Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecCoul_VdwBham_GeomP1P1_c.c
blobd473e5c32224f19878e24f8973f612e7a68a3a04
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS c kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
48 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwBham_GeomP1P1_VF_c
49 * Electrostatics interaction: Coulomb
50 * VdW interaction: Buckingham
51 * Geometry: Particle-Particle
52 * Calculate force/pot: PotentialAndForce
54 void
55 nb_kernel_ElecCoul_VdwBham_GeomP1P1_VF_c
56 (t_nblist * gmx_restrict nlist,
57 rvec * gmx_restrict xx,
58 rvec * gmx_restrict ff,
59 t_forcerec * gmx_restrict fr,
60 t_mdatoms * gmx_restrict mdatoms,
61 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62 t_nrnb * gmx_restrict nrnb)
64 int i_shift_offset,i_coord_offset,j_coord_offset;
65 int j_index_start,j_index_end;
66 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
69 real *shiftvec,*fshift,*x,*f;
70 int vdwioffset0;
71 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72 int vdwjidx0;
73 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
75 real velec,felec,velecsum,facel,crf,krf,krf2;
76 real *charge;
77 int nvdwtype;
78 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
79 int *vdwtype;
80 real *vdwparam;
82 x = xx[0];
83 f = ff[0];
85 nri = nlist->nri;
86 iinr = nlist->iinr;
87 jindex = nlist->jindex;
88 jjnr = nlist->jjnr;
89 shiftidx = nlist->shift;
90 gid = nlist->gid;
91 shiftvec = fr->shift_vec[0];
92 fshift = fr->fshift[0];
93 facel = fr->epsfac;
94 charge = mdatoms->chargeA;
95 nvdwtype = fr->ntype;
96 vdwparam = fr->nbfp;
97 vdwtype = mdatoms->typeA;
99 outeriter = 0;
100 inneriter = 0;
102 /* Start outer loop over neighborlists */
103 for(iidx=0; iidx<nri; iidx++)
105 /* Load shift vector for this list */
106 i_shift_offset = DIM*shiftidx[iidx];
107 shX = shiftvec[i_shift_offset+XX];
108 shY = shiftvec[i_shift_offset+YY];
109 shZ = shiftvec[i_shift_offset+ZZ];
111 /* Load limits for loop over neighbors */
112 j_index_start = jindex[iidx];
113 j_index_end = jindex[iidx+1];
115 /* Get outer coordinate index */
116 inr = iinr[iidx];
117 i_coord_offset = DIM*inr;
119 /* Load i particle coords and add shift vector */
120 ix0 = shX + x[i_coord_offset+DIM*0+XX];
121 iy0 = shY + x[i_coord_offset+DIM*0+YY];
122 iz0 = shZ + x[i_coord_offset+DIM*0+ZZ];
124 fix0 = 0.0;
125 fiy0 = 0.0;
126 fiz0 = 0.0;
128 /* Load parameters for i particles */
129 iq0 = facel*charge[inr+0];
130 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
132 /* Reset potential sums */
133 velecsum = 0.0;
134 vvdwsum = 0.0;
136 /* Start inner kernel loop */
137 for(jidx=j_index_start; jidx<j_index_end; jidx++)
139 /* Get j neighbor index, and coordinate index */
140 jnr = jjnr[jidx];
141 j_coord_offset = DIM*jnr;
143 /* load j atom coordinates */
144 jx0 = x[j_coord_offset+DIM*0+XX];
145 jy0 = x[j_coord_offset+DIM*0+YY];
146 jz0 = x[j_coord_offset+DIM*0+ZZ];
148 /* Calculate displacement vector */
149 dx00 = ix0 - jx0;
150 dy00 = iy0 - jy0;
151 dz00 = iz0 - jz0;
153 /* Calculate squared distance and things based on it */
154 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
156 rinv00 = gmx_invsqrt(rsq00);
158 rinvsq00 = rinv00*rinv00;
160 /* Load parameters for j particles */
161 jq0 = charge[jnr+0];
162 vdwjidx0 = 3*vdwtype[jnr+0];
164 /**************************
165 * CALCULATE INTERACTIONS *
166 **************************/
168 r00 = rsq00*rinv00;
170 qq00 = iq0*jq0;
171 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
172 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
173 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
175 /* COULOMB ELECTROSTATICS */
176 velec = qq00*rinv00;
177 felec = velec*rinvsq00;
179 /* BUCKINGHAM DISPERSION/REPULSION */
180 rinvsix = rinvsq00*rinvsq00*rinvsq00;
181 vvdw6 = c6_00*rinvsix;
182 br = cexp2_00*r00;
183 vvdwexp = cexp1_00*exp(-br);
184 vvdw = vvdwexp - vvdw6*(1.0/6.0);
185 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
187 /* Update potential sums from outer loop */
188 velecsum += velec;
189 vvdwsum += vvdw;
191 fscal = felec+fvdw;
193 /* Calculate temporary vectorial force */
194 tx = fscal*dx00;
195 ty = fscal*dy00;
196 tz = fscal*dz00;
198 /* Update vectorial force */
199 fix0 += tx;
200 fiy0 += ty;
201 fiz0 += tz;
202 f[j_coord_offset+DIM*0+XX] -= tx;
203 f[j_coord_offset+DIM*0+YY] -= ty;
204 f[j_coord_offset+DIM*0+ZZ] -= tz;
206 /* Inner loop uses 67 flops */
208 /* End of innermost loop */
210 tx = ty = tz = 0;
211 f[i_coord_offset+DIM*0+XX] += fix0;
212 f[i_coord_offset+DIM*0+YY] += fiy0;
213 f[i_coord_offset+DIM*0+ZZ] += fiz0;
214 tx += fix0;
215 ty += fiy0;
216 tz += fiz0;
217 fshift[i_shift_offset+XX] += tx;
218 fshift[i_shift_offset+YY] += ty;
219 fshift[i_shift_offset+ZZ] += tz;
221 ggid = gid[iidx];
222 /* Update potential energies */
223 kernel_data->energygrp_elec[ggid] += velecsum;
224 kernel_data->energygrp_vdw[ggid] += vvdwsum;
226 /* Increment number of inner iterations */
227 inneriter += j_index_end - j_index_start;
229 /* Outer loop uses 15 flops */
232 /* Increment number of outer iterations */
233 outeriter += nri;
235 /* Update outer/inner flops */
237 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*67);
240 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwBham_GeomP1P1_F_c
241 * Electrostatics interaction: Coulomb
242 * VdW interaction: Buckingham
243 * Geometry: Particle-Particle
244 * Calculate force/pot: Force
246 void
247 nb_kernel_ElecCoul_VdwBham_GeomP1P1_F_c
248 (t_nblist * gmx_restrict nlist,
249 rvec * gmx_restrict xx,
250 rvec * gmx_restrict ff,
251 t_forcerec * gmx_restrict fr,
252 t_mdatoms * gmx_restrict mdatoms,
253 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
254 t_nrnb * gmx_restrict nrnb)
256 int i_shift_offset,i_coord_offset,j_coord_offset;
257 int j_index_start,j_index_end;
258 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
259 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
260 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
261 real *shiftvec,*fshift,*x,*f;
262 int vdwioffset0;
263 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
264 int vdwjidx0;
265 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
266 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
267 real velec,felec,velecsum,facel,crf,krf,krf2;
268 real *charge;
269 int nvdwtype;
270 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
271 int *vdwtype;
272 real *vdwparam;
274 x = xx[0];
275 f = ff[0];
277 nri = nlist->nri;
278 iinr = nlist->iinr;
279 jindex = nlist->jindex;
280 jjnr = nlist->jjnr;
281 shiftidx = nlist->shift;
282 gid = nlist->gid;
283 shiftvec = fr->shift_vec[0];
284 fshift = fr->fshift[0];
285 facel = fr->epsfac;
286 charge = mdatoms->chargeA;
287 nvdwtype = fr->ntype;
288 vdwparam = fr->nbfp;
289 vdwtype = mdatoms->typeA;
291 outeriter = 0;
292 inneriter = 0;
294 /* Start outer loop over neighborlists */
295 for(iidx=0; iidx<nri; iidx++)
297 /* Load shift vector for this list */
298 i_shift_offset = DIM*shiftidx[iidx];
299 shX = shiftvec[i_shift_offset+XX];
300 shY = shiftvec[i_shift_offset+YY];
301 shZ = shiftvec[i_shift_offset+ZZ];
303 /* Load limits for loop over neighbors */
304 j_index_start = jindex[iidx];
305 j_index_end = jindex[iidx+1];
307 /* Get outer coordinate index */
308 inr = iinr[iidx];
309 i_coord_offset = DIM*inr;
311 /* Load i particle coords and add shift vector */
312 ix0 = shX + x[i_coord_offset+DIM*0+XX];
313 iy0 = shY + x[i_coord_offset+DIM*0+YY];
314 iz0 = shZ + x[i_coord_offset+DIM*0+ZZ];
316 fix0 = 0.0;
317 fiy0 = 0.0;
318 fiz0 = 0.0;
320 /* Load parameters for i particles */
321 iq0 = facel*charge[inr+0];
322 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
324 /* Start inner kernel loop */
325 for(jidx=j_index_start; jidx<j_index_end; jidx++)
327 /* Get j neighbor index, and coordinate index */
328 jnr = jjnr[jidx];
329 j_coord_offset = DIM*jnr;
331 /* load j atom coordinates */
332 jx0 = x[j_coord_offset+DIM*0+XX];
333 jy0 = x[j_coord_offset+DIM*0+YY];
334 jz0 = x[j_coord_offset+DIM*0+ZZ];
336 /* Calculate displacement vector */
337 dx00 = ix0 - jx0;
338 dy00 = iy0 - jy0;
339 dz00 = iz0 - jz0;
341 /* Calculate squared distance and things based on it */
342 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
344 rinv00 = gmx_invsqrt(rsq00);
346 rinvsq00 = rinv00*rinv00;
348 /* Load parameters for j particles */
349 jq0 = charge[jnr+0];
350 vdwjidx0 = 3*vdwtype[jnr+0];
352 /**************************
353 * CALCULATE INTERACTIONS *
354 **************************/
356 r00 = rsq00*rinv00;
358 qq00 = iq0*jq0;
359 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
360 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
361 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
363 /* COULOMB ELECTROSTATICS */
364 velec = qq00*rinv00;
365 felec = velec*rinvsq00;
367 /* BUCKINGHAM DISPERSION/REPULSION */
368 rinvsix = rinvsq00*rinvsq00*rinvsq00;
369 vvdw6 = c6_00*rinvsix;
370 br = cexp2_00*r00;
371 vvdwexp = cexp1_00*exp(-br);
372 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
374 fscal = felec+fvdw;
376 /* Calculate temporary vectorial force */
377 tx = fscal*dx00;
378 ty = fscal*dy00;
379 tz = fscal*dz00;
381 /* Update vectorial force */
382 fix0 += tx;
383 fiy0 += ty;
384 fiz0 += tz;
385 f[j_coord_offset+DIM*0+XX] -= tx;
386 f[j_coord_offset+DIM*0+YY] -= ty;
387 f[j_coord_offset+DIM*0+ZZ] -= tz;
389 /* Inner loop uses 63 flops */
391 /* End of innermost loop */
393 tx = ty = tz = 0;
394 f[i_coord_offset+DIM*0+XX] += fix0;
395 f[i_coord_offset+DIM*0+YY] += fiy0;
396 f[i_coord_offset+DIM*0+ZZ] += fiz0;
397 tx += fix0;
398 ty += fiy0;
399 tz += fiz0;
400 fshift[i_shift_offset+XX] += tx;
401 fshift[i_shift_offset+YY] += ty;
402 fshift[i_shift_offset+ZZ] += tz;
404 /* Increment number of inner iterations */
405 inneriter += j_index_end - j_index_start;
407 /* Outer loop uses 13 flops */
410 /* Increment number of outer iterations */
411 outeriter += nri;
413 /* Update outer/inner flops */
415 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*63);