Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecGB_VdwLJ_GeomP1P1_c.c
blob594bf6adc3e00383412c5212ccf1d3ba7a17aa0c
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS c kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
48 * Gromacs nonbonded kernel: nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_c
49 * Electrostatics interaction: GeneralizedBorn
50 * VdW interaction: LennardJones
51 * Geometry: Particle-Particle
52 * Calculate force/pot: PotentialAndForce
54 void
55 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_c
56 (t_nblist * gmx_restrict nlist,
57 rvec * gmx_restrict xx,
58 rvec * gmx_restrict ff,
59 t_forcerec * gmx_restrict fr,
60 t_mdatoms * gmx_restrict mdatoms,
61 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62 t_nrnb * gmx_restrict nrnb)
64 int i_shift_offset,i_coord_offset,j_coord_offset;
65 int j_index_start,j_index_end;
66 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
69 real *shiftvec,*fshift,*x,*f;
70 int vdwioffset0;
71 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72 int vdwjidx0;
73 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
75 real velec,felec,velecsum,facel,crf,krf,krf2;
76 real *charge;
77 int gbitab;
78 real vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
79 real *invsqrta,*dvda,*gbtab;
80 int nvdwtype;
81 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
82 int *vdwtype;
83 real *vdwparam;
84 int vfitab;
85 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
86 real *vftab;
88 x = xx[0];
89 f = ff[0];
91 nri = nlist->nri;
92 iinr = nlist->iinr;
93 jindex = nlist->jindex;
94 jjnr = nlist->jjnr;
95 shiftidx = nlist->shift;
96 gid = nlist->gid;
97 shiftvec = fr->shift_vec[0];
98 fshift = fr->fshift[0];
99 facel = fr->epsfac;
100 charge = mdatoms->chargeA;
101 nvdwtype = fr->ntype;
102 vdwparam = fr->nbfp;
103 vdwtype = mdatoms->typeA;
105 invsqrta = fr->invsqrta;
106 dvda = fr->dvda;
107 gbtabscale = fr->gbtab.scale;
108 gbtab = fr->gbtab.data;
109 gbinvepsdiff = (1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent);
111 outeriter = 0;
112 inneriter = 0;
114 /* Start outer loop over neighborlists */
115 for(iidx=0; iidx<nri; iidx++)
117 /* Load shift vector for this list */
118 i_shift_offset = DIM*shiftidx[iidx];
119 shX = shiftvec[i_shift_offset+XX];
120 shY = shiftvec[i_shift_offset+YY];
121 shZ = shiftvec[i_shift_offset+ZZ];
123 /* Load limits for loop over neighbors */
124 j_index_start = jindex[iidx];
125 j_index_end = jindex[iidx+1];
127 /* Get outer coordinate index */
128 inr = iinr[iidx];
129 i_coord_offset = DIM*inr;
131 /* Load i particle coords and add shift vector */
132 ix0 = shX + x[i_coord_offset+DIM*0+XX];
133 iy0 = shY + x[i_coord_offset+DIM*0+YY];
134 iz0 = shZ + x[i_coord_offset+DIM*0+ZZ];
136 fix0 = 0.0;
137 fiy0 = 0.0;
138 fiz0 = 0.0;
140 /* Load parameters for i particles */
141 iq0 = facel*charge[inr+0];
142 isai0 = invsqrta[inr+0];
143 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
145 /* Reset potential sums */
146 velecsum = 0.0;
147 vgbsum = 0.0;
148 vvdwsum = 0.0;
149 dvdasum = 0.0;
151 /* Start inner kernel loop */
152 for(jidx=j_index_start; jidx<j_index_end; jidx++)
154 /* Get j neighbor index, and coordinate index */
155 jnr = jjnr[jidx];
156 j_coord_offset = DIM*jnr;
158 /* load j atom coordinates */
159 jx0 = x[j_coord_offset+DIM*0+XX];
160 jy0 = x[j_coord_offset+DIM*0+YY];
161 jz0 = x[j_coord_offset+DIM*0+ZZ];
163 /* Calculate displacement vector */
164 dx00 = ix0 - jx0;
165 dy00 = iy0 - jy0;
166 dz00 = iz0 - jz0;
168 /* Calculate squared distance and things based on it */
169 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
171 rinv00 = gmx_invsqrt(rsq00);
173 rinvsq00 = rinv00*rinv00;
175 /* Load parameters for j particles */
176 jq0 = charge[jnr+0];
177 isaj0 = invsqrta[jnr+0];
178 vdwjidx0 = 2*vdwtype[jnr+0];
180 /**************************
181 * CALCULATE INTERACTIONS *
182 **************************/
184 r00 = rsq00*rinv00;
186 qq00 = iq0*jq0;
187 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
188 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
190 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
191 isaprod = isai0*isaj0;
192 gbqqfactor = isaprod*(-qq00)*gbinvepsdiff;
193 gbscale = isaprod*gbtabscale;
194 dvdaj = dvda[jnr+0];
196 /* Calculate generalized born table index - this is a separate table from the normal one,
197 * but we use the same procedure by multiplying r with scale and truncating to integer.
199 rt = r00*gbscale;
200 gbitab = rt;
201 gbeps = rt-gbitab;
202 gbitab = 4*gbitab;
204 Y = gbtab[gbitab];
205 F = gbtab[gbitab+1];
206 Geps = gbeps*gbtab[gbitab+2];
207 Heps2 = gbeps*gbeps*gbtab[gbitab+3];
208 Fp = F+Geps+Heps2;
209 VV = Y+gbeps*Fp;
210 vgb = gbqqfactor*VV;
212 FF = Fp+Geps+2.0*Heps2;
213 fgb = gbqqfactor*FF*gbscale;
214 dvdatmp = -0.5*(vgb+fgb*r00);
215 dvdasum = dvdasum + dvdatmp;
216 dvda[jnr] = dvdaj+dvdatmp*isaj0*isaj0;
217 velec = qq00*rinv00;
218 felec = (velec*rinv00-fgb)*rinv00;
220 /* LENNARD-JONES DISPERSION/REPULSION */
222 rinvsix = rinvsq00*rinvsq00*rinvsq00;
223 vvdw6 = c6_00*rinvsix;
224 vvdw12 = c12_00*rinvsix*rinvsix;
225 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
226 fvdw = (vvdw12-vvdw6)*rinvsq00;
228 /* Update potential sums from outer loop */
229 velecsum += velec;
230 vgbsum += vgb;
231 vvdwsum += vvdw;
233 fscal = felec+fvdw;
235 /* Calculate temporary vectorial force */
236 tx = fscal*dx00;
237 ty = fscal*dy00;
238 tz = fscal*dz00;
240 /* Update vectorial force */
241 fix0 += tx;
242 fiy0 += ty;
243 fiz0 += tz;
244 f[j_coord_offset+DIM*0+XX] -= tx;
245 f[j_coord_offset+DIM*0+YY] -= ty;
246 f[j_coord_offset+DIM*0+ZZ] -= tz;
248 /* Inner loop uses 71 flops */
250 /* End of innermost loop */
252 tx = ty = tz = 0;
253 f[i_coord_offset+DIM*0+XX] += fix0;
254 f[i_coord_offset+DIM*0+YY] += fiy0;
255 f[i_coord_offset+DIM*0+ZZ] += fiz0;
256 tx += fix0;
257 ty += fiy0;
258 tz += fiz0;
259 fshift[i_shift_offset+XX] += tx;
260 fshift[i_shift_offset+YY] += ty;
261 fshift[i_shift_offset+ZZ] += tz;
263 ggid = gid[iidx];
264 /* Update potential energies */
265 kernel_data->energygrp_elec[ggid] += velecsum;
266 kernel_data->energygrp_polarization[ggid] += vgbsum;
267 kernel_data->energygrp_vdw[ggid] += vvdwsum;
268 dvda[inr] = dvda[inr] + dvdasum*isai0*isai0;
270 /* Increment number of inner iterations */
271 inneriter += j_index_end - j_index_start;
273 /* Outer loop uses 16 flops */
276 /* Increment number of outer iterations */
277 outeriter += nri;
279 /* Update outer/inner flops */
281 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*16 + inneriter*71);
284 * Gromacs nonbonded kernel: nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_c
285 * Electrostatics interaction: GeneralizedBorn
286 * VdW interaction: LennardJones
287 * Geometry: Particle-Particle
288 * Calculate force/pot: Force
290 void
291 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_c
292 (t_nblist * gmx_restrict nlist,
293 rvec * gmx_restrict xx,
294 rvec * gmx_restrict ff,
295 t_forcerec * gmx_restrict fr,
296 t_mdatoms * gmx_restrict mdatoms,
297 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
298 t_nrnb * gmx_restrict nrnb)
300 int i_shift_offset,i_coord_offset,j_coord_offset;
301 int j_index_start,j_index_end;
302 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
303 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
304 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
305 real *shiftvec,*fshift,*x,*f;
306 int vdwioffset0;
307 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
308 int vdwjidx0;
309 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
310 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
311 real velec,felec,velecsum,facel,crf,krf,krf2;
312 real *charge;
313 int gbitab;
314 real vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
315 real *invsqrta,*dvda,*gbtab;
316 int nvdwtype;
317 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
318 int *vdwtype;
319 real *vdwparam;
320 int vfitab;
321 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
322 real *vftab;
324 x = xx[0];
325 f = ff[0];
327 nri = nlist->nri;
328 iinr = nlist->iinr;
329 jindex = nlist->jindex;
330 jjnr = nlist->jjnr;
331 shiftidx = nlist->shift;
332 gid = nlist->gid;
333 shiftvec = fr->shift_vec[0];
334 fshift = fr->fshift[0];
335 facel = fr->epsfac;
336 charge = mdatoms->chargeA;
337 nvdwtype = fr->ntype;
338 vdwparam = fr->nbfp;
339 vdwtype = mdatoms->typeA;
341 invsqrta = fr->invsqrta;
342 dvda = fr->dvda;
343 gbtabscale = fr->gbtab.scale;
344 gbtab = fr->gbtab.data;
345 gbinvepsdiff = (1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent);
347 outeriter = 0;
348 inneriter = 0;
350 /* Start outer loop over neighborlists */
351 for(iidx=0; iidx<nri; iidx++)
353 /* Load shift vector for this list */
354 i_shift_offset = DIM*shiftidx[iidx];
355 shX = shiftvec[i_shift_offset+XX];
356 shY = shiftvec[i_shift_offset+YY];
357 shZ = shiftvec[i_shift_offset+ZZ];
359 /* Load limits for loop over neighbors */
360 j_index_start = jindex[iidx];
361 j_index_end = jindex[iidx+1];
363 /* Get outer coordinate index */
364 inr = iinr[iidx];
365 i_coord_offset = DIM*inr;
367 /* Load i particle coords and add shift vector */
368 ix0 = shX + x[i_coord_offset+DIM*0+XX];
369 iy0 = shY + x[i_coord_offset+DIM*0+YY];
370 iz0 = shZ + x[i_coord_offset+DIM*0+ZZ];
372 fix0 = 0.0;
373 fiy0 = 0.0;
374 fiz0 = 0.0;
376 /* Load parameters for i particles */
377 iq0 = facel*charge[inr+0];
378 isai0 = invsqrta[inr+0];
379 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
381 dvdasum = 0.0;
383 /* Start inner kernel loop */
384 for(jidx=j_index_start; jidx<j_index_end; jidx++)
386 /* Get j neighbor index, and coordinate index */
387 jnr = jjnr[jidx];
388 j_coord_offset = DIM*jnr;
390 /* load j atom coordinates */
391 jx0 = x[j_coord_offset+DIM*0+XX];
392 jy0 = x[j_coord_offset+DIM*0+YY];
393 jz0 = x[j_coord_offset+DIM*0+ZZ];
395 /* Calculate displacement vector */
396 dx00 = ix0 - jx0;
397 dy00 = iy0 - jy0;
398 dz00 = iz0 - jz0;
400 /* Calculate squared distance and things based on it */
401 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
403 rinv00 = gmx_invsqrt(rsq00);
405 rinvsq00 = rinv00*rinv00;
407 /* Load parameters for j particles */
408 jq0 = charge[jnr+0];
409 isaj0 = invsqrta[jnr+0];
410 vdwjidx0 = 2*vdwtype[jnr+0];
412 /**************************
413 * CALCULATE INTERACTIONS *
414 **************************/
416 r00 = rsq00*rinv00;
418 qq00 = iq0*jq0;
419 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
420 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
422 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
423 isaprod = isai0*isaj0;
424 gbqqfactor = isaprod*(-qq00)*gbinvepsdiff;
425 gbscale = isaprod*gbtabscale;
426 dvdaj = dvda[jnr+0];
428 /* Calculate generalized born table index - this is a separate table from the normal one,
429 * but we use the same procedure by multiplying r with scale and truncating to integer.
431 rt = r00*gbscale;
432 gbitab = rt;
433 gbeps = rt-gbitab;
434 gbitab = 4*gbitab;
436 Y = gbtab[gbitab];
437 F = gbtab[gbitab+1];
438 Geps = gbeps*gbtab[gbitab+2];
439 Heps2 = gbeps*gbeps*gbtab[gbitab+3];
440 Fp = F+Geps+Heps2;
441 VV = Y+gbeps*Fp;
442 vgb = gbqqfactor*VV;
444 FF = Fp+Geps+2.0*Heps2;
445 fgb = gbqqfactor*FF*gbscale;
446 dvdatmp = -0.5*(vgb+fgb*r00);
447 dvdasum = dvdasum + dvdatmp;
448 dvda[jnr] = dvdaj+dvdatmp*isaj0*isaj0;
449 velec = qq00*rinv00;
450 felec = (velec*rinv00-fgb)*rinv00;
452 /* LENNARD-JONES DISPERSION/REPULSION */
454 rinvsix = rinvsq00*rinvsq00*rinvsq00;
455 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
457 fscal = felec+fvdw;
459 /* Calculate temporary vectorial force */
460 tx = fscal*dx00;
461 ty = fscal*dy00;
462 tz = fscal*dz00;
464 /* Update vectorial force */
465 fix0 += tx;
466 fiy0 += ty;
467 fiz0 += tz;
468 f[j_coord_offset+DIM*0+XX] -= tx;
469 f[j_coord_offset+DIM*0+YY] -= ty;
470 f[j_coord_offset+DIM*0+ZZ] -= tz;
472 /* Inner loop uses 64 flops */
474 /* End of innermost loop */
476 tx = ty = tz = 0;
477 f[i_coord_offset+DIM*0+XX] += fix0;
478 f[i_coord_offset+DIM*0+YY] += fiy0;
479 f[i_coord_offset+DIM*0+ZZ] += fiz0;
480 tx += fix0;
481 ty += fiy0;
482 tz += fiz0;
483 fshift[i_shift_offset+XX] += tx;
484 fshift[i_shift_offset+YY] += ty;
485 fshift[i_shift_offset+ZZ] += tz;
487 dvda[inr] = dvda[inr] + dvdasum*isai0*isai0;
489 /* Increment number of inner iterations */
490 inneriter += j_index_end - j_index_start;
492 /* Outer loop uses 13 flops */
495 /* Increment number of outer iterations */
496 outeriter += nri;
498 /* Update outer/inner flops */
500 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*64);