Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwLJ_GeomW3P1_avx_256_double.c
blobb9354518dc34652d549a3b4e175ac29e822f6b69
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS avx_256_double kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
51 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_256_double
52 * Electrostatics interaction: ReactionField
53 * VdW interaction: LennardJones
54 * Geometry: Water3-Particle
55 * Calculate force/pot: PotentialAndForce
57 void
58 nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_256_double
59 (t_nblist * gmx_restrict nlist,
60 rvec * gmx_restrict xx,
61 rvec * gmx_restrict ff,
62 t_forcerec * gmx_restrict fr,
63 t_mdatoms * gmx_restrict mdatoms,
64 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65 t_nrnb * gmx_restrict nrnb)
67 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68 * just 0 for non-waters.
69 * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70 * jnr indices corresponding to data put in the four positions in the SIMD register.
72 int i_shift_offset,i_coord_offset,outeriter,inneriter;
73 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74 int jnrA,jnrB,jnrC,jnrD;
75 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76 int jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
79 real rcutoff_scalar;
80 real *shiftvec,*fshift,*x,*f;
81 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82 real scratch[4*DIM];
83 __m256d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84 real * vdwioffsetptr0;
85 __m256d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86 real * vdwioffsetptr1;
87 __m256d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88 real * vdwioffsetptr2;
89 __m256d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91 __m256d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92 __m256d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93 __m256d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94 __m256d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95 __m256d velec,felec,velecsum,facel,crf,krf,krf2;
96 real *charge;
97 int nvdwtype;
98 __m256d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99 int *vdwtype;
100 real *vdwparam;
101 __m256d one_sixth = _mm256_set1_pd(1.0/6.0);
102 __m256d one_twelfth = _mm256_set1_pd(1.0/12.0);
103 __m256d dummy_mask,cutoff_mask;
104 __m128 tmpmask0,tmpmask1;
105 __m256d signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106 __m256d one = _mm256_set1_pd(1.0);
107 __m256d two = _mm256_set1_pd(2.0);
108 x = xx[0];
109 f = ff[0];
111 nri = nlist->nri;
112 iinr = nlist->iinr;
113 jindex = nlist->jindex;
114 jjnr = nlist->jjnr;
115 shiftidx = nlist->shift;
116 gid = nlist->gid;
117 shiftvec = fr->shift_vec[0];
118 fshift = fr->fshift[0];
119 facel = _mm256_set1_pd(fr->epsfac);
120 charge = mdatoms->chargeA;
121 krf = _mm256_set1_pd(fr->ic->k_rf);
122 krf2 = _mm256_set1_pd(fr->ic->k_rf*2.0);
123 crf = _mm256_set1_pd(fr->ic->c_rf);
124 nvdwtype = fr->ntype;
125 vdwparam = fr->nbfp;
126 vdwtype = mdatoms->typeA;
128 /* Setup water-specific parameters */
129 inr = nlist->iinr[0];
130 iq0 = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
131 iq1 = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
132 iq2 = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
133 vdwioffsetptr0 = vdwparam+2*nvdwtype*vdwtype[inr+0];
135 /* Avoid stupid compiler warnings */
136 jnrA = jnrB = jnrC = jnrD = 0;
137 j_coord_offsetA = 0;
138 j_coord_offsetB = 0;
139 j_coord_offsetC = 0;
140 j_coord_offsetD = 0;
142 outeriter = 0;
143 inneriter = 0;
145 for(iidx=0;iidx<4*DIM;iidx++)
147 scratch[iidx] = 0.0;
150 /* Start outer loop over neighborlists */
151 for(iidx=0; iidx<nri; iidx++)
153 /* Load shift vector for this list */
154 i_shift_offset = DIM*shiftidx[iidx];
156 /* Load limits for loop over neighbors */
157 j_index_start = jindex[iidx];
158 j_index_end = jindex[iidx+1];
160 /* Get outer coordinate index */
161 inr = iinr[iidx];
162 i_coord_offset = DIM*inr;
164 /* Load i particle coords and add shift vector */
165 gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
166 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
168 fix0 = _mm256_setzero_pd();
169 fiy0 = _mm256_setzero_pd();
170 fiz0 = _mm256_setzero_pd();
171 fix1 = _mm256_setzero_pd();
172 fiy1 = _mm256_setzero_pd();
173 fiz1 = _mm256_setzero_pd();
174 fix2 = _mm256_setzero_pd();
175 fiy2 = _mm256_setzero_pd();
176 fiz2 = _mm256_setzero_pd();
178 /* Reset potential sums */
179 velecsum = _mm256_setzero_pd();
180 vvdwsum = _mm256_setzero_pd();
182 /* Start inner kernel loop */
183 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186 /* Get j neighbor index, and coordinate index */
187 jnrA = jjnr[jidx];
188 jnrB = jjnr[jidx+1];
189 jnrC = jjnr[jidx+2];
190 jnrD = jjnr[jidx+3];
191 j_coord_offsetA = DIM*jnrA;
192 j_coord_offsetB = DIM*jnrB;
193 j_coord_offsetC = DIM*jnrC;
194 j_coord_offsetD = DIM*jnrD;
196 /* load j atom coordinates */
197 gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
198 x+j_coord_offsetC,x+j_coord_offsetD,
199 &jx0,&jy0,&jz0);
201 /* Calculate displacement vector */
202 dx00 = _mm256_sub_pd(ix0,jx0);
203 dy00 = _mm256_sub_pd(iy0,jy0);
204 dz00 = _mm256_sub_pd(iz0,jz0);
205 dx10 = _mm256_sub_pd(ix1,jx0);
206 dy10 = _mm256_sub_pd(iy1,jy0);
207 dz10 = _mm256_sub_pd(iz1,jz0);
208 dx20 = _mm256_sub_pd(ix2,jx0);
209 dy20 = _mm256_sub_pd(iy2,jy0);
210 dz20 = _mm256_sub_pd(iz2,jz0);
212 /* Calculate squared distance and things based on it */
213 rsq00 = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
214 rsq10 = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
215 rsq20 = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
217 rinv00 = gmx_mm256_invsqrt_pd(rsq00);
218 rinv10 = gmx_mm256_invsqrt_pd(rsq10);
219 rinv20 = gmx_mm256_invsqrt_pd(rsq20);
221 rinvsq00 = _mm256_mul_pd(rinv00,rinv00);
222 rinvsq10 = _mm256_mul_pd(rinv10,rinv10);
223 rinvsq20 = _mm256_mul_pd(rinv20,rinv20);
225 /* Load parameters for j particles */
226 jq0 = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
227 charge+jnrC+0,charge+jnrD+0);
228 vdwjidx0A = 2*vdwtype[jnrA+0];
229 vdwjidx0B = 2*vdwtype[jnrB+0];
230 vdwjidx0C = 2*vdwtype[jnrC+0];
231 vdwjidx0D = 2*vdwtype[jnrD+0];
233 fjx0 = _mm256_setzero_pd();
234 fjy0 = _mm256_setzero_pd();
235 fjz0 = _mm256_setzero_pd();
237 /**************************
238 * CALCULATE INTERACTIONS *
239 **************************/
241 /* Compute parameters for interactions between i and j atoms */
242 qq00 = _mm256_mul_pd(iq0,jq0);
243 gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
244 vdwioffsetptr0+vdwjidx0B,
245 vdwioffsetptr0+vdwjidx0C,
246 vdwioffsetptr0+vdwjidx0D,
247 &c6_00,&c12_00);
249 /* REACTION-FIELD ELECTROSTATICS */
250 velec = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
251 felec = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
253 /* LENNARD-JONES DISPERSION/REPULSION */
255 rinvsix = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
256 vvdw6 = _mm256_mul_pd(c6_00,rinvsix);
257 vvdw12 = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
258 vvdw = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
259 fvdw = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
261 /* Update potential sum for this i atom from the interaction with this j atom. */
262 velecsum = _mm256_add_pd(velecsum,velec);
263 vvdwsum = _mm256_add_pd(vvdwsum,vvdw);
265 fscal = _mm256_add_pd(felec,fvdw);
267 /* Calculate temporary vectorial force */
268 tx = _mm256_mul_pd(fscal,dx00);
269 ty = _mm256_mul_pd(fscal,dy00);
270 tz = _mm256_mul_pd(fscal,dz00);
272 /* Update vectorial force */
273 fix0 = _mm256_add_pd(fix0,tx);
274 fiy0 = _mm256_add_pd(fiy0,ty);
275 fiz0 = _mm256_add_pd(fiz0,tz);
277 fjx0 = _mm256_add_pd(fjx0,tx);
278 fjy0 = _mm256_add_pd(fjy0,ty);
279 fjz0 = _mm256_add_pd(fjz0,tz);
281 /**************************
282 * CALCULATE INTERACTIONS *
283 **************************/
285 /* Compute parameters for interactions between i and j atoms */
286 qq10 = _mm256_mul_pd(iq1,jq0);
288 /* REACTION-FIELD ELECTROSTATICS */
289 velec = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
290 felec = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
292 /* Update potential sum for this i atom from the interaction with this j atom. */
293 velecsum = _mm256_add_pd(velecsum,velec);
295 fscal = felec;
297 /* Calculate temporary vectorial force */
298 tx = _mm256_mul_pd(fscal,dx10);
299 ty = _mm256_mul_pd(fscal,dy10);
300 tz = _mm256_mul_pd(fscal,dz10);
302 /* Update vectorial force */
303 fix1 = _mm256_add_pd(fix1,tx);
304 fiy1 = _mm256_add_pd(fiy1,ty);
305 fiz1 = _mm256_add_pd(fiz1,tz);
307 fjx0 = _mm256_add_pd(fjx0,tx);
308 fjy0 = _mm256_add_pd(fjy0,ty);
309 fjz0 = _mm256_add_pd(fjz0,tz);
311 /**************************
312 * CALCULATE INTERACTIONS *
313 **************************/
315 /* Compute parameters for interactions between i and j atoms */
316 qq20 = _mm256_mul_pd(iq2,jq0);
318 /* REACTION-FIELD ELECTROSTATICS */
319 velec = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
320 felec = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
322 /* Update potential sum for this i atom from the interaction with this j atom. */
323 velecsum = _mm256_add_pd(velecsum,velec);
325 fscal = felec;
327 /* Calculate temporary vectorial force */
328 tx = _mm256_mul_pd(fscal,dx20);
329 ty = _mm256_mul_pd(fscal,dy20);
330 tz = _mm256_mul_pd(fscal,dz20);
332 /* Update vectorial force */
333 fix2 = _mm256_add_pd(fix2,tx);
334 fiy2 = _mm256_add_pd(fiy2,ty);
335 fiz2 = _mm256_add_pd(fiz2,tz);
337 fjx0 = _mm256_add_pd(fjx0,tx);
338 fjy0 = _mm256_add_pd(fjy0,ty);
339 fjz0 = _mm256_add_pd(fjz0,tz);
341 fjptrA = f+j_coord_offsetA;
342 fjptrB = f+j_coord_offsetB;
343 fjptrC = f+j_coord_offsetC;
344 fjptrD = f+j_coord_offsetD;
346 gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
348 /* Inner loop uses 111 flops */
351 if(jidx<j_index_end)
354 /* Get j neighbor index, and coordinate index */
355 jnrlistA = jjnr[jidx];
356 jnrlistB = jjnr[jidx+1];
357 jnrlistC = jjnr[jidx+2];
358 jnrlistD = jjnr[jidx+3];
359 /* Sign of each element will be negative for non-real atoms.
360 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
361 * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
363 tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
365 tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
366 tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
367 dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
369 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
370 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
371 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
372 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
373 j_coord_offsetA = DIM*jnrA;
374 j_coord_offsetB = DIM*jnrB;
375 j_coord_offsetC = DIM*jnrC;
376 j_coord_offsetD = DIM*jnrD;
378 /* load j atom coordinates */
379 gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
380 x+j_coord_offsetC,x+j_coord_offsetD,
381 &jx0,&jy0,&jz0);
383 /* Calculate displacement vector */
384 dx00 = _mm256_sub_pd(ix0,jx0);
385 dy00 = _mm256_sub_pd(iy0,jy0);
386 dz00 = _mm256_sub_pd(iz0,jz0);
387 dx10 = _mm256_sub_pd(ix1,jx0);
388 dy10 = _mm256_sub_pd(iy1,jy0);
389 dz10 = _mm256_sub_pd(iz1,jz0);
390 dx20 = _mm256_sub_pd(ix2,jx0);
391 dy20 = _mm256_sub_pd(iy2,jy0);
392 dz20 = _mm256_sub_pd(iz2,jz0);
394 /* Calculate squared distance and things based on it */
395 rsq00 = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
396 rsq10 = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
397 rsq20 = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
399 rinv00 = gmx_mm256_invsqrt_pd(rsq00);
400 rinv10 = gmx_mm256_invsqrt_pd(rsq10);
401 rinv20 = gmx_mm256_invsqrt_pd(rsq20);
403 rinvsq00 = _mm256_mul_pd(rinv00,rinv00);
404 rinvsq10 = _mm256_mul_pd(rinv10,rinv10);
405 rinvsq20 = _mm256_mul_pd(rinv20,rinv20);
407 /* Load parameters for j particles */
408 jq0 = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
409 charge+jnrC+0,charge+jnrD+0);
410 vdwjidx0A = 2*vdwtype[jnrA+0];
411 vdwjidx0B = 2*vdwtype[jnrB+0];
412 vdwjidx0C = 2*vdwtype[jnrC+0];
413 vdwjidx0D = 2*vdwtype[jnrD+0];
415 fjx0 = _mm256_setzero_pd();
416 fjy0 = _mm256_setzero_pd();
417 fjz0 = _mm256_setzero_pd();
419 /**************************
420 * CALCULATE INTERACTIONS *
421 **************************/
423 /* Compute parameters for interactions between i and j atoms */
424 qq00 = _mm256_mul_pd(iq0,jq0);
425 gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
426 vdwioffsetptr0+vdwjidx0B,
427 vdwioffsetptr0+vdwjidx0C,
428 vdwioffsetptr0+vdwjidx0D,
429 &c6_00,&c12_00);
431 /* REACTION-FIELD ELECTROSTATICS */
432 velec = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
433 felec = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
435 /* LENNARD-JONES DISPERSION/REPULSION */
437 rinvsix = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
438 vvdw6 = _mm256_mul_pd(c6_00,rinvsix);
439 vvdw12 = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
440 vvdw = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
441 fvdw = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
443 /* Update potential sum for this i atom from the interaction with this j atom. */
444 velec = _mm256_andnot_pd(dummy_mask,velec);
445 velecsum = _mm256_add_pd(velecsum,velec);
446 vvdw = _mm256_andnot_pd(dummy_mask,vvdw);
447 vvdwsum = _mm256_add_pd(vvdwsum,vvdw);
449 fscal = _mm256_add_pd(felec,fvdw);
451 fscal = _mm256_andnot_pd(dummy_mask,fscal);
453 /* Calculate temporary vectorial force */
454 tx = _mm256_mul_pd(fscal,dx00);
455 ty = _mm256_mul_pd(fscal,dy00);
456 tz = _mm256_mul_pd(fscal,dz00);
458 /* Update vectorial force */
459 fix0 = _mm256_add_pd(fix0,tx);
460 fiy0 = _mm256_add_pd(fiy0,ty);
461 fiz0 = _mm256_add_pd(fiz0,tz);
463 fjx0 = _mm256_add_pd(fjx0,tx);
464 fjy0 = _mm256_add_pd(fjy0,ty);
465 fjz0 = _mm256_add_pd(fjz0,tz);
467 /**************************
468 * CALCULATE INTERACTIONS *
469 **************************/
471 /* Compute parameters for interactions between i and j atoms */
472 qq10 = _mm256_mul_pd(iq1,jq0);
474 /* REACTION-FIELD ELECTROSTATICS */
475 velec = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
476 felec = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
478 /* Update potential sum for this i atom from the interaction with this j atom. */
479 velec = _mm256_andnot_pd(dummy_mask,velec);
480 velecsum = _mm256_add_pd(velecsum,velec);
482 fscal = felec;
484 fscal = _mm256_andnot_pd(dummy_mask,fscal);
486 /* Calculate temporary vectorial force */
487 tx = _mm256_mul_pd(fscal,dx10);
488 ty = _mm256_mul_pd(fscal,dy10);
489 tz = _mm256_mul_pd(fscal,dz10);
491 /* Update vectorial force */
492 fix1 = _mm256_add_pd(fix1,tx);
493 fiy1 = _mm256_add_pd(fiy1,ty);
494 fiz1 = _mm256_add_pd(fiz1,tz);
496 fjx0 = _mm256_add_pd(fjx0,tx);
497 fjy0 = _mm256_add_pd(fjy0,ty);
498 fjz0 = _mm256_add_pd(fjz0,tz);
500 /**************************
501 * CALCULATE INTERACTIONS *
502 **************************/
504 /* Compute parameters for interactions between i and j atoms */
505 qq20 = _mm256_mul_pd(iq2,jq0);
507 /* REACTION-FIELD ELECTROSTATICS */
508 velec = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
509 felec = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
511 /* Update potential sum for this i atom from the interaction with this j atom. */
512 velec = _mm256_andnot_pd(dummy_mask,velec);
513 velecsum = _mm256_add_pd(velecsum,velec);
515 fscal = felec;
517 fscal = _mm256_andnot_pd(dummy_mask,fscal);
519 /* Calculate temporary vectorial force */
520 tx = _mm256_mul_pd(fscal,dx20);
521 ty = _mm256_mul_pd(fscal,dy20);
522 tz = _mm256_mul_pd(fscal,dz20);
524 /* Update vectorial force */
525 fix2 = _mm256_add_pd(fix2,tx);
526 fiy2 = _mm256_add_pd(fiy2,ty);
527 fiz2 = _mm256_add_pd(fiz2,tz);
529 fjx0 = _mm256_add_pd(fjx0,tx);
530 fjy0 = _mm256_add_pd(fjy0,ty);
531 fjz0 = _mm256_add_pd(fjz0,tz);
533 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
534 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
535 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
536 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
538 gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
540 /* Inner loop uses 111 flops */
543 /* End of innermost loop */
545 gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
546 f+i_coord_offset,fshift+i_shift_offset);
548 ggid = gid[iidx];
549 /* Update potential energies */
550 gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
551 gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
553 /* Increment number of inner iterations */
554 inneriter += j_index_end - j_index_start;
556 /* Outer loop uses 20 flops */
559 /* Increment number of outer iterations */
560 outeriter += nri;
562 /* Update outer/inner flops */
564 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*111);
567 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_256_double
568 * Electrostatics interaction: ReactionField
569 * VdW interaction: LennardJones
570 * Geometry: Water3-Particle
571 * Calculate force/pot: Force
573 void
574 nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_256_double
575 (t_nblist * gmx_restrict nlist,
576 rvec * gmx_restrict xx,
577 rvec * gmx_restrict ff,
578 t_forcerec * gmx_restrict fr,
579 t_mdatoms * gmx_restrict mdatoms,
580 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
581 t_nrnb * gmx_restrict nrnb)
583 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
584 * just 0 for non-waters.
585 * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
586 * jnr indices corresponding to data put in the four positions in the SIMD register.
588 int i_shift_offset,i_coord_offset,outeriter,inneriter;
589 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
590 int jnrA,jnrB,jnrC,jnrD;
591 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
592 int jnrlistE,jnrlistF,jnrlistG,jnrlistH;
593 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
594 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
595 real rcutoff_scalar;
596 real *shiftvec,*fshift,*x,*f;
597 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
598 real scratch[4*DIM];
599 __m256d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
600 real * vdwioffsetptr0;
601 __m256d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
602 real * vdwioffsetptr1;
603 __m256d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
604 real * vdwioffsetptr2;
605 __m256d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
606 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
607 __m256d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
608 __m256d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
609 __m256d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
610 __m256d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
611 __m256d velec,felec,velecsum,facel,crf,krf,krf2;
612 real *charge;
613 int nvdwtype;
614 __m256d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
615 int *vdwtype;
616 real *vdwparam;
617 __m256d one_sixth = _mm256_set1_pd(1.0/6.0);
618 __m256d one_twelfth = _mm256_set1_pd(1.0/12.0);
619 __m256d dummy_mask,cutoff_mask;
620 __m128 tmpmask0,tmpmask1;
621 __m256d signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
622 __m256d one = _mm256_set1_pd(1.0);
623 __m256d two = _mm256_set1_pd(2.0);
624 x = xx[0];
625 f = ff[0];
627 nri = nlist->nri;
628 iinr = nlist->iinr;
629 jindex = nlist->jindex;
630 jjnr = nlist->jjnr;
631 shiftidx = nlist->shift;
632 gid = nlist->gid;
633 shiftvec = fr->shift_vec[0];
634 fshift = fr->fshift[0];
635 facel = _mm256_set1_pd(fr->epsfac);
636 charge = mdatoms->chargeA;
637 krf = _mm256_set1_pd(fr->ic->k_rf);
638 krf2 = _mm256_set1_pd(fr->ic->k_rf*2.0);
639 crf = _mm256_set1_pd(fr->ic->c_rf);
640 nvdwtype = fr->ntype;
641 vdwparam = fr->nbfp;
642 vdwtype = mdatoms->typeA;
644 /* Setup water-specific parameters */
645 inr = nlist->iinr[0];
646 iq0 = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
647 iq1 = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
648 iq2 = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
649 vdwioffsetptr0 = vdwparam+2*nvdwtype*vdwtype[inr+0];
651 /* Avoid stupid compiler warnings */
652 jnrA = jnrB = jnrC = jnrD = 0;
653 j_coord_offsetA = 0;
654 j_coord_offsetB = 0;
655 j_coord_offsetC = 0;
656 j_coord_offsetD = 0;
658 outeriter = 0;
659 inneriter = 0;
661 for(iidx=0;iidx<4*DIM;iidx++)
663 scratch[iidx] = 0.0;
666 /* Start outer loop over neighborlists */
667 for(iidx=0; iidx<nri; iidx++)
669 /* Load shift vector for this list */
670 i_shift_offset = DIM*shiftidx[iidx];
672 /* Load limits for loop over neighbors */
673 j_index_start = jindex[iidx];
674 j_index_end = jindex[iidx+1];
676 /* Get outer coordinate index */
677 inr = iinr[iidx];
678 i_coord_offset = DIM*inr;
680 /* Load i particle coords and add shift vector */
681 gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
682 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
684 fix0 = _mm256_setzero_pd();
685 fiy0 = _mm256_setzero_pd();
686 fiz0 = _mm256_setzero_pd();
687 fix1 = _mm256_setzero_pd();
688 fiy1 = _mm256_setzero_pd();
689 fiz1 = _mm256_setzero_pd();
690 fix2 = _mm256_setzero_pd();
691 fiy2 = _mm256_setzero_pd();
692 fiz2 = _mm256_setzero_pd();
694 /* Start inner kernel loop */
695 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
698 /* Get j neighbor index, and coordinate index */
699 jnrA = jjnr[jidx];
700 jnrB = jjnr[jidx+1];
701 jnrC = jjnr[jidx+2];
702 jnrD = jjnr[jidx+3];
703 j_coord_offsetA = DIM*jnrA;
704 j_coord_offsetB = DIM*jnrB;
705 j_coord_offsetC = DIM*jnrC;
706 j_coord_offsetD = DIM*jnrD;
708 /* load j atom coordinates */
709 gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
710 x+j_coord_offsetC,x+j_coord_offsetD,
711 &jx0,&jy0,&jz0);
713 /* Calculate displacement vector */
714 dx00 = _mm256_sub_pd(ix0,jx0);
715 dy00 = _mm256_sub_pd(iy0,jy0);
716 dz00 = _mm256_sub_pd(iz0,jz0);
717 dx10 = _mm256_sub_pd(ix1,jx0);
718 dy10 = _mm256_sub_pd(iy1,jy0);
719 dz10 = _mm256_sub_pd(iz1,jz0);
720 dx20 = _mm256_sub_pd(ix2,jx0);
721 dy20 = _mm256_sub_pd(iy2,jy0);
722 dz20 = _mm256_sub_pd(iz2,jz0);
724 /* Calculate squared distance and things based on it */
725 rsq00 = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
726 rsq10 = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
727 rsq20 = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
729 rinv00 = gmx_mm256_invsqrt_pd(rsq00);
730 rinv10 = gmx_mm256_invsqrt_pd(rsq10);
731 rinv20 = gmx_mm256_invsqrt_pd(rsq20);
733 rinvsq00 = _mm256_mul_pd(rinv00,rinv00);
734 rinvsq10 = _mm256_mul_pd(rinv10,rinv10);
735 rinvsq20 = _mm256_mul_pd(rinv20,rinv20);
737 /* Load parameters for j particles */
738 jq0 = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
739 charge+jnrC+0,charge+jnrD+0);
740 vdwjidx0A = 2*vdwtype[jnrA+0];
741 vdwjidx0B = 2*vdwtype[jnrB+0];
742 vdwjidx0C = 2*vdwtype[jnrC+0];
743 vdwjidx0D = 2*vdwtype[jnrD+0];
745 fjx0 = _mm256_setzero_pd();
746 fjy0 = _mm256_setzero_pd();
747 fjz0 = _mm256_setzero_pd();
749 /**************************
750 * CALCULATE INTERACTIONS *
751 **************************/
753 /* Compute parameters for interactions between i and j atoms */
754 qq00 = _mm256_mul_pd(iq0,jq0);
755 gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
756 vdwioffsetptr0+vdwjidx0B,
757 vdwioffsetptr0+vdwjidx0C,
758 vdwioffsetptr0+vdwjidx0D,
759 &c6_00,&c12_00);
761 /* REACTION-FIELD ELECTROSTATICS */
762 felec = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
764 /* LENNARD-JONES DISPERSION/REPULSION */
766 rinvsix = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
767 fvdw = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
769 fscal = _mm256_add_pd(felec,fvdw);
771 /* Calculate temporary vectorial force */
772 tx = _mm256_mul_pd(fscal,dx00);
773 ty = _mm256_mul_pd(fscal,dy00);
774 tz = _mm256_mul_pd(fscal,dz00);
776 /* Update vectorial force */
777 fix0 = _mm256_add_pd(fix0,tx);
778 fiy0 = _mm256_add_pd(fiy0,ty);
779 fiz0 = _mm256_add_pd(fiz0,tz);
781 fjx0 = _mm256_add_pd(fjx0,tx);
782 fjy0 = _mm256_add_pd(fjy0,ty);
783 fjz0 = _mm256_add_pd(fjz0,tz);
785 /**************************
786 * CALCULATE INTERACTIONS *
787 **************************/
789 /* Compute parameters for interactions between i and j atoms */
790 qq10 = _mm256_mul_pd(iq1,jq0);
792 /* REACTION-FIELD ELECTROSTATICS */
793 felec = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
795 fscal = felec;
797 /* Calculate temporary vectorial force */
798 tx = _mm256_mul_pd(fscal,dx10);
799 ty = _mm256_mul_pd(fscal,dy10);
800 tz = _mm256_mul_pd(fscal,dz10);
802 /* Update vectorial force */
803 fix1 = _mm256_add_pd(fix1,tx);
804 fiy1 = _mm256_add_pd(fiy1,ty);
805 fiz1 = _mm256_add_pd(fiz1,tz);
807 fjx0 = _mm256_add_pd(fjx0,tx);
808 fjy0 = _mm256_add_pd(fjy0,ty);
809 fjz0 = _mm256_add_pd(fjz0,tz);
811 /**************************
812 * CALCULATE INTERACTIONS *
813 **************************/
815 /* Compute parameters for interactions between i and j atoms */
816 qq20 = _mm256_mul_pd(iq2,jq0);
818 /* REACTION-FIELD ELECTROSTATICS */
819 felec = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
821 fscal = felec;
823 /* Calculate temporary vectorial force */
824 tx = _mm256_mul_pd(fscal,dx20);
825 ty = _mm256_mul_pd(fscal,dy20);
826 tz = _mm256_mul_pd(fscal,dz20);
828 /* Update vectorial force */
829 fix2 = _mm256_add_pd(fix2,tx);
830 fiy2 = _mm256_add_pd(fiy2,ty);
831 fiz2 = _mm256_add_pd(fiz2,tz);
833 fjx0 = _mm256_add_pd(fjx0,tx);
834 fjy0 = _mm256_add_pd(fjy0,ty);
835 fjz0 = _mm256_add_pd(fjz0,tz);
837 fjptrA = f+j_coord_offsetA;
838 fjptrB = f+j_coord_offsetB;
839 fjptrC = f+j_coord_offsetC;
840 fjptrD = f+j_coord_offsetD;
842 gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
844 /* Inner loop uses 91 flops */
847 if(jidx<j_index_end)
850 /* Get j neighbor index, and coordinate index */
851 jnrlistA = jjnr[jidx];
852 jnrlistB = jjnr[jidx+1];
853 jnrlistC = jjnr[jidx+2];
854 jnrlistD = jjnr[jidx+3];
855 /* Sign of each element will be negative for non-real atoms.
856 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
857 * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
859 tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
861 tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
862 tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
863 dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
865 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
866 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
867 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
868 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
869 j_coord_offsetA = DIM*jnrA;
870 j_coord_offsetB = DIM*jnrB;
871 j_coord_offsetC = DIM*jnrC;
872 j_coord_offsetD = DIM*jnrD;
874 /* load j atom coordinates */
875 gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
876 x+j_coord_offsetC,x+j_coord_offsetD,
877 &jx0,&jy0,&jz0);
879 /* Calculate displacement vector */
880 dx00 = _mm256_sub_pd(ix0,jx0);
881 dy00 = _mm256_sub_pd(iy0,jy0);
882 dz00 = _mm256_sub_pd(iz0,jz0);
883 dx10 = _mm256_sub_pd(ix1,jx0);
884 dy10 = _mm256_sub_pd(iy1,jy0);
885 dz10 = _mm256_sub_pd(iz1,jz0);
886 dx20 = _mm256_sub_pd(ix2,jx0);
887 dy20 = _mm256_sub_pd(iy2,jy0);
888 dz20 = _mm256_sub_pd(iz2,jz0);
890 /* Calculate squared distance and things based on it */
891 rsq00 = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
892 rsq10 = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
893 rsq20 = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
895 rinv00 = gmx_mm256_invsqrt_pd(rsq00);
896 rinv10 = gmx_mm256_invsqrt_pd(rsq10);
897 rinv20 = gmx_mm256_invsqrt_pd(rsq20);
899 rinvsq00 = _mm256_mul_pd(rinv00,rinv00);
900 rinvsq10 = _mm256_mul_pd(rinv10,rinv10);
901 rinvsq20 = _mm256_mul_pd(rinv20,rinv20);
903 /* Load parameters for j particles */
904 jq0 = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
905 charge+jnrC+0,charge+jnrD+0);
906 vdwjidx0A = 2*vdwtype[jnrA+0];
907 vdwjidx0B = 2*vdwtype[jnrB+0];
908 vdwjidx0C = 2*vdwtype[jnrC+0];
909 vdwjidx0D = 2*vdwtype[jnrD+0];
911 fjx0 = _mm256_setzero_pd();
912 fjy0 = _mm256_setzero_pd();
913 fjz0 = _mm256_setzero_pd();
915 /**************************
916 * CALCULATE INTERACTIONS *
917 **************************/
919 /* Compute parameters for interactions between i and j atoms */
920 qq00 = _mm256_mul_pd(iq0,jq0);
921 gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
922 vdwioffsetptr0+vdwjidx0B,
923 vdwioffsetptr0+vdwjidx0C,
924 vdwioffsetptr0+vdwjidx0D,
925 &c6_00,&c12_00);
927 /* REACTION-FIELD ELECTROSTATICS */
928 felec = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
930 /* LENNARD-JONES DISPERSION/REPULSION */
932 rinvsix = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
933 fvdw = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
935 fscal = _mm256_add_pd(felec,fvdw);
937 fscal = _mm256_andnot_pd(dummy_mask,fscal);
939 /* Calculate temporary vectorial force */
940 tx = _mm256_mul_pd(fscal,dx00);
941 ty = _mm256_mul_pd(fscal,dy00);
942 tz = _mm256_mul_pd(fscal,dz00);
944 /* Update vectorial force */
945 fix0 = _mm256_add_pd(fix0,tx);
946 fiy0 = _mm256_add_pd(fiy0,ty);
947 fiz0 = _mm256_add_pd(fiz0,tz);
949 fjx0 = _mm256_add_pd(fjx0,tx);
950 fjy0 = _mm256_add_pd(fjy0,ty);
951 fjz0 = _mm256_add_pd(fjz0,tz);
953 /**************************
954 * CALCULATE INTERACTIONS *
955 **************************/
957 /* Compute parameters for interactions between i and j atoms */
958 qq10 = _mm256_mul_pd(iq1,jq0);
960 /* REACTION-FIELD ELECTROSTATICS */
961 felec = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
963 fscal = felec;
965 fscal = _mm256_andnot_pd(dummy_mask,fscal);
967 /* Calculate temporary vectorial force */
968 tx = _mm256_mul_pd(fscal,dx10);
969 ty = _mm256_mul_pd(fscal,dy10);
970 tz = _mm256_mul_pd(fscal,dz10);
972 /* Update vectorial force */
973 fix1 = _mm256_add_pd(fix1,tx);
974 fiy1 = _mm256_add_pd(fiy1,ty);
975 fiz1 = _mm256_add_pd(fiz1,tz);
977 fjx0 = _mm256_add_pd(fjx0,tx);
978 fjy0 = _mm256_add_pd(fjy0,ty);
979 fjz0 = _mm256_add_pd(fjz0,tz);
981 /**************************
982 * CALCULATE INTERACTIONS *
983 **************************/
985 /* Compute parameters for interactions between i and j atoms */
986 qq20 = _mm256_mul_pd(iq2,jq0);
988 /* REACTION-FIELD ELECTROSTATICS */
989 felec = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
991 fscal = felec;
993 fscal = _mm256_andnot_pd(dummy_mask,fscal);
995 /* Calculate temporary vectorial force */
996 tx = _mm256_mul_pd(fscal,dx20);
997 ty = _mm256_mul_pd(fscal,dy20);
998 tz = _mm256_mul_pd(fscal,dz20);
1000 /* Update vectorial force */
1001 fix2 = _mm256_add_pd(fix2,tx);
1002 fiy2 = _mm256_add_pd(fiy2,ty);
1003 fiz2 = _mm256_add_pd(fiz2,tz);
1005 fjx0 = _mm256_add_pd(fjx0,tx);
1006 fjy0 = _mm256_add_pd(fjy0,ty);
1007 fjz0 = _mm256_add_pd(fjz0,tz);
1009 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1010 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1011 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1012 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1014 gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1016 /* Inner loop uses 91 flops */
1019 /* End of innermost loop */
1021 gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1022 f+i_coord_offset,fshift+i_shift_offset);
1024 /* Increment number of inner iterations */
1025 inneriter += j_index_end - j_index_start;
1027 /* Outer loop uses 18 flops */
1030 /* Increment number of outer iterations */
1031 outeriter += nri;
1033 /* Update outer/inner flops */
1035 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*91);