,tz);
1061 fjx0 = _mm_add_ps(fjx0,tx);
1062 fjy0 = _mm_add_ps(fjy0,ty);
1063 fjz0 = _mm_add_ps(fjz0,tz);
1065 /**************************
1066 * CALCULATE INTERACTIONS *
1067 **************************/
1069 /* Compute parameters for interactions between i and j atoms */
1070 qq20 = _mm_mul_ps(iq2,jq0);
1072 /* COULOMB ELECTROSTATICS */
1073 velec = _mm_mul_ps(qq20,rinv20);
1074 felec = _mm_mul_ps(velec,rinvsq20);
1076 fscal = felec;
1078 fscal = _mm_andnot_ps(dummy_mask,fscal);
1080 /* Calculate temporary vectorial force */
1081 tx = _mm_mul_ps(fscal,dx20);
1082 ty = _mm_mul_ps(fscal,dy20);
1083 tz = _mm_mul_ps(fscal,dz20);
1085 /* Update vectorial force */
1086 fix2 = _mm_add_ps(fix2,tx);
1087 fiy2 = _mm_add_ps(fiy2,ty);
1088 fiz2 = _mm_add_ps(fiz2,tz);
1090 fjx0 = _mm_add_ps(fjx0,tx);
1091 fjy0 = _mm_add_ps(fjy0,ty);
1092 fjz0 = _mm_add_ps(fjz0,tz);
1094 /**************************
1095 * CALCULATE INTERACTIONS *
1096 **************************/
1098 /* Compute parameters for interactions between i and j atoms */
1099 qq30 = _mm_mul_ps(iq3,jq0);
1101 /* COULOMB ELECTROSTATICS */
1102 velec = _mm_mul_ps(qq30,rinv30);
1103 felec = _mm_mul_ps(velec,rinvsq30);
1105 fscal = felec;
1107 fscal = _mm_andnot_ps(dummy_mask,fscal);
1109 /* Calculate temporary vectorial force */
1110 tx = _mm_mul_ps(fscal,dx30);
1111 ty = _mm_mul_ps(fscal,dy30);
1112 tz = _mm_mul_ps(fscal,dz30);
1114 /* Update vectorial force */
1115 fix3 = _mm_add_ps(fix3,tx);
1116 fiy3 = _mm_add_ps(fiy3,ty);
1117 fiz3 = _mm_add_ps(fiz3,tz);
1119 fjx0 = _mm_add_ps(fjx0,tx);
1120 fjy0 = _mm_add_ps(fjy0,ty);
1121 fjz0 = _mm_add_ps(fjz0,tz);
1123 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1124 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1125 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1126 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1128 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1130 /* Inner loop uses 108 flops */
1133 /* End of innermost loop */
1135 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1136 f+i_coord_offset,fshift+i_shift_offset);
1138 /* Increment number of inner iterations */
1139 inneriter += j_index_end - j_index_start;
1141 /* Outer loop uses 24 flops */
1144 /* Increment number of outer iterations */
1145 outeriter += nri;
1147 /* Update outer/inner flops */
1149 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*108);