Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwBham_GeomW4W4_c.c
blobb3ba6ebf8f3de09c8f0fd101c479e12ef3b6e520
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS c kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
48 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwBham_GeomW4W4_VF_c
49 * Electrostatics interaction: Ewald
50 * VdW interaction: Buckingham
51 * Geometry: Water4-Water4
52 * Calculate force/pot: PotentialAndForce
54 void
55 nb_kernel_ElecEw_VdwBham_GeomW4W4_VF_c
56 (t_nblist * gmx_restrict nlist,
57 rvec * gmx_restrict xx,
58 rvec * gmx_restrict ff,
59 t_forcerec * gmx_restrict fr,
60 t_mdatoms * gmx_restrict mdatoms,
61 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62 t_nrnb * gmx_restrict nrnb)
64 int i_shift_offset,i_coord_offset,j_coord_offset;
65 int j_index_start,j_index_end;
66 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
69 real *shiftvec,*fshift,*x,*f;
70 int vdwioffset0;
71 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72 int vdwioffset1;
73 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74 int vdwioffset2;
75 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76 int vdwioffset3;
77 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 int vdwjidx3;
85 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
86 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
87 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
88 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
89 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
90 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
91 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
92 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
93 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
94 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
95 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
96 real velec,felec,velecsum,facel,crf,krf,krf2;
97 real *charge;
98 int nvdwtype;
99 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
100 int *vdwtype;
101 real *vdwparam;
102 int ewitab;
103 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
104 real *ewtab;
106 x = xx[0];
107 f = ff[0];
109 nri = nlist->nri;
110 iinr = nlist->iinr;
111 jindex = nlist->jindex;
112 jjnr = nlist->jjnr;
113 shiftidx = nlist->shift;
114 gid = nlist->gid;
115 shiftvec = fr->shift_vec[0];
116 fshift = fr->fshift[0];
117 facel = fr->epsfac;
118 charge = mdatoms->chargeA;
119 nvdwtype = fr->ntype;
120 vdwparam = fr->nbfp;
121 vdwtype = mdatoms->typeA;
123 sh_ewald = fr->ic->sh_ewald;
124 ewtab = fr->ic->tabq_coul_FDV0;
125 ewtabscale = fr->ic->tabq_scale;
126 ewtabhalfspace = 0.5/ewtabscale;
128 /* Setup water-specific parameters */
129 inr = nlist->iinr[0];
130 iq1 = facel*charge[inr+1];
131 iq2 = facel*charge[inr+2];
132 iq3 = facel*charge[inr+3];
133 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
135 jq1 = charge[inr+1];
136 jq2 = charge[inr+2];
137 jq3 = charge[inr+3];
138 vdwjidx0 = 3*vdwtype[inr+0];
139 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
140 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
141 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
142 qq11 = iq1*jq1;
143 qq12 = iq1*jq2;
144 qq13 = iq1*jq3;
145 qq21 = iq2*jq1;
146 qq22 = iq2*jq2;
147 qq23 = iq2*jq3;
148 qq31 = iq3*jq1;
149 qq32 = iq3*jq2;
150 qq33 = iq3*jq3;
152 outeriter = 0;
153 inneriter = 0;
155 /* Start outer loop over neighborlists */
156 for(iidx=0; iidx<nri; iidx++)
158 /* Load shift vector for this list */
159 i_shift_offset = DIM*shiftidx[iidx];
160 shX = shiftvec[i_shift_offset+XX];
161 shY = shiftvec[i_shift_offset+YY];
162 shZ = shiftvec[i_shift_offset+ZZ];
164 /* Load limits for loop over neighbors */
165 j_index_start = jindex[iidx];
166 j_index_end = jindex[iidx+1];
168 /* Get outer coordinate index */
169 inr = iinr[iidx];
170 i_coord_offset = DIM*inr;
172 /* Load i particle coords and add shift vector */
173 ix0 = shX + x[i_coord_offset+DIM*0+XX];
174 iy0 = shY + x[i_coord_offset+DIM*0+YY];
175 iz0 = shZ + x[i_coord_offset+DIM*0+ZZ];
176 ix1 = shX + x[i_coord_offset+DIM*1+XX];
177 iy1 = shY + x[i_coord_offset+DIM*1+YY];
178 iz1 = shZ + x[i_coord_offset+DIM*1+ZZ];
179 ix2 = shX + x[i_coord_offset+DIM*2+XX];
180 iy2 = shY + x[i_coord_offset+DIM*2+YY];
181 iz2 = shZ + x[i_coord_offset+DIM*2+ZZ];
182 ix3 = shX + x[i_coord_offset+DIM*3+XX];
183 iy3 = shY + x[i_coord_offset+DIM*3+YY];
184 iz3 = shZ + x[i_coord_offset+DIM*3+ZZ];
186 fix0 = 0.0;
187 fiy0 = 0.0;
188 fiz0 = 0.0;
189 fix1 = 0.0;
190 fiy1 = 0.0;
191 fiz1 = 0.0;
192 fix2 = 0.0;
193 fiy2 = 0.0;
194 fiz2 = 0.0;
195 fix3 = 0.0;
196 fiy3 = 0.0;
197 fiz3 = 0.0;
199 /* Reset potential sums */
200 velecsum = 0.0;
201 vvdwsum = 0.0;
203 /* Start inner kernel loop */
204 for(jidx=j_index_start; jidx<j_index_end; jidx++)
206 /* Get j neighbor index, and coordinate index */
207 jnr = jjnr[jidx];
208 j_coord_offset = DIM*jnr;
210 /* load j atom coordinates */
211 jx0 = x[j_coord_offset+DIM*0+XX];
212 jy0 = x[j_coord_offset+DIM*0+YY];
213 jz0 = x[j_coord_offset+DIM*0+ZZ];
214 jx1 = x[j_coord_offset+DIM*1+XX];
215 jy1 = x[j_coord_offset+DIM*1+YY];
216 jz1 = x[j_coord_offset+DIM*1+ZZ];
217 jx2 = x[j_coord_offset+DIM*2+XX];
218 jy2 = x[j_coord_offset+DIM*2+YY];
219 jz2 = x[j_coord_offset+DIM*2+ZZ];
220 jx3 = x[j_coord_offset+DIM*3+XX];
221 jy3 = x[j_coord_offset+DIM*3+YY];
222 jz3 = x[j_coord_offset+DIM*3+ZZ];
224 /* Calculate displacement vector */
225 dx00 = ix0 - jx0;
226 dy00 = iy0 - jy0;
227 dz00 = iz0 - jz0;
228 dx11 = ix1 - jx1;
229 dy11 = iy1 - jy1;
230 dz11 = iz1 - jz1;
231 dx12 = ix1 - jx2;
232 dy12 = iy1 - jy2;
233 dz12 = iz1 - jz2;
234 dx13 = ix1 - jx3;
235 dy13 = iy1 - jy3;
236 dz13 = iz1 - jz3;
237 dx21 = ix2 - jx1;
238 dy21 = iy2 - jy1;
239 dz21 = iz2 - jz1;
240 dx22 = ix2 - jx2;
241 dy22 = iy2 - jy2;
242 dz22 = iz2 - jz2;
243 dx23 = ix2 - jx3;
244 dy23 = iy2 - jy3;
245 dz23 = iz2 - jz3;
246 dx31 = ix3 - jx1;
247 dy31 = iy3 - jy1;
248 dz31 = iz3 - jz1;
249 dx32 = ix3 - jx2;
250 dy32 = iy3 - jy2;
251 dz32 = iz3 - jz2;
252 dx33 = ix3 - jx3;
253 dy33 = iy3 - jy3;
254 dz33 = iz3 - jz3;
256 /* Calculate squared distance and things based on it */
257 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
258 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
259 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
260 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
261 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
262 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
263 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
264 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
265 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
266 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
268 rinv00 = gmx_invsqrt(rsq00);
269 rinv11 = gmx_invsqrt(rsq11);
270 rinv12 = gmx_invsqrt(rsq12);
271 rinv13 = gmx_invsqrt(rsq13);
272 rinv21 = gmx_invsqrt(rsq21);
273 rinv22 = gmx_invsqrt(rsq22);
274 rinv23 = gmx_invsqrt(rsq23);
275 rinv31 = gmx_invsqrt(rsq31);
276 rinv32 = gmx_invsqrt(rsq32);
277 rinv33 = gmx_invsqrt(rsq33);
279 rinvsq00 = rinv00*rinv00;
280 rinvsq11 = rinv11*rinv11;
281 rinvsq12 = rinv12*rinv12;
282 rinvsq13 = rinv13*rinv13;
283 rinvsq21 = rinv21*rinv21;
284 rinvsq22 = rinv22*rinv22;
285 rinvsq23 = rinv23*rinv23;
286 rinvsq31 = rinv31*rinv31;
287 rinvsq32 = rinv32*rinv32;
288 rinvsq33 = rinv33*rinv33;
290 /**************************
291 * CALCULATE INTERACTIONS *
292 **************************/
294 r00 = rsq00*rinv00;
296 /* BUCKINGHAM DISPERSION/REPULSION */
297 rinvsix = rinvsq00*rinvsq00*rinvsq00;
298 vvdw6 = c6_00*rinvsix;
299 br = cexp2_00*r00;
300 vvdwexp = cexp1_00*exp(-br);
301 vvdw = vvdwexp - vvdw6*(1.0/6.0);
302 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
304 /* Update potential sums from outer loop */
305 vvdwsum += vvdw;
307 fscal = fvdw;
309 /* Calculate temporary vectorial force */
310 tx = fscal*dx00;
311 ty = fscal*dy00;
312 tz = fscal*dz00;
314 /* Update vectorial force */
315 fix0 += tx;
316 fiy0 += ty;
317 fiz0 += tz;
318 f[j_coord_offset+DIM*0+XX] -= tx;
319 f[j_coord_offset+DIM*0+YY] -= ty;
320 f[j_coord_offset+DIM*0+ZZ] -= tz;
322 /**************************
323 * CALCULATE INTERACTIONS *
324 **************************/
326 r11 = rsq11*rinv11;
328 /* EWALD ELECTROSTATICS */
330 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
331 ewrt = r11*ewtabscale;
332 ewitab = ewrt;
333 eweps = ewrt-ewitab;
334 ewitab = 4*ewitab;
335 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
336 velec = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
337 felec = qq11*rinv11*(rinvsq11-felec);
339 /* Update potential sums from outer loop */
340 velecsum += velec;
342 fscal = felec;
344 /* Calculate temporary vectorial force */
345 tx = fscal*dx11;
346 ty = fscal*dy11;
347 tz = fscal*dz11;
349 /* Update vectorial force */
350 fix1 += tx;
351 fiy1 += ty;
352 fiz1 += tz;
353 f[j_coord_offset+DIM*1+XX] -= tx;
354 f[j_coord_offset+DIM*1+YY] -= ty;
355 f[j_coord_offset+DIM*1+ZZ] -= tz;
357 /**************************
358 * CALCULATE INTERACTIONS *
359 **************************/
361 r12 = rsq12*rinv12;
363 /* EWALD ELECTROSTATICS */
365 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
366 ewrt = r12*ewtabscale;
367 ewitab = ewrt;
368 eweps = ewrt-ewitab;
369 ewitab = 4*ewitab;
370 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
371 velec = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
372 felec = qq12*rinv12*(rinvsq12-felec);
374 /* Update potential sums from outer loop */
375 velecsum += velec;
377 fscal = felec;
379 /* Calculate temporary vectorial force */
380 tx = fscal*dx12;
381 ty = fscal*dy12;
382 tz = fscal*dz12;
384 /* Update vectorial force */
385 fix1 += tx;
386 fiy1 += ty;
387 fiz1 += tz;
388 f[j_coord_offset+DIM*2+XX] -= tx;
389 f[j_coord_offset+DIM*2+YY] -= ty;
390 f[j_coord_offset+DIM*2+ZZ] -= tz;
392 /**************************
393 * CALCULATE INTERACTIONS *
394 **************************/
396 r13 = rsq13*rinv13;
398 /* EWALD ELECTROSTATICS */
400 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
401 ewrt = r13*ewtabscale;
402 ewitab = ewrt;
403 eweps = ewrt-ewitab;
404 ewitab = 4*ewitab;
405 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
406 velec = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
407 felec = qq13*rinv13*(rinvsq13-felec);
409 /* Update potential sums from outer loop */
410 velecsum += velec;
412 fscal = felec;
414 /* Calculate temporary vectorial force */
415 tx = fscal*dx13;
416 ty = fscal*dy13;
417 tz = fscal*dz13;
419 /* Update vectorial force */
420 fix1 += tx;
421 fiy1 += ty;
422 fiz1 += tz;
423 f[j_coord_offset+DIM*3+XX] -= tx;
424 f[j_coord_offset+DIM*3+YY] -= ty;
425 f[j_coord_offset+DIM*3+ZZ] -= tz;
427 /**************************
428 * CALCULATE INTERACTIONS *
429 **************************/
431 r21 = rsq21*rinv21;
433 /* EWALD ELECTROSTATICS */
435 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
436 ewrt = r21*ewtabscale;
437 ewitab = ewrt;
438 eweps = ewrt-ewitab;
439 ewitab = 4*ewitab;
440 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
441 velec = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
442 felec = qq21*rinv21*(rinvsq21-felec);
444 /* Update potential sums from outer loop */
445 velecsum += velec;
447 fscal = felec;
449 /* Calculate temporary vectorial force */
450 tx = fscal*dx21;
451 ty = fscal*dy21;
452 tz = fscal*dz21;
454 /* Update vectorial force */
455 fix2 += tx;
456 fiy2 += ty;
457 fiz2 += tz;
458 f[j_coord_offset+DIM*1+XX] -= tx;
459 f[j_coord_offset+DIM*1+YY] -= ty;
460 f[j_coord_offset+DIM*1+ZZ] -= tz;
462 /**************************
463 * CALCULATE INTERACTIONS *
464 **************************/
466 r22 = rsq22*rinv22;
468 /* EWALD ELECTROSTATICS */
470 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
471 ewrt = r22*ewtabscale;
472 ewitab = ewrt;
473 eweps = ewrt-ewitab;
474 ewitab = 4*ewitab;
475 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
476 velec = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
477 felec = qq22*rinv22*(rinvsq22-felec);
479 /* Update potential sums from outer loop */
480 velecsum += velec;
482 fscal = felec;
484 /* Calculate temporary vectorial force */
485 tx = fscal*dx22;
486 ty = fscal*dy22;
487 tz = fscal*dz22;
489 /* Update vectorial force */
490 fix2 += tx;
491 fiy2 += ty;
492 fiz2 += tz;
493 f[j_coord_offset+DIM*2+XX] -= tx;
494 f[j_coord_offset+DIM*2+YY] -= ty;
495 f[j_coord_offset+DIM*2+ZZ] -= tz;
497 /**************************
498 * CALCULATE INTERACTIONS *
499 **************************/
501 r23 = rsq23*rinv23;
503 /* EWALD ELECTROSTATICS */
505 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
506 ewrt = r23*ewtabscale;
507 ewitab = ewrt;
508 eweps = ewrt-ewitab;
509 ewitab = 4*ewitab;
510 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
511 velec = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
512 felec = qq23*rinv23*(rinvsq23-felec);
514 /* Update potential sums from outer loop */
515 velecsum += velec;
517 fscal = felec;
519 /* Calculate temporary vectorial force */
520 tx = fscal*dx23;
521 ty = fscal*dy23;
522 tz = fscal*dz23;
524 /* Update vectorial force */
525 fix2 += tx;
526 fiy2 += ty;
527 fiz2 += tz;
528 f[j_coord_offset+DIM*3+XX] -= tx;
529 f[j_coord_offset+DIM*3+YY] -= ty;
530 f[j_coord_offset+DIM*3+ZZ] -= tz;
532 /**************************
533 * CALCULATE INTERACTIONS *
534 **************************/
536 r31 = rsq31*rinv31;
538 /* EWALD ELECTROSTATICS */
540 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
541 ewrt = r31*ewtabscale;
542 ewitab = ewrt;
543 eweps = ewrt-ewitab;
544 ewitab = 4*ewitab;
545 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
546 velec = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
547 felec = qq31*rinv31*(rinvsq31-felec);
549 /* Update potential sums from outer loop */
550 velecsum += velec;
552 fscal = felec;
554 /* Calculate temporary vectorial force */
555 tx = fscal*dx31;
556 ty = fscal*dy31;
557 tz = fscal*dz31;
559 /* Update vectorial force */
560 fix3 += tx;
561 fiy3 += ty;
562 fiz3 += tz;
563 f[j_coord_offset+DIM*1+XX] -= tx;
564 f[j_coord_offset+DIM*1+YY] -= ty;
565 f[j_coord_offset+DIM*1+ZZ] -= tz;
567 /**************************
568 * CALCULATE INTERACTIONS *
569 **************************/
571 r32 = rsq32*rinv32;
573 /* EWALD ELECTROSTATICS */
575 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
576 ewrt = r32*ewtabscale;
577 ewitab = ewrt;
578 eweps = ewrt-ewitab;
579 ewitab = 4*ewitab;
580 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
581 velec = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
582 felec = qq32*rinv32*(rinvsq32-felec);
584 /* Update potential sums from outer loop */
585 velecsum += velec;
587 fscal = felec;
589 /* Calculate temporary vectorial force */
590 tx = fscal*dx32;
591 ty = fscal*dy32;
592 tz = fscal*dz32;
594 /* Update vectorial force */
595 fix3 += tx;
596 fiy3 += ty;
597 fiz3 += tz;
598 f[j_coord_offset+DIM*2+XX] -= tx;
599 f[j_coord_offset+DIM*2+YY] -= ty;
600 f[j_coord_offset+DIM*2+ZZ] -= tz;
602 /**************************
603 * CALCULATE INTERACTIONS *
604 **************************/
606 r33 = rsq33*rinv33;
608 /* EWALD ELECTROSTATICS */
610 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
611 ewrt = r33*ewtabscale;
612 ewitab = ewrt;
613 eweps = ewrt-ewitab;
614 ewitab = 4*ewitab;
615 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
616 velec = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
617 felec = qq33*rinv33*(rinvsq33-felec);
619 /* Update potential sums from outer loop */
620 velecsum += velec;
622 fscal = felec;
624 /* Calculate temporary vectorial force */
625 tx = fscal*dx33;
626 ty = fscal*dy33;
627 tz = fscal*dz33;
629 /* Update vectorial force */
630 fix3 += tx;
631 fiy3 += ty;
632 fiz3 += tz;
633 f[j_coord_offset+DIM*3+XX] -= tx;
634 f[j_coord_offset+DIM*3+YY] -= ty;
635 f[j_coord_offset+DIM*3+ZZ] -= tz;
637 /* Inner loop uses 421 flops */
639 /* End of innermost loop */
641 tx = ty = tz = 0;
642 f[i_coord_offset+DIM*0+XX] += fix0;
643 f[i_coord_offset+DIM*0+YY] += fiy0;
644 f[i_coord_offset+DIM*0+ZZ] += fiz0;
645 tx += fix0;
646 ty += fiy0;
647 tz += fiz0;
648 f[i_coord_offset+DIM*1+XX] += fix1;
649 f[i_coord_offset+DIM*1+YY] += fiy1;
650 f[i_coord_offset+DIM*1+ZZ] += fiz1;
651 tx += fix1;
652 ty += fiy1;
653 tz += fiz1;
654 f[i_coord_offset+DIM*2+XX] += fix2;
655 f[i_coord_offset+DIM*2+YY] += fiy2;
656 f[i_coord_offset+DIM*2+ZZ] += fiz2;
657 tx += fix2;
658 ty += fiy2;
659 tz += fiz2;
660 f[i_coord_offset+DIM*3+XX] += fix3;
661 f[i_coord_offset+DIM*3+YY] += fiy3;
662 f[i_coord_offset+DIM*3+ZZ] += fiz3;
663 tx += fix3;
664 ty += fiy3;
665 tz += fiz3;
666 fshift[i_shift_offset+XX] += tx;
667 fshift[i_shift_offset+YY] += ty;
668 fshift[i_shift_offset+ZZ] += tz;
670 ggid = gid[iidx];
671 /* Update potential energies */
672 kernel_data->energygrp_elec[ggid] += velecsum;
673 kernel_data->energygrp_vdw[ggid] += vvdwsum;
675 /* Increment number of inner iterations */
676 inneriter += j_index_end - j_index_start;
678 /* Outer loop uses 41 flops */
681 /* Increment number of outer iterations */
682 outeriter += nri;
684 /* Update outer/inner flops */
686 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*421);
689 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwBham_GeomW4W4_F_c
690 * Electrostatics interaction: Ewald
691 * VdW interaction: Buckingham
692 * Geometry: Water4-Water4
693 * Calculate force/pot: Force
695 void
696 nb_kernel_ElecEw_VdwBham_GeomW4W4_F_c
697 (t_nblist * gmx_restrict nlist,
698 rvec * gmx_restrict xx,
699 rvec * gmx_restrict ff,
700 t_forcerec * gmx_restrict fr,
701 t_mdatoms * gmx_restrict mdatoms,
702 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
703 t_nrnb * gmx_restrict nrnb)
705 int i_shift_offset,i_coord_offset,j_coord_offset;
706 int j_index_start,j_index_end;
707 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
708 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
709 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
710 real *shiftvec,*fshift,*x,*f;
711 int vdwioffset0;
712 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
713 int vdwioffset1;
714 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
715 int vdwioffset2;
716 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
717 int vdwioffset3;
718 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
719 int vdwjidx0;
720 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
721 int vdwjidx1;
722 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
723 int vdwjidx2;
724 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
725 int vdwjidx3;
726 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
727 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
728 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
729 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
730 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
731 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
732 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
733 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
734 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
735 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
736 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
737 real velec,felec,velecsum,facel,crf,krf,krf2;
738 real *charge;
739 int nvdwtype;
740 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
741 int *vdwtype;
742 real *vdwparam;
743 int ewitab;
744 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
745 real *ewtab;
747 x = xx[0];
748 f = ff[0];
750 nri = nlist->nri;
751 iinr = nlist->iinr;
752 jindex = nlist->jindex;
753 jjnr = nlist->jjnr;
754 shiftidx = nlist->shift;
755 gid = nlist->gid;
756 shiftvec = fr->shift_vec[0];
757 fshift = fr->fshift[0];
758 facel = fr->epsfac;
759 charge = mdatoms->chargeA;
760 nvdwtype = fr->ntype;
761 vdwparam = fr->nbfp;
762 vdwtype = mdatoms->typeA;
764 sh_ewald = fr->ic->sh_ewald;
765 ewtab = fr->ic->tabq_coul_F;
766 ewtabscale = fr->ic->tabq_scale;
767 ewtabhalfspace = 0.5/ewtabscale;
769 /* Setup water-specific parameters */
770 inr = nlist->iinr[0];
771 iq1 = facel*charge[inr+1];
772 iq2 = facel*charge[inr+2];
773 iq3 = facel*charge[inr+3];
774 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
776 jq1 = charge[inr+1];
777 jq2 = charge[inr+2];
778 jq3 = charge[inr+3];
779 vdwjidx0 = 3*vdwtype[inr+0];
780 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
781 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
782 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
783 qq11 = iq1*jq1;
784 qq12 = iq1*jq2;
785 qq13 = iq1*jq3;
786 qq21 = iq2*jq1;
787 qq22 = iq2*jq2;
788 qq23 = iq2*jq3;
789 qq31 = iq3*jq1;
790 qq32 = iq3*jq2;
791 qq33 = iq3*jq3;
793 outeriter = 0;
794 inneriter = 0;
796 /* Start outer loop over neighborlists */
797 for(iidx=0; iidx<nri; iidx++)
799 /* Load shift vector for this list */
800 i_shift_offset = DIM*shiftidx[iidx];
801 shX = shiftvec[i_shift_offset+XX];
802 shY = shiftvec[i_shift_offset+YY];
803 shZ = shiftvec[i_shift_offset+ZZ];
805 /* Load limits for loop over neighbors */
806 j_index_start = jindex[iidx];
807 j_index_end = jindex[iidx+1];
809 /* Get outer coordinate index */
810 inr = iinr[iidx];
811 i_coord_offset = DIM*inr;
813 /* Load i particle coords and add shift vector */
814 ix0 = shX + x[i_coord_offset+DIM*0+XX];
815 iy0 = shY + x[i_coord_offset+DIM*0+YY];
816 iz0 = shZ + x[i_coord_offset+DIM*0+ZZ];
817 ix1 = shX + x[i_coord_offset+DIM*1+XX];
818 iy1 = shY + x[i_coord_offset+DIM*1+YY];
819 iz1 = shZ + x[i_coord_offset+DIM*1+ZZ];
820 ix2 = shX + x[i_coord_offset+DIM*2+XX];
821 iy2 = shY + x[i_coord_offset+DIM*2+YY];
822 iz2 = shZ + x[i_coord_offset+DIM*2+ZZ];
823 ix3 = shX + x[i_coord_offset+DIM*3+XX];
824 iy3 = shY + x[i_coord_offset+DIM*3+YY];
825 iz3 = shZ + x[i_coord_offset+DIM*3+ZZ];
827 fix0 = 0.0;
828 fiy0 = 0.0;
829 fiz0 = 0.0;
830 fix1 = 0.0;
831 fiy1 = 0.0;
832 fiz1 = 0.0;
833 fix2 = 0.0;
834 fiy2 = 0.0;
835 fiz2 = 0.0;
836 fix3 = 0.0;
837 fiy3 = 0.0;
838 fiz3 = 0.0;
840 /* Start inner kernel loop */
841 for(jidx=j_index_start; jidx<j_index_end; jidx++)
843 /* Get j neighbor index, and coordinate index */
844 jnr = jjnr[jidx];
845 j_coord_offset = DIM*jnr;
847 /* load j atom coordinates */
848 jx0 = x[j_coord_offset+DIM*0+XX];
849 jy0 = x[j_coord_offset+DIM*0+YY];
850 jz0 = x[j_coord_offset+DIM*0+ZZ];
851 jx1 = x[j_coord_offset+DIM*1+XX];
852 jy1 = x[j_coord_offset+DIM*1+YY];
853 jz1 = x[j_coord_offset+DIM*1+ZZ];
854 jx2 = x[j_coord_offset+DIM*2+XX];
855 jy2 = x[j_coord_offset+DIM*2+YY];
856 jz2 = x[j_coord_offset+DIM*2+ZZ];
857 jx3 = x[j_coord_offset+DIM*3+XX];
858 jy3 = x[j_coord_offset+DIM*3+YY];
859 jz3 = x[j_coord_offset+DIM*3+ZZ];
861 /* Calculate displacement vector */
862 dx00 = ix0 - jx0;
863 dy00 = iy0 - jy0;
864 dz00 = iz0 - jz0;
865 dx11 = ix1 - jx1;
866 dy11 = iy1 - jy1;
867 dz11 = iz1 - jz1;
868 dx12 = ix1 - jx2;
869 dy12 = iy1 - jy2;
870 dz12 = iz1 - jz2;
871 dx13 = ix1 - jx3;
872 dy13 = iy1 - jy3;
873 dz13 = iz1 - jz3;
874 dx21 = ix2 - jx1;
875 dy21 = iy2 - jy1;
876 dz21 = iz2 - jz1;
877 dx22 = ix2 - jx2;
878 dy22 = iy2 - jy2;
879 dz22 = iz2 - jz2;
880 dx23 = ix2 - jx3;
881 dy23 = iy2 - jy3;
882 dz23 = iz2 - jz3;
883 dx31 = ix3 - jx1;
884 dy31 = iy3 - jy1;
885 dz31 = iz3 - jz1;
886 dx32 = ix3 - jx2;
887 dy32 = iy3 - jy2;
888 dz32 = iz3 - jz2;
889 dx33 = ix3 - jx3;
890 dy33 = iy3 - jy3;
891 dz33 = iz3 - jz3;
893 /* Calculate squared distance and things based on it */
894 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
895 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
896 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
897 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
898 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
899 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
900 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
901 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
902 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
903 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
905 rinv00 = gmx_invsqrt(rsq00);
906 rinv11 = gmx_invsqrt(rsq11);
907 rinv12 = gmx_invsqrt(rsq12);
908 rinv13 = gmx_invsqrt(rsq13);
909 rinv21 = gmx_invsqrt(rsq21);
910 rinv22 = gmx_invsqrt(rsq22);
911 rinv23 = gmx_invsqrt(rsq23);
912 rinv31 = gmx_invsqrt(rsq31);
913 rinv32 = gmx_invsqrt(rsq32);
914 rinv33 = gmx_invsqrt(rsq33);
916 rinvsq00 = rinv00*rinv00;
917 rinvsq11 = rinv11*rinv11;
918 rinvsq12 = rinv12*rinv12;
919 rinvsq13 = rinv13*rinv13;
920 rinvsq21 = rinv21*rinv21;
921 rinvsq22 = rinv22*rinv22;
922 rinvsq23 = rinv23*rinv23;
923 rinvsq31 = rinv31*rinv31;
924 rinvsq32 = rinv32*rinv32;
925 rinvsq33 = rinv33*rinv33;
927 /**************************
928 * CALCULATE INTERACTIONS *
929 **************************/
931 r00 = rsq00*rinv00;
933 /* BUCKINGHAM DISPERSION/REPULSION */
934 rinvsix = rinvsq00*rinvsq00*rinvsq00;
935 vvdw6 = c6_00*rinvsix;
936 br = cexp2_00*r00;
937 vvdwexp = cexp1_00*exp(-br);
938 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
940 fscal = fvdw;
942 /* Calculate temporary vectorial force */
943 tx = fscal*dx00;
944 ty = fscal*dy00;
945 tz = fscal*dz00;
947 /* Update vectorial force */
948 fix0 += tx;
949 fiy0 += ty;
950 fiz0 += tz;
951 f[j_coord_offset+DIM*0+XX] -= tx;
952 f[j_coord_offset+DIM*0+YY] -= ty;
953 f[j_coord_offset+DIM*0+ZZ] -= tz;
955 /**************************
956 * CALCULATE INTERACTIONS *
957 **************************/
959 r11 = rsq11*rinv11;
961 /* EWALD ELECTROSTATICS */
963 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
964 ewrt = r11*ewtabscale;
965 ewitab = ewrt;
966 eweps = ewrt-ewitab;
967 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
968 felec = qq11*rinv11*(rinvsq11-felec);
970 fscal = felec;
972 /* Calculate temporary vectorial force */
973 tx = fscal*dx11;
974 ty = fscal*dy11;
975 tz = fscal*dz11;
977 /* Update vectorial force */
978 fix1 += tx;
979 fiy1 += ty;
980 fiz1 += tz;
981 f[j_coord_offset+DIM*1+XX] -= tx;
982 f[j_coord_offset+DIM*1+YY] -= ty;
983 f[j_coord_offset+DIM*1+ZZ] -= tz;
985 /**************************
986 * CALCULATE INTERACTIONS *
987 **************************/
989 r12 = rsq12*rinv12;
991 /* EWALD ELECTROSTATICS */
993 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
994 ewrt = r12*ewtabscale;
995 ewitab = ewrt;
996 eweps = ewrt-ewitab;
997 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
998 felec = qq12*rinv12*(rinvsq12-felec);
1000 fscal = felec;
1002 /* Calculate temporary vectorial force */
1003 tx = fscal*dx12;
1004 ty = fscal*dy12;
1005 tz = fscal*dz12;
1007 /* Update vectorial force */
1008 fix1 += tx;
1009 fiy1 += ty;
1010 fiz1 += tz;
1011 f[j_coord_offset+DIM*2+XX] -= tx;
1012 f[j_coord_offset+DIM*2+YY] -= ty;
1013 f[j_coord_offset+DIM*2+ZZ] -= tz;
1015 /**************************
1016 * CALCULATE INTERACTIONS *
1017 **************************/
1019 r13 = rsq13*rinv13;
1021 /* EWALD ELECTROSTATICS */
1023 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1024 ewrt = r13*ewtabscale;
1025 ewitab = ewrt;
1026 eweps = ewrt-ewitab;
1027 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1028 felec = qq13*rinv13*(rinvsq13-felec);
1030 fscal = felec;
1032 /* Calculate temporary vectorial force */
1033 tx = fscal*dx13;
1034 ty = fscal*dy13;
1035 tz = fscal*dz13;
1037 /* Update vectorial force */
1038 fix1 += tx;
1039 fiy1 += ty;
1040 fiz1 += tz;
1041 f[j_coord_offset+DIM*3+XX] -= tx;
1042 f[j_coord_offset+DIM*3+YY] -= ty;
1043 f[j_coord_offset+DIM*3+ZZ] -= tz;
1045 /**************************
1046 * CALCULATE INTERACTIONS *
1047 **************************/
1049 r21 = rsq21*rinv21;
1051 /* EWALD ELECTROSTATICS */
1053 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1054 ewrt = r21*ewtabscale;
1055 ewitab = ewrt;
1056 eweps = ewrt-ewitab;
1057 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1058 felec = qq21*rinv21*(rinvsq21-felec);
1060 fscal = felec;
1062 /* Calculate temporary vectorial force */
1063 tx = fscal*dx21;
1064 ty = fscal*dy21;
1065 tz = fscal*dz21;
1067 /* Update vectorial force */
1068 fix2 += tx;
1069 fiy2 += ty;
1070 fiz2 += tz;
1071 f[j_coord_offset+DIM*1+XX] -= tx;
1072 f[j_coord_offset+DIM*1+YY] -= ty;
1073 f[j_coord_offset+DIM*1+ZZ] -= tz;
1075 /**************************
1076 * CALCULATE INTERACTIONS *
1077 **************************/
1079 r22 = rsq22*rinv22;
1081 /* EWALD ELECTROSTATICS */
1083 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1084 ewrt = r22*ewtabscale;
1085 ewitab = ewrt;
1086 eweps = ewrt-ewitab;
1087 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1088 felec = qq22*rinv22*(rinvsq22-felec);
1090 fscal = felec;
1092 /* Calculate temporary vectorial force */
1093 tx = fscal*dx22;
1094 ty = fscal*dy22;
1095 tz = fscal*dz22;
1097 /* Update vectorial force */
1098 fix2 += tx;
1099 fiy2 += ty;
1100 fiz2 += tz;
1101 f[j_coord_offset+DIM*2+XX] -= tx;
1102 f[j_coord_offset+DIM*2+YY] -= ty;
1103 f[j_coord_offset+DIM*2+ZZ] -= tz;
1105 /**************************
1106 * CALCULATE INTERACTIONS *
1107 **************************/
1109 r23 = rsq23*rinv23;
1111 /* EWALD ELECTROSTATICS */
1113 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1114 ewrt = r23*ewtabscale;
1115 ewitab = ewrt;
1116 eweps = ewrt-ewitab;
1117 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1118 felec = qq23*rinv23*(rinvsq23-felec);
1120 fscal = felec;
1122 /* Calculate temporary vectorial force */
1123 tx = fscal*dx23;
1124 ty = fscal*dy23;
1125 tz = fscal*dz23;
1127 /* Update vectorial force */
1128 fix2 += tx;
1129 fiy2 += ty;
1130 fiz2 += tz;
1131 f[j_coord_offset+DIM*3+XX] -= tx;
1132 f[j_coord_offset+DIM*3+YY] -= ty;
1133 f[j_coord_offset+DIM*3+ZZ] -= tz;
1135 /**************************
1136 * CALCULATE INTERACTIONS *
1137 **************************/
1139 r31 = rsq31*rinv31;
1141 /* EWALD ELECTROSTATICS */
1143 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1144 ewrt = r31*ewtabscale;
1145 ewitab = ewrt;
1146 eweps = ewrt-ewitab;
1147 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1148 felec = qq31*rinv31*(rinvsq31-felec);
1150 fscal = felec;
1152 /* Calculate temporary vectorial force */
1153 tx = fscal*dx31;
1154 ty = fscal*dy31;
1155 tz = fscal*dz31;
1157 /* Update vectorial force */
1158 fix3 += tx;
1159 fiy3 += ty;
1160 fiz3 += tz;
1161 f[j_coord_offset+DIM*1+XX] -= tx;
1162 f[j_coord_offset+DIM*1+YY] -= ty;
1163 f[j_coord_offset+DIM*1+ZZ] -= tz;
1165 /**************************
1166 * CALCULATE INTERACTIONS *
1167 **************************/
1169 r32 = rsq32*rinv32;
1171 /* EWALD ELECTROSTATICS */
1173 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1174 ewrt = r32*ewtabscale;
1175 ewitab = ewrt;
1176 eweps = ewrt-ewitab;
1177 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1178 felec = qq32*rinv32*(rinvsq32-felec);
1180 fscal = felec;
1182 /* Calculate temporary vectorial force */
1183 tx = fscal*dx32;
1184 ty = fscal*dy32;
1185 tz = fscal*dz32;
1187 /* Update vectorial force */
1188 fix3 += tx;
1189 fiy3 += ty;
1190 fiz3 += tz;
1191 f[j_coord_offset+DIM*2+XX] -= tx;
1192 f[j_coord_offset+DIM*2+YY] -= ty;
1193 f[j_coord_offset+DIM*2+ZZ] -= tz;
1195 /**************************
1196 * CALCULATE INTERACTIONS *
1197 **************************/
1199 r33 = rsq33*rinv33;
1201 /* EWALD ELECTROSTATICS */
1203 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1204 ewrt = r33*ewtabscale;
1205 ewitab = ewrt;
1206 eweps = ewrt-ewitab;
1207 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1208 felec = qq33*rinv33*(rinvsq33-felec);
1210 fscal = felec;
1212 /* Calculate temporary vectorial force */
1213 tx = fscal*dx33;
1214 ty = fscal*dy33;
1215 tz = fscal*dz33;
1217 /* Update vectorial force */
1218 fix3 += tx;
1219 fiy3 += ty;
1220 fiz3 += tz;
1221 f[j_coord_offset+DIM*3+XX] -= tx;
1222 f[j_coord_offset+DIM*3+YY] -= ty;
1223 f[j_coord_offset+DIM*3+ZZ] -= tz;
1225 /* Inner loop uses 355 flops */
1227 /* End of innermost loop */
1229 tx = ty = tz = 0;
1230 f[i_coord_offset+DIM*0+XX] += fix0;
1231 f[i_coord_offset+DIM*0+YY] += fiy0;
1232 f[i_coord_offset+DIM*0+ZZ] += fiz0;
1233 tx += fix0;
1234 ty += fiy0;
1235 tz += fiz0;
1236 f[i_coord_offset+DIM*1+XX] += fix1;
1237 f[i_coord_offset+DIM*1+YY] += fiy1;
1238 f[i_coord_offset+DIM*1+ZZ] += fiz1;
1239 tx += fix1;
1240 ty += fiy1;
1241 tz += fiz1;
1242 f[i_coord_offset+DIM*2+XX] += fix2;
1243 f[i_coord_offset+DIM*2+YY] += fiy2;
1244 f[i_coord_offset+DIM*2+ZZ] += fiz2;
1245 tx += fix2;
1246 ty += fiy2;
1247 tz += fiz2;
1248 f[i_coord_offset+DIM*3+XX] += fix3;
1249 f[i_coord_offset+DIM*3+YY] += fiy3;
1250 f[i_coord_offset+DIM*3+ZZ] += fiz3;
1251 tx += fix3;
1252 ty += fiy3;
1253 tz += fiz3;
1254 fshift[i_shift_offset+XX] += tx;
1255 fshift[i_shift_offset+YY] += ty;
1256 fshift[i_shift_offset+ZZ] += tz;
1258 /* Increment number of inner iterations */
1259 inneriter += j_index_end - j_index_start;
1261 /* Outer loop uses 39 flops */
1264 /* Increment number of outer iterations */
1265 outeriter += nri;
1267 /* Update outer/inner flops */
1269 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*355);