Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_avx_256_single.c
blob224d76a95941510c56dc1754dee6d134262fdb32
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS avx_256_single kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
47 #include "gromacs/simd/math_x86_avx_256_single.h"
48 #include "kernelutil_x86_avx_256_single.h"
51 * Gromacs nonbonded kernel: nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_avx_256_single
52 * Electrostatics interaction: None
53 * VdW interaction: LJEwald
54 * Geometry: Particle-Particle
55 * Calculate force/pot: PotentialAndForce
57 void
58 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_avx_256_single
59 (t_nblist * gmx_restrict nlist,
60 rvec * gmx_restrict xx,
61 rvec * gmx_restrict ff,
62 t_forcerec * gmx_restrict fr,
63 t_mdatoms * gmx_restrict mdatoms,
64 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65 t_nrnb * gmx_restrict nrnb)
67 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68 * just 0 for non-waters.
69 * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
70 * jnr indices corresponding to data put in the four positions in the SIMD register.
72 int i_shift_offset,i_coord_offset,outeriter,inneriter;
73 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74 int jnrA,jnrB,jnrC,jnrD;
75 int jnrE,jnrF,jnrG,jnrH;
76 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77 int jnrlistE,jnrlistF,jnrlistG,jnrlistH;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
80 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
81 real rcutoff_scalar;
82 real *shiftvec,*fshift,*x,*f;
83 real *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
84 real scratch[4*DIM];
85 __m256 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86 real * vdwioffsetptr0;
87 real * vdwgridioffsetptr0;
88 __m256 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
89 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
90 __m256 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91 __m256 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92 int nvdwtype;
93 __m256 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94 int *vdwtype;
95 real *vdwparam;
96 __m256 one_sixth = _mm256_set1_ps(1.0/6.0);
97 __m256 one_twelfth = _mm256_set1_ps(1.0/12.0);
98 __m256 c6grid_00;
99 real *vdwgridparam;
100 __m256 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
101 __m256 one_half = _mm256_set1_ps(0.5);
102 __m256 minus_one = _mm256_set1_ps(-1.0);
103 __m256 dummy_mask,cutoff_mask;
104 __m256 signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
105 __m256 one = _mm256_set1_ps(1.0);
106 __m256 two = _mm256_set1_ps(2.0);
107 x = xx[0];
108 f = ff[0];
110 nri = nlist->nri;
111 iinr = nlist->iinr;
112 jindex = nlist->jindex;
113 jjnr = nlist->jjnr;
114 shiftidx = nlist->shift;
115 gid = nlist->gid;
116 shiftvec = fr->shift_vec[0];
117 fshift = fr->fshift[0];
118 nvdwtype = fr->ntype;
119 vdwparam = fr->nbfp;
120 vdwtype = mdatoms->typeA;
121 vdwgridparam = fr->ljpme_c6grid;
122 sh_lj_ewald = _mm256_set1_ps(fr->ic->sh_lj_ewald);
123 ewclj = _mm256_set1_ps(fr->ewaldcoeff_lj);
124 ewclj2 = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
126 rcutoff_scalar = fr->rvdw;
127 rcutoff = _mm256_set1_ps(rcutoff_scalar);
128 rcutoff2 = _mm256_mul_ps(rcutoff,rcutoff);
130 sh_vdw_invrcut6 = _mm256_set1_ps(fr->ic->sh_invrc6);
131 rvdw = _mm256_set1_ps(fr->rvdw);
133 /* Avoid stupid compiler warnings */
134 jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
135 j_coord_offsetA = 0;
136 j_coord_offsetB = 0;
137 j_coord_offsetC = 0;
138 j_coord_offsetD = 0;
139 j_coord_offsetE = 0;
140 j_coord_offsetF = 0;
141 j_coord_offsetG = 0;
142 j_coord_offsetH = 0;
144 outeriter = 0;
145 inneriter = 0;
147 for(iidx=0;iidx<4*DIM;iidx++)
149 scratch[iidx] = 0.0;
152 /* Start outer loop over neighborlists */
153 for(iidx=0; iidx<nri; iidx++)
155 /* Load shift vector for this list */
156 i_shift_offset = DIM*shiftidx[iidx];
158 /* Load limits for loop over neighbors */
159 j_index_start = jindex[iidx];
160 j_index_end = jindex[iidx+1];
162 /* Get outer coordinate index */
163 inr = iinr[iidx];
164 i_coord_offset = DIM*inr;
166 /* Load i particle coords and add shift vector */
167 gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
169 fix0 = _mm256_setzero_ps();
170 fiy0 = _mm256_setzero_ps();
171 fiz0 = _mm256_setzero_ps();
173 /* Load parameters for i particles */
174 vdwioffsetptr0 = vdwparam+2*nvdwtype*vdwtype[inr+0];
175 vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
177 /* Reset potential sums */
178 vvdwsum = _mm256_setzero_ps();
180 /* Start inner kernel loop */
181 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
184 /* Get j neighbor index, and coordinate index */
185 jnrA = jjnr[jidx];
186 jnrB = jjnr[jidx+1];
187 jnrC = jjnr[jidx+2];
188 jnrD = jjnr[jidx+3];
189 jnrE = jjnr[jidx+4];
190 jnrF = jjnr[jidx+5];
191 jnrG = jjnr[jidx+6];
192 jnrH = jjnr[jidx+7];
193 j_coord_offsetA = DIM*jnrA;
194 j_coord_offsetB = DIM*jnrB;
195 j_coord_offsetC = DIM*jnrC;
196 j_coord_offsetD = DIM*jnrD;
197 j_coord_offsetE = DIM*jnrE;
198 j_coord_offsetF = DIM*jnrF;
199 j_coord_offsetG = DIM*jnrG;
200 j_coord_offsetH = DIM*jnrH;
202 /* load j atom coordinates */
203 gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
204 x+j_coord_offsetC,x+j_coord_offsetD,
205 x+j_coord_offsetE,x+j_coord_offsetF,
206 x+j_coord_offsetG,x+j_coord_offsetH,
207 &jx0,&jy0,&jz0);
209 /* Calculate displacement vector */
210 dx00 = _mm256_sub_ps(ix0,jx0);
211 dy00 = _mm256_sub_ps(iy0,jy0);
212 dz00 = _mm256_sub_ps(iz0,jz0);
214 /* Calculate squared distance and things based on it */
215 rsq00 = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
217 rinv00 = gmx_mm256_invsqrt_ps(rsq00);
219 rinvsq00 = _mm256_mul_ps(rinv00,rinv00);
221 /* Load parameters for j particles */
222 vdwjidx0A = 2*vdwtype[jnrA+0];
223 vdwjidx0B = 2*vdwtype[jnrB+0];
224 vdwjidx0C = 2*vdwtype[jnrC+0];
225 vdwjidx0D = 2*vdwtype[jnrD+0];
226 vdwjidx0E = 2*vdwtype[jnrE+0];
227 vdwjidx0F = 2*vdwtype[jnrF+0];
228 vdwjidx0G = 2*vdwtype[jnrG+0];
229 vdwjidx0H = 2*vdwtype[jnrH+0];
231 /**************************
232 * CALCULATE INTERACTIONS *
233 **************************/
235 if (gmx_mm256_any_lt(rsq00,rcutoff2))
238 r00 = _mm256_mul_ps(rsq00,rinv00);
240 /* Compute parameters for interactions between i and j atoms */
241 gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
242 vdwioffsetptr0+vdwjidx0B,
243 vdwioffsetptr0+vdwjidx0C,
244 vdwioffsetptr0+vdwjidx0D,
245 vdwioffsetptr0+vdwjidx0E,
246 vdwioffsetptr0+vdwjidx0F,
247 vdwioffsetptr0+vdwjidx0G,
248 vdwioffsetptr0+vdwjidx0H,
249 &c6_00,&c12_00);
251 c6grid_00 = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
252 vdwgridioffsetptr0+vdwjidx0B,
253 vdwgridioffsetptr0+vdwjidx0C,
254 vdwgridioffsetptr0+vdwjidx0D,
255 vdwgridioffsetptr0+vdwjidx0E,
256 vdwgridioffsetptr0+vdwjidx0F,
257 vdwgridioffsetptr0+vdwjidx0G,
258 vdwgridioffsetptr0+vdwjidx0H);
260 /* Analytical LJ-PME */
261 rinvsix = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
262 ewcljrsq = _mm256_mul_ps(ewclj2,rsq00);
263 ewclj6 = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
264 exponent = gmx_simd_exp_r(ewcljrsq);
265 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
266 poly = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
267 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
268 vvdw6 = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
269 vvdw12 = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
270 vvdw = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
271 _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_00,sh_vdw_invrcut6),_mm256_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
272 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
273 fvdw = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
275 cutoff_mask = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
277 /* Update potential sum for this i atom from the interaction with this j atom. */
278 vvdw = _mm256_and_ps(vvdw,cutoff_mask);
279 vvdwsum = _mm256_add_ps(vvdwsum,vvdw);
281 fscal = fvdw;
283 fscal = _mm256_and_ps(fscal,cutoff_mask);
285 /* Calculate temporary vectorial force */
286 tx = _mm256_mul_ps(fscal,dx00);
287 ty = _mm256_mul_ps(fscal,dy00);
288 tz = _mm256_mul_ps(fscal,dz00);
290 /* Update vectorial force */
291 fix0 = _mm256_add_ps(fix0,tx);
292 fiy0 = _mm256_add_ps(fiy0,ty);
293 fiz0 = _mm256_add_ps(fiz0,tz);
295 fjptrA = f+j_coord_offsetA;
296 fjptrB = f+j_coord_offsetB;
297 fjptrC = f+j_coord_offsetC;
298 fjptrD = f+j_coord_offsetD;
299 fjptrE = f+j_coord_offsetE;
300 fjptrF = f+j_coord_offsetF;
301 fjptrG = f+j_coord_offsetG;
302 fjptrH = f+j_coord_offsetH;
303 gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
307 /* Inner loop uses 62 flops */
310 if(jidx<j_index_end)
313 /* Get j neighbor index, and coordinate index */
314 jnrlistA = jjnr[jidx];
315 jnrlistB = jjnr[jidx+1];
316 jnrlistC = jjnr[jidx+2];
317 jnrlistD = jjnr[jidx+3];
318 jnrlistE = jjnr[jidx+4];
319 jnrlistF = jjnr[jidx+5];
320 jnrlistG = jjnr[jidx+6];
321 jnrlistH = jjnr[jidx+7];
322 /* Sign of each element will be negative for non-real atoms.
323 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
324 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
326 dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
327 gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
329 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
330 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
331 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
332 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
333 jnrE = (jnrlistE>=0) ? jnrlistE : 0;
334 jnrF = (jnrlistF>=0) ? jnrlistF : 0;
335 jnrG = (jnrlistG>=0) ? jnrlistG : 0;
336 jnrH = (jnrlistH>=0) ? jnrlistH : 0;
337 j_coord_offsetA = DIM*jnrA;
338 j_coord_offsetB = DIM*jnrB;
339 j_coord_offsetC = DIM*jnrC;
340 j_coord_offsetD = DIM*jnrD;
341 j_coord_offsetE = DIM*jnrE;
342 j_coord_offsetF = DIM*jnrF;
343 j_coord_offsetG = DIM*jnrG;
344 j_coord_offsetH = DIM*jnrH;
346 /* load j atom coordinates */
347 gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
348 x+j_coord_offsetC,x+j_coord_offsetD,
349 x+j_coord_offsetE,x+j_coord_offsetF,
350 x+j_coord_offsetG,x+j_coord_offsetH,
351 &jx0,&jy0,&jz0);
353 /* Calculate displacement vector */
354 dx00 = _mm256_sub_ps(ix0,jx0);
355 dy00 = _mm256_sub_ps(iy0,jy0);
356 dz00 = _mm256_sub_ps(iz0,jz0);
358 /* Calculate squared distance and things based on it */
359 rsq00 = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
361 rinv00 = gmx_mm256_invsqrt_ps(rsq00);
363 rinvsq00 = _mm256_mul_ps(rinv00,rinv00);
365 /* Load parameters for j particles */
366 vdwjidx0A = 2*vdwtype[jnrA+0];
367 vdwjidx0B = 2*vdwtype[jnrB+0];
368 vdwjidx0C = 2*vdwtype[jnrC+0];
369 vdwjidx0D = 2*vdwtype[jnrD+0];
370 vdwjidx0E = 2*vdwtype[jnrE+0];
371 vdwjidx0F = 2*vdwtype[jnrF+0];
372 vdwjidx0G = 2*vdwtype[jnrG+0];
373 vdwjidx0H = 2*vdwtype[jnrH+0];
375 /**************************
376 * CALCULATE INTERACTIONS *
377 **************************/
379 if (gmx_mm256_any_lt(rsq00,rcutoff2))
382 r00 = _mm256_mul_ps(rsq00,rinv00);
383 r00 = _mm256_andnot_ps(dummy_mask,r00);
385 /* Compute parameters for interactions between i and j atoms */
386 gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
387 vdwioffsetptr0+vdwjidx0B,
388 vdwioffsetptr0+vdwjidx0C,
389 vdwioffsetptr0+vdwjidx0D,
390 vdwioffsetptr0+vdwjidx0E,
391 vdwioffsetptr0+vdwjidx0F,
392 vdwioffsetptr0+vdwjidx0G,
393 vdwioffsetptr0+vdwjidx0H,
394 &c6_00,&c12_00);
396 c6grid_00 = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
397 vdwgridioffsetptr0+vdwjidx0B,
398 vdwgridioffsetptr0+vdwjidx0C,
399 vdwgridioffsetptr0+vdwjidx0D,
400 vdwgridioffsetptr0+vdwjidx0E,
401 vdwgridioffsetptr0+vdwjidx0F,
402 vdwgridioffsetptr0+vdwjidx0G,
403 vdwgridioffsetptr0+vdwjidx0H);
405 /* Analytical LJ-PME */
406 rinvsix = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
407 ewcljrsq = _mm256_mul_ps(ewclj2,rsq00);
408 ewclj6 = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
409 exponent = gmx_simd_exp_r(ewcljrsq);
410 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
411 poly = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
412 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
413 vvdw6 = _mm256_mul_ps(_mm256_sub_ps(c6_00,_mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly))),rinvsix);
414 vvdw12 = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
415 vvdw = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
416 _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_add_ps(_mm256_mul_ps(c6_00,sh_vdw_invrcut6),_mm256_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
417 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
418 fvdw = _mm256_mul_ps(_mm256_sub_ps(vvdw12,_mm256_sub_ps(vvdw6,_mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6)))),rinvsq00);
420 cutoff_mask = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
422 /* Update potential sum for this i atom from the interaction with this j atom. */
423 vvdw = _mm256_and_ps(vvdw,cutoff_mask);
424 vvdw = _mm256_andnot_ps(dummy_mask,vvdw);
425 vvdwsum = _mm256_add_ps(vvdwsum,vvdw);
427 fscal = fvdw;
429 fscal = _mm256_and_ps(fscal,cutoff_mask);
431 fscal = _mm256_andnot_ps(dummy_mask,fscal);
433 /* Calculate temporary vectorial force */
434 tx = _mm256_mul_ps(fscal,dx00);
435 ty = _mm256_mul_ps(fscal,dy00);
436 tz = _mm256_mul_ps(fscal,dz00);
438 /* Update vectorial force */
439 fix0 = _mm256_add_ps(fix0,tx);
440 fiy0 = _mm256_add_ps(fiy0,ty);
441 fiz0 = _mm256_add_ps(fiz0,tz);
443 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
444 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
445 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
446 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
447 fjptrE = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
448 fjptrF = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
449 fjptrG = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
450 fjptrH = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
451 gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
455 /* Inner loop uses 63 flops */
458 /* End of innermost loop */
460 gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
461 f+i_coord_offset,fshift+i_shift_offset);
463 ggid = gid[iidx];
464 /* Update potential energies */
465 gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
467 /* Increment number of inner iterations */
468 inneriter += j_index_end - j_index_start;
470 /* Outer loop uses 7 flops */
473 /* Increment number of outer iterations */
474 outeriter += nri;
476 /* Update outer/inner flops */
478 inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*63);
481 * Gromacs nonbonded kernel: nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_avx_256_single
482 * Electrostatics interaction: None
483 * VdW interaction: LJEwald
484 * Geometry: Particle-Particle
485 * Calculate force/pot: Force
487 void
488 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_avx_256_single
489 (t_nblist * gmx_restrict nlist,
490 rvec * gmx_restrict xx,
491 rvec * gmx_restrict ff,
492 t_forcerec * gmx_restrict fr,
493 t_mdatoms * gmx_restrict mdatoms,
494 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
495 t_nrnb * gmx_restrict nrnb)
497 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
498 * just 0 for non-waters.
499 * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
500 * jnr indices corresponding to data put in the four positions in the SIMD register.
502 int i_shift_offset,i_coord_offset,outeriter,inneriter;
503 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
504 int jnrA,jnrB,jnrC,jnrD;
505 int jnrE,jnrF,jnrG,jnrH;
506 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
507 int jnrlistE,jnrlistF,jnrlistG,jnrlistH;
508 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
509 int j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
510 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
511 real rcutoff_scalar;
512 real *shiftvec,*fshift,*x,*f;
513 real *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
514 real scratch[4*DIM];
515 __m256 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
516 real * vdwioffsetptr0;
517 real * vdwgridioffsetptr0;
518 __m256 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
519 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
520 __m256 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
521 __m256 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
522 int nvdwtype;
523 __m256 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
524 int *vdwtype;
525 real *vdwparam;
526 __m256 one_sixth = _mm256_set1_ps(1.0/6.0);
527 __m256 one_twelfth = _mm256_set1_ps(1.0/12.0);
528 __m256 c6grid_00;
529 real *vdwgridparam;
530 __m256 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
531 __m256 one_half = _mm256_set1_ps(0.5);
532 __m256 minus_one = _mm256_set1_ps(-1.0);
533 __m256 dummy_mask,cutoff_mask;
534 __m256 signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
535 __m256 one = _mm256_set1_ps(1.0);
536 __m256 two = _mm256_set1_ps(2.0);
537 x = xx[0];
538 f = ff[0];
540 nri = nlist->nri;
541 iinr = nlist->iinr;
542 jindex = nlist->jindex;
543 jjnr = nlist->jjnr;
544 shiftidx = nlist->shift;
545 gid = nlist->gid;
546 shiftvec = fr->shift_vec[0];
547 fshift = fr->fshift[0];
548 nvdwtype = fr->ntype;
549 vdwparam = fr->nbfp;
550 vdwtype = mdatoms->typeA;
551 vdwgridparam = fr->ljpme_c6grid;
552 sh_lj_ewald = _mm256_set1_ps(fr->ic->sh_lj_ewald);
553 ewclj = _mm256_set1_ps(fr->ewaldcoeff_lj);
554 ewclj2 = _mm256_mul_ps(minus_one,_mm256_mul_ps(ewclj,ewclj));
556 rcutoff_scalar = fr->rvdw;
557 rcutoff = _mm256_set1_ps(rcutoff_scalar);
558 rcutoff2 = _mm256_mul_ps(rcutoff,rcutoff);
560 sh_vdw_invrcut6 = _mm256_set1_ps(fr->ic->sh_invrc6);
561 rvdw = _mm256_set1_ps(fr->rvdw);
563 /* Avoid stupid compiler warnings */
564 jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
565 j_coord_offsetA = 0;
566 j_coord_offsetB = 0;
567 j_coord_offsetC = 0;
568 j_coord_offsetD = 0;
569 j_coord_offsetE = 0;
570 j_coord_offsetF = 0;
571 j_coord_offsetG = 0;
572 j_coord_offsetH = 0;
574 outeriter = 0;
575 inneriter = 0;
577 for(iidx=0;iidx<4*DIM;iidx++)
579 scratch[iidx] = 0.0;
582 /* Start outer loop over neighborlists */
583 for(iidx=0; iidx<nri; iidx++)
585 /* Load shift vector for this list */
586 i_shift_offset = DIM*shiftidx[iidx];
588 /* Load limits for loop over neighbors */
589 j_index_start = jindex[iidx];
590 j_index_end = jindex[iidx+1];
592 /* Get outer coordinate index */
593 inr = iinr[iidx];
594 i_coord_offset = DIM*inr;
596 /* Load i particle coords and add shift vector */
597 gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
599 fix0 = _mm256_setzero_ps();
600 fiy0 = _mm256_setzero_ps();
601 fiz0 = _mm256_setzero_ps();
603 /* Load parameters for i particles */
604 vdwioffsetptr0 = vdwparam+2*nvdwtype*vdwtype[inr+0];
605 vdwgridioffsetptr0 = vdwgridparam+2*nvdwtype*vdwtype[inr+0];
607 /* Start inner kernel loop */
608 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
611 /* Get j neighbor index, and coordinate index */
612 jnrA = jjnr[jidx];
613 jnrB = jjnr[jidx+1];
614 jnrC = jjnr[jidx+2];
615 jnrD = jjnr[jidx+3];
616 jnrE = jjnr[jidx+4];
617 jnrF = jjnr[jidx+5];
618 jnrG = jjnr[jidx+6];
619 jnrH = jjnr[jidx+7];
620 j_coord_offsetA = DIM*jnrA;
621 j_coord_offsetB = DIM*jnrB;
622 j_coord_offsetC = DIM*jnrC;
623 j_coord_offsetD = DIM*jnrD;
624 j_coord_offsetE = DIM*jnrE;
625 j_coord_offsetF = DIM*jnrF;
626 j_coord_offsetG = DIM*jnrG;
627 j_coord_offsetH = DIM*jnrH;
629 /* load j atom coordinates */
630 gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
631 x+j_coord_offsetC,x+j_coord_offsetD,
632 x+j_coord_offsetE,x+j_coord_offsetF,
633 x+j_coord_offsetG,x+j_coord_offsetH,
634 &jx0,&jy0,&jz0);
636 /* Calculate displacement vector */
637 dx00 = _mm256_sub_ps(ix0,jx0);
638 dy00 = _mm256_sub_ps(iy0,jy0);
639 dz00 = _mm256_sub_ps(iz0,jz0);
641 /* Calculate squared distance and things based on it */
642 rsq00 = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
644 rinv00 = gmx_mm256_invsqrt_ps(rsq00);
646 rinvsq00 = _mm256_mul_ps(rinv00,rinv00);
648 /* Load parameters for j particles */
649 vdwjidx0A = 2*vdwtype[jnrA+0];
650 vdwjidx0B = 2*vdwtype[jnrB+0];
651 vdwjidx0C = 2*vdwtype[jnrC+0];
652 vdwjidx0D = 2*vdwtype[jnrD+0];
653 vdwjidx0E = 2*vdwtype[jnrE+0];
654 vdwjidx0F = 2*vdwtype[jnrF+0];
655 vdwjidx0G = 2*vdwtype[jnrG+0];
656 vdwjidx0H = 2*vdwtype[jnrH+0];
658 /**************************
659 * CALCULATE INTERACTIONS *
660 **************************/
662 if (gmx_mm256_any_lt(rsq00,rcutoff2))
665 r00 = _mm256_mul_ps(rsq00,rinv00);
667 /* Compute parameters for interactions between i and j atoms */
668 gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
669 vdwioffsetptr0+vdwjidx0B,
670 vdwioffsetptr0+vdwjidx0C,
671 vdwioffsetptr0+vdwjidx0D,
672 vdwioffsetptr0+vdwjidx0E,
673 vdwioffsetptr0+vdwjidx0F,
674 vdwioffsetptr0+vdwjidx0G,
675 vdwioffsetptr0+vdwjidx0H,
676 &c6_00,&c12_00);
678 c6grid_00 = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
679 vdwgridioffsetptr0+vdwjidx0B,
680 vdwgridioffsetptr0+vdwjidx0C,
681 vdwgridioffsetptr0+vdwjidx0D,
682 vdwgridioffsetptr0+vdwjidx0E,
683 vdwgridioffsetptr0+vdwjidx0F,
684 vdwgridioffsetptr0+vdwjidx0G,
685 vdwgridioffsetptr0+vdwjidx0H);
687 /* Analytical LJ-PME */
688 rinvsix = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
689 ewcljrsq = _mm256_mul_ps(ewclj2,rsq00);
690 ewclj6 = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
691 exponent = gmx_simd_exp_r(ewcljrsq);
692 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
693 poly = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
694 /* f6A = 6 * C6grid * (1 - poly) */
695 f6A = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
696 /* f6B = C6grid * exponent * beta^6 */
697 f6B = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
698 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
699 fvdw = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
701 cutoff_mask = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
703 fscal = fvdw;
705 fscal = _mm256_and_ps(fscal,cutoff_mask);
707 /* Calculate temporary vectorial force */
708 tx = _mm256_mul_ps(fscal,dx00);
709 ty = _mm256_mul_ps(fscal,dy00);
710 tz = _mm256_mul_ps(fscal,dz00);
712 /* Update vectorial force */
713 fix0 = _mm256_add_ps(fix0,tx);
714 fiy0 = _mm256_add_ps(fiy0,ty);
715 fiz0 = _mm256_add_ps(fiz0,tz);
717 fjptrA = f+j_coord_offsetA;
718 fjptrB = f+j_coord_offsetB;
719 fjptrC = f+j_coord_offsetC;
720 fjptrD = f+j_coord_offsetD;
721 fjptrE = f+j_coord_offsetE;
722 fjptrF = f+j_coord_offsetF;
723 fjptrG = f+j_coord_offsetG;
724 fjptrH = f+j_coord_offsetH;
725 gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
729 /* Inner loop uses 49 flops */
732 if(jidx<j_index_end)
735 /* Get j neighbor index, and coordinate index */
736 jnrlistA = jjnr[jidx];
737 jnrlistB = jjnr[jidx+1];
738 jnrlistC = jjnr[jidx+2];
739 jnrlistD = jjnr[jidx+3];
740 jnrlistE = jjnr[jidx+4];
741 jnrlistF = jjnr[jidx+5];
742 jnrlistG = jjnr[jidx+6];
743 jnrlistH = jjnr[jidx+7];
744 /* Sign of each element will be negative for non-real atoms.
745 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
746 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
748 dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
749 gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
751 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
752 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
753 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
754 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
755 jnrE = (jnrlistE>=0) ? jnrlistE : 0;
756 jnrF = (jnrlistF>=0) ? jnrlistF : 0;
757 jnrG = (jnrlistG>=0) ? jnrlistG : 0;
758 jnrH = (jnrlistH>=0) ? jnrlistH : 0;
759 j_coord_offsetA = DIM*jnrA;
760 j_coord_offsetB = DIM*jnrB;
761 j_coord_offsetC = DIM*jnrC;
762 j_coord_offsetD = DIM*jnrD;
763 j_coord_offsetE = DIM*jnrE;
764 j_coord_offsetF = DIM*jnrF;
765 j_coord_offsetG = DIM*jnrG;
766 j_coord_offsetH = DIM*jnrH;
768 /* load j atom coordinates */
769 gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
770 x+j_coord_offsetC,x+j_coord_offsetD,
771 x+j_coord_offsetE,x+j_coord_offsetF,
772 x+j_coord_offsetG,x+j_coord_offsetH,
773 &jx0,&jy0,&jz0);
775 /* Calculate displacement vector */
776 dx00 = _mm256_sub_ps(ix0,jx0);
777 dy00 = _mm256_sub_ps(iy0,jy0);
778 dz00 = _mm256_sub_ps(iz0,jz0);
780 /* Calculate squared distance and things based on it */
781 rsq00 = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
783 rinv00 = gmx_mm256_invsqrt_ps(rsq00);
785 rinvsq00 = _mm256_mul_ps(rinv00,rinv00);
787 /* Load parameters for j particles */
788 vdwjidx0A = 2*vdwtype[jnrA+0];
789 vdwjidx0B = 2*vdwtype[jnrB+0];
790 vdwjidx0C = 2*vdwtype[jnrC+0];
791 vdwjidx0D = 2*vdwtype[jnrD+0];
792 vdwjidx0E = 2*vdwtype[jnrE+0];
793 vdwjidx0F = 2*vdwtype[jnrF+0];
794 vdwjidx0G = 2*vdwtype[jnrG+0];
795 vdwjidx0H = 2*vdwtype[jnrH+0];
797 /**************************
798 * CALCULATE INTERACTIONS *
799 **************************/
801 if (gmx_mm256_any_lt(rsq00,rcutoff2))
804 r00 = _mm256_mul_ps(rsq00,rinv00);
805 r00 = _mm256_andnot_ps(dummy_mask,r00);
807 /* Compute parameters for interactions between i and j atoms */
808 gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
809 vdwioffsetptr0+vdwjidx0B,
810 vdwioffsetptr0+vdwjidx0C,
811 vdwioffsetptr0+vdwjidx0D,
812 vdwioffsetptr0+vdwjidx0E,
813 vdwioffsetptr0+vdwjidx0F,
814 vdwioffsetptr0+vdwjidx0G,
815 vdwioffsetptr0+vdwjidx0H,
816 &c6_00,&c12_00);
818 c6grid_00 = gmx_mm256_load_8real_swizzle_ps(vdwgridioffsetptr0+vdwjidx0A,
819 vdwgridioffsetptr0+vdwjidx0B,
820 vdwgridioffsetptr0+vdwjidx0C,
821 vdwgridioffsetptr0+vdwjidx0D,
822 vdwgridioffsetptr0+vdwjidx0E,
823 vdwgridioffsetptr0+vdwjidx0F,
824 vdwgridioffsetptr0+vdwjidx0G,
825 vdwgridioffsetptr0+vdwjidx0H);
827 /* Analytical LJ-PME */
828 rinvsix = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
829 ewcljrsq = _mm256_mul_ps(ewclj2,rsq00);
830 ewclj6 = _mm256_mul_ps(ewclj2,_mm256_mul_ps(ewclj2,ewclj2));
831 exponent = gmx_simd_exp_r(ewcljrsq);
832 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
833 poly = _mm256_mul_ps(exponent,_mm256_add_ps(_mm256_sub_ps(one,ewcljrsq),_mm256_mul_ps(_mm256_mul_ps(ewcljrsq,ewcljrsq),one_half)));
834 /* f6A = 6 * C6grid * (1 - poly) */
835 f6A = _mm256_mul_ps(c6grid_00,_mm256_sub_ps(one,poly));
836 /* f6B = C6grid * exponent * beta^6 */
837 f6B = _mm256_mul_ps(_mm256_mul_ps(c6grid_00,one_sixth),_mm256_mul_ps(exponent,ewclj6));
838 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
839 fvdw = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),_mm256_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
841 cutoff_mask = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
843 fscal = fvdw;
845 fscal = _mm256_and_ps(fscal,cutoff_mask);
847 fscal = _mm256_andnot_ps(dummy_mask,fscal);
849 /* Calculate temporary vectorial force */
850 tx = _mm256_mul_ps(fscal,dx00);
851 ty = _mm256_mul_ps(fscal,dy00);
852 tz = _mm256_mul_ps(fscal,dz00);
854 /* Update vectorial force */
855 fix0 = _mm256_add_ps(fix0,tx);
856 fiy0 = _mm256_add_ps(fiy0,ty);
857 fiz0 = _mm256_add_ps(fiz0,tz);
859 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
860 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
861 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
862 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
863 fjptrE = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
864 fjptrF = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
865 fjptrG = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
866 fjptrH = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
867 gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
871 /* Inner loop uses 50 flops */
874 /* End of innermost loop */
876 gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
877 f+i_coord_offset,fshift+i_shift_offset);
879 /* Increment number of inner iterations */
880 inneriter += j_index_end - j_index_start;
882 /* Outer loop uses 6 flops */
885 /* Increment number of outer iterations */
886 outeriter += nri;
888 /* Update outer/inner flops */
890 inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*50);