Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_avx_128_fma_single.c
blobf9a2aedd17829fe3674765f03cf82ca1d4ce1160
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
51 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_128_fma_single
52 * Electrostatics interaction: ReactionField
53 * VdW interaction: LennardJones
54 * Geometry: Water3-Particle
55 * Calculate force/pot: PotentialAndForce
57 void
58 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_128_fma_single
59 (t_nblist * gmx_restrict nlist,
60 rvec * gmx_restrict xx,
61 rvec * gmx_restrict ff,
62 t_forcerec * gmx_restrict fr,
63 t_mdatoms * gmx_restrict mdatoms,
64 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65 t_nrnb * gmx_restrict nrnb)
67 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68 * just 0 for non-waters.
69 * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70 * jnr indices corresponding to data put in the four positions in the SIMD register.
72 int i_shift_offset,i_coord_offset,outeriter,inneriter;
73 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74 int jnrA,jnrB,jnrC,jnrD;
75 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
78 real rcutoff_scalar;
79 real *shiftvec,*fshift,*x,*f;
80 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81 real scratch[4*DIM];
82 __m128 fscal,rcutoff,rcutoff2,jidxall;
83 int vdwioffset0;
84 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85 int vdwioffset1;
86 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87 int vdwioffset2;
88 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
95 real *charge;
96 int nvdwtype;
97 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98 int *vdwtype;
99 real *vdwparam;
100 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
101 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
102 __m128 dummy_mask,cutoff_mask;
103 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104 __m128 one = _mm_set1_ps(1.0);
105 __m128 two = _mm_set1_ps(2.0);
106 x = xx[0];
107 f = ff[0];
109 nri = nlist->nri;
110 iinr = nlist->iinr;
111 jindex = nlist->jindex;
112 jjnr = nlist->jjnr;
113 shiftidx = nlist->shift;
114 gid = nlist->gid;
115 shiftvec = fr->shift_vec[0];
116 fshift = fr->fshift[0];
117 facel = _mm_set1_ps(fr->epsfac);
118 charge = mdatoms->chargeA;
119 krf = _mm_set1_ps(fr->ic->k_rf);
120 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
121 crf = _mm_set1_ps(fr->ic->c_rf);
122 nvdwtype = fr->ntype;
123 vdwparam = fr->nbfp;
124 vdwtype = mdatoms->typeA;
126 /* Setup water-specific parameters */
127 inr = nlist->iinr[0];
128 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
129 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
130 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
131 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
133 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134 rcutoff_scalar = fr->rcoulomb;
135 rcutoff = _mm_set1_ps(rcutoff_scalar);
136 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
138 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
139 rvdw = _mm_set1_ps(fr->rvdw);
141 /* Avoid stupid compiler warnings */
142 jnrA = jnrB = jnrC = jnrD = 0;
143 j_coord_offsetA = 0;
144 j_coord_offsetB = 0;
145 j_coord_offsetC = 0;
146 j_coord_offsetD = 0;
148 outeriter = 0;
149 inneriter = 0;
151 for(iidx=0;iidx<4*DIM;iidx++)
153 scratch[iidx] = 0.0;
156 /* Start outer loop over neighborlists */
157 for(iidx=0; iidx<nri; iidx++)
159 /* Load shift vector for this list */
160 i_shift_offset = DIM*shiftidx[iidx];
162 /* Load limits for loop over neighbors */
163 j_index_start = jindex[iidx];
164 j_index_end = jindex[iidx+1];
166 /* Get outer coordinate index */
167 inr = iinr[iidx];
168 i_coord_offset = DIM*inr;
170 /* Load i particle coords and add shift vector */
171 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
172 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
174 fix0 = _mm_setzero_ps();
175 fiy0 = _mm_setzero_ps();
176 fiz0 = _mm_setzero_ps();
177 fix1 = _mm_setzero_ps();
178 fiy1 = _mm_setzero_ps();
179 fiz1 = _mm_setzero_ps();
180 fix2 = _mm_setzero_ps();
181 fiy2 = _mm_setzero_ps();
182 fiz2 = _mm_setzero_ps();
184 /* Reset potential sums */
185 velecsum = _mm_setzero_ps();
186 vvdwsum = _mm_setzero_ps();
188 /* Start inner kernel loop */
189 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192 /* Get j neighbor index, and coordinate index */
193 jnrA = jjnr[jidx];
194 jnrB = jjnr[jidx+1];
195 jnrC = jjnr[jidx+2];
196 jnrD = jjnr[jidx+3];
197 j_coord_offsetA = DIM*jnrA;
198 j_coord_offsetB = DIM*jnrB;
199 j_coord_offsetC = DIM*jnrC;
200 j_coord_offsetD = DIM*jnrD;
202 /* load j atom coordinates */
203 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
204 x+j_coord_offsetC,x+j_coord_offsetD,
205 &jx0,&jy0,&jz0);
207 /* Calculate displacement vector */
208 dx00 = _mm_sub_ps(ix0,jx0);
209 dy00 = _mm_sub_ps(iy0,jy0);
210 dz00 = _mm_sub_ps(iz0,jz0);
211 dx10 = _mm_sub_ps(ix1,jx0);
212 dy10 = _mm_sub_ps(iy1,jy0);
213 dz10 = _mm_sub_ps(iz1,jz0);
214 dx20 = _mm_sub_ps(ix2,jx0);
215 dy20 = _mm_sub_ps(iy2,jy0);
216 dz20 = _mm_sub_ps(iz2,jz0);
218 /* Calculate squared distance and things based on it */
219 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
220 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
221 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
223 rinv00 = gmx_mm_invsqrt_ps(rsq00);
224 rinv10 = gmx_mm_invsqrt_ps(rsq10);
225 rinv20 = gmx_mm_invsqrt_ps(rsq20);
227 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
228 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
229 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
231 /* Load parameters for j particles */
232 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
233 charge+jnrC+0,charge+jnrD+0);
234 vdwjidx0A = 2*vdwtype[jnrA+0];
235 vdwjidx0B = 2*vdwtype[jnrB+0];
236 vdwjidx0C = 2*vdwtype[jnrC+0];
237 vdwjidx0D = 2*vdwtype[jnrD+0];
239 fjx0 = _mm_setzero_ps();
240 fjy0 = _mm_setzero_ps();
241 fjz0 = _mm_setzero_ps();
243 /**************************
244 * CALCULATE INTERACTIONS *
245 **************************/
247 if (gmx_mm_any_lt(rsq00,rcutoff2))
250 /* Compute parameters for interactions between i and j atoms */
251 qq00 = _mm_mul_ps(iq0,jq0);
252 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
253 vdwparam+vdwioffset0+vdwjidx0B,
254 vdwparam+vdwioffset0+vdwjidx0C,
255 vdwparam+vdwioffset0+vdwjidx0D,
256 &c6_00,&c12_00);
258 /* REACTION-FIELD ELECTROSTATICS */
259 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
260 felec = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
262 /* LENNARD-JONES DISPERSION/REPULSION */
264 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
265 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
266 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
267 vvdw = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
268 _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
269 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
271 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
273 /* Update potential sum for this i atom from the interaction with this j atom. */
274 velec = _mm_and_ps(velec,cutoff_mask);
275 velecsum = _mm_add_ps(velecsum,velec);
276 vvdw = _mm_and_ps(vvdw,cutoff_mask);
277 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
279 fscal = _mm_add_ps(felec,fvdw);
281 fscal = _mm_and_ps(fscal,cutoff_mask);
283 /* Update vectorial force */
284 fix0 = _mm_macc_ps(dx00,fscal,fix0);
285 fiy0 = _mm_macc_ps(dy00,fscal,fiy0);
286 fiz0 = _mm_macc_ps(dz00,fscal,fiz0);
288 fjx0 = _mm_macc_ps(dx00,fscal,fjx0);
289 fjy0 = _mm_macc_ps(dy00,fscal,fjy0);
290 fjz0 = _mm_macc_ps(dz00,fscal,fjz0);
294 /**************************
295 * CALCULATE INTERACTIONS *
296 **************************/
298 if (gmx_mm_any_lt(rsq10,rcutoff2))
301 /* Compute parameters for interactions between i and j atoms */
302 qq10 = _mm_mul_ps(iq1,jq0);
304 /* REACTION-FIELD ELECTROSTATICS */
305 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
306 felec = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
308 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
310 /* Update potential sum for this i atom from the interaction with this j atom. */
311 velec = _mm_and_ps(velec,cutoff_mask);
312 velecsum = _mm_add_ps(velecsum,velec);
314 fscal = felec;
316 fscal = _mm_and_ps(fscal,cutoff_mask);
318 /* Update vectorial force */
319 fix1 = _mm_macc_ps(dx10,fscal,fix1);
320 fiy1 = _mm_macc_ps(dy10,fscal,fiy1);
321 fiz1 = _mm_macc_ps(dz10,fscal,fiz1);
323 fjx0 = _mm_macc_ps(dx10,fscal,fjx0);
324 fjy0 = _mm_macc_ps(dy10,fscal,fjy0);
325 fjz0 = _mm_macc_ps(dz10,fscal,fjz0);
329 /**************************
330 * CALCULATE INTERACTIONS *
331 **************************/
333 if (gmx_mm_any_lt(rsq20,rcutoff2))
336 /* Compute parameters for interactions between i and j atoms */
337 qq20 = _mm_mul_ps(iq2,jq0);
339 /* REACTION-FIELD ELECTROSTATICS */
340 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
341 felec = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
343 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
345 /* Update potential sum for this i atom from the interaction with this j atom. */
346 velec = _mm_and_ps(velec,cutoff_mask);
347 velecsum = _mm_add_ps(velecsum,velec);
349 fscal = felec;
351 fscal = _mm_and_ps(fscal,cutoff_mask);
353 /* Update vectorial force */
354 fix2 = _mm_macc_ps(dx20,fscal,fix2);
355 fiy2 = _mm_macc_ps(dy20,fscal,fiy2);
356 fiz2 = _mm_macc_ps(dz20,fscal,fiz2);
358 fjx0 = _mm_macc_ps(dx20,fscal,fjx0);
359 fjy0 = _mm_macc_ps(dy20,fscal,fjy0);
360 fjz0 = _mm_macc_ps(dz20,fscal,fjz0);
364 fjptrA = f+j_coord_offsetA;
365 fjptrB = f+j_coord_offsetB;
366 fjptrC = f+j_coord_offsetC;
367 fjptrD = f+j_coord_offsetD;
369 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
371 /* Inner loop uses 135 flops */
374 if(jidx<j_index_end)
377 /* Get j neighbor index, and coordinate index */
378 jnrlistA = jjnr[jidx];
379 jnrlistB = jjnr[jidx+1];
380 jnrlistC = jjnr[jidx+2];
381 jnrlistD = jjnr[jidx+3];
382 /* Sign of each element will be negative for non-real atoms.
383 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
384 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
386 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
387 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
388 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
389 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
390 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
391 j_coord_offsetA = DIM*jnrA;
392 j_coord_offsetB = DIM*jnrB;
393 j_coord_offsetC = DIM*jnrC;
394 j_coord_offsetD = DIM*jnrD;
396 /* load j atom coordinates */
397 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
398 x+j_coord_offsetC,x+j_coord_offsetD,
399 &jx0,&jy0,&jz0);
401 /* Calculate displacement vector */
402 dx00 = _mm_sub_ps(ix0,jx0);
403 dy00 = _mm_sub_ps(iy0,jy0);
404 dz00 = _mm_sub_ps(iz0,jz0);
405 dx10 = _mm_sub_ps(ix1,jx0);
406 dy10 = _mm_sub_ps(iy1,jy0);
407 dz10 = _mm_sub_ps(iz1,jz0);
408 dx20 = _mm_sub_ps(ix2,jx0);
409 dy20 = _mm_sub_ps(iy2,jy0);
410 dz20 = _mm_sub_ps(iz2,jz0);
412 /* Calculate squared distance and things based on it */
413 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
414 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
415 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
417 rinv00 = gmx_mm_invsqrt_ps(rsq00);
418 rinv10 = gmx_mm_invsqrt_ps(rsq10);
419 rinv20 = gmx_mm_invsqrt_ps(rsq20);
421 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
422 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
423 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
425 /* Load parameters for j particles */
426 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
427 charge+jnrC+0,charge+jnrD+0);
428 vdwjidx0A = 2*vdwtype[jnrA+0];
429 vdwjidx0B = 2*vdwtype[jnrB+0];
430 vdwjidx0C = 2*vdwtype[jnrC+0];
431 vdwjidx0D = 2*vdwtype[jnrD+0];
433 fjx0 = _mm_setzero_ps();
434 fjy0 = _mm_setzero_ps();
435 fjz0 = _mm_setzero_ps();
437 /**************************
438 * CALCULATE INTERACTIONS *
439 **************************/
441 if (gmx_mm_any_lt(rsq00,rcutoff2))
444 /* Compute parameters for interactions between i and j atoms */
445 qq00 = _mm_mul_ps(iq0,jq0);
446 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
447 vdwparam+vdwioffset0+vdwjidx0B,
448 vdwparam+vdwioffset0+vdwjidx0C,
449 vdwparam+vdwioffset0+vdwjidx0D,
450 &c6_00,&c12_00);
452 /* REACTION-FIELD ELECTROSTATICS */
453 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
454 felec = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
456 /* LENNARD-JONES DISPERSION/REPULSION */
458 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
459 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
460 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
461 vvdw = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
462 _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
463 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
465 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
467 /* Update potential sum for this i atom from the interaction with this j atom. */
468 velec = _mm_and_ps(velec,cutoff_mask);
469 velec = _mm_andnot_ps(dummy_mask,velec);
470 velecsum = _mm_add_ps(velecsum,velec);
471 vvdw = _mm_and_ps(vvdw,cutoff_mask);
472 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
473 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
475 fscal = _mm_add_ps(felec,fvdw);
477 fscal = _mm_and_ps(fscal,cutoff_mask);
479 fscal = _mm_andnot_ps(dummy_mask,fscal);
481 /* Update vectorial force */
482 fix0 = _mm_macc_ps(dx00,fscal,fix0);
483 fiy0 = _mm_macc_ps(dy00,fscal,fiy0);
484 fiz0 = _mm_macc_ps(dz00,fscal,fiz0);
486 fjx0 = _mm_macc_ps(dx00,fscal,fjx0);
487 fjy0 = _mm_macc_ps(dy00,fscal,fjy0);
488 fjz0 = _mm_macc_ps(dz00,fscal,fjz0);
492 /**************************
493 * CALCULATE INTERACTIONS *
494 **************************/
496 if (gmx_mm_any_lt(rsq10,rcutoff2))
499 /* Compute parameters for interactions between i and j atoms */
500 qq10 = _mm_mul_ps(iq1,jq0);
502 /* REACTION-FIELD ELECTROSTATICS */
503 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
504 felec = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
506 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
508 /* Update potential sum for this i atom from the interaction with this j atom. */
509 velec = _mm_and_ps(velec,cutoff_mask);
510 velec = _mm_andnot_ps(dummy_mask,velec);
511 velecsum = _mm_add_ps(velecsum,velec);
513 fscal = felec;
515 fscal = _mm_and_ps(fscal,cutoff_mask);
517 fscal = _mm_andnot_ps(dummy_mask,fscal);
519 /* Update vectorial force */
520 fix1 = _mm_macc_ps(dx10,fscal,fix1);
521 fiy1 = _mm_macc_ps(dy10,fscal,fiy1);
522 fiz1 = _mm_macc_ps(dz10,fscal,fiz1);
524 fjx0 = _mm_macc_ps(dx10,fscal,fjx0);
525 fjy0 = _mm_macc_ps(dy10,fscal,fjy0);
526 fjz0 = _mm_macc_ps(dz10,fscal,fjz0);
530 /**************************
531 * CALCULATE INTERACTIONS *
532 **************************/
534 if (gmx_mm_any_lt(rsq20,rcutoff2))
537 /* Compute parameters for interactions between i and j atoms */
538 qq20 = _mm_mul_ps(iq2,jq0);
540 /* REACTION-FIELD ELECTROSTATICS */
541 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
542 felec = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
544 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
546 /* Update potential sum for this i atom from the interaction with this j atom. */
547 velec = _mm_and_ps(velec,cutoff_mask);
548 velec = _mm_andnot_ps(dummy_mask,velec);
549 velecsum = _mm_add_ps(velecsum,velec);
551 fscal = felec;
553 fscal = _mm_and_ps(fscal,cutoff_mask);
555 fscal = _mm_andnot_ps(dummy_mask,fscal);
557 /* Update vectorial force */
558 fix2 = _mm_macc_ps(dx20,fscal,fix2);
559 fiy2 = _mm_macc_ps(dy20,fscal,fiy2);
560 fiz2 = _mm_macc_ps(dz20,fscal,fiz2);
562 fjx0 = _mm_macc_ps(dx20,fscal,fjx0);
563 fjy0 = _mm_macc_ps(dy20,fscal,fjy0);
564 fjz0 = _mm_macc_ps(dz20,fscal,fjz0);
568 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
569 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
570 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
571 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
573 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
575 /* Inner loop uses 135 flops */
578 /* End of innermost loop */
580 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
581 f+i_coord_offset,fshift+i_shift_offset);
583 ggid = gid[iidx];
584 /* Update potential energies */
585 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
586 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
588 /* Increment number of inner iterations */
589 inneriter += j_index_end - j_index_start;
591 /* Outer loop uses 20 flops */
594 /* Increment number of outer iterations */
595 outeriter += nri;
597 /* Update outer/inner flops */
599 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*135);
602 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_128_fma_single
603 * Electrostatics interaction: ReactionField
604 * VdW interaction: LennardJones
605 * Geometry: Water3-Particle
606 * Calculate force/pot: Force
608 void
609 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_128_fma_single
610 (t_nblist * gmx_restrict nlist,
611 rvec * gmx_restrict xx,
612 rvec * gmx_restrict ff,
613 t_forcerec * gmx_restrict fr,
614 t_mdatoms * gmx_restrict mdatoms,
615 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
616 t_nrnb * gmx_restrict nrnb)
618 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
619 * just 0 for non-waters.
620 * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
621 * jnr indices corresponding to data put in the four positions in the SIMD register.
623 int i_shift_offset,i_coord_offset,outeriter,inneriter;
624 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
625 int jnrA,jnrB,jnrC,jnrD;
626 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
627 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
628 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
629 real rcutoff_scalar;
630 real *shiftvec,*fshift,*x,*f;
631 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
632 real scratch[4*DIM];
633 __m128 fscal,rcutoff,rcutoff2,jidxall;
634 int vdwioffset0;
635 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
636 int vdwioffset1;
637 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
638 int vdwioffset2;
639 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
640 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
641 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
642 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
643 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
644 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
645 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
646 real *charge;
647 int nvdwtype;
648 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
649 int *vdwtype;
650 real *vdwparam;
651 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
652 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
653 __m128 dummy_mask,cutoff_mask;
654 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
655 __m128 one = _mm_set1_ps(1.0);
656 __m128 two = _mm_set1_ps(2.0);
657 x = xx[0];
658 f = ff[0];
660 nri = nlist->nri;
661 iinr = nlist->iinr;
662 jindex = nlist->jindex;
663 jjnr = nlist->jjnr;
664 shiftidx = nlist->shift;
665 gid = nlist->gid;
666 shiftvec = fr->shift_vec[0];
667 fshift = fr->fshift[0];
668 facel = _mm_set1_ps(fr->epsfac);
669 charge = mdatoms->chargeA;
670 krf = _mm_set1_ps(fr->ic->k_rf);
671 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
672 crf = _mm_set1_ps(fr->ic->c_rf);
673 nvdwtype = fr->ntype;
674 vdwparam = fr->nbfp;
675 vdwtype = mdatoms->typeA;
677 /* Setup water-specific parameters */
678 inr = nlist->iinr[0];
679 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
680 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
681 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
682 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
684 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
685 rcutoff_scalar = fr->rcoulomb;
686 rcutoff = _mm_set1_ps(rcutoff_scalar);
687 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
689 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
690 rvdw = _mm_set1_ps(fr->rvdw);
692 /* Avoid stupid compiler warnings */
693 jnrA = jnrB = jnrC = jnrD = 0;
694 j_coord_offsetA = 0;
695 j_coord_offsetB = 0;
696 j_coord_offsetC = 0;
697 j_coord_offsetD = 0;
699 outeriter = 0;
700 inneriter = 0;
702 for(iidx=0;iidx<4*DIM;iidx++)
704 scratch[iidx] = 0.0;
707 /* Start outer loop over neighborlists */
708 for(iidx=0; iidx<nri; iidx++)
710 /* Load shift vector for this list */
711 i_shift_offset = DIM*shiftidx[iidx];
713 /* Load limits for loop over neighbors */
714 j_index_start = jindex[iidx];
715 j_index_end = jindex[iidx+1];
717 /* Get outer coordinate index */
718 inr = iinr[iidx];
719 i_coord_offset = DIM*inr;
721 /* Load i particle coords and add shift vector */
722 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
723 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
725 fix0 = _mm_setzero_ps();
726 fiy0 = _mm_setzero_ps();
727 fiz0 = _mm_setzero_ps();
728 fix1 = _mm_setzero_ps();
729 fiy1 = _mm_setzero_ps();
730 fiz1 = _mm_setzero_ps();
731 fix2 = _mm_setzero_ps();
732 fiy2 = _mm_setzero_ps();
733 fiz2 = _mm_setzero_ps();
735 /* Start inner kernel loop */
736 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
739 /* Get j neighbor index, and coordinate index */
740 jnrA = jjnr[jidx];
741 jnrB = jjnr[jidx+1];
742 jnrC = jjnr[jidx+2];
743 jnrD = jjnr[jidx+3];
744 j_coord_offsetA = DIM*jnrA;
745 j_coord_offsetB = DIM*jnrB;
746 j_coord_offsetC = DIM*jnrC;
747 j_coord_offsetD = DIM*jnrD;
749 /* load j atom coordinates */
750 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
751 x+j_coord_offsetC,x+j_coord_offsetD,
752 &jx0,&jy0,&jz0);
754 /* Calculate displacement vector */
755 dx00 = _mm_sub_ps(ix0,jx0);
756 dy00 = _mm_sub_ps(iy0,jy0);
757 dz00 = _mm_sub_ps(iz0,jz0);
758 dx10 = _mm_sub_ps(ix1,jx0);
759 dy10 = _mm_sub_ps(iy1,jy0);
760 dz10 = _mm_sub_ps(iz1,jz0);
761 dx20 = _mm_sub_ps(ix2,jx0);
762 dy20 = _mm_sub_ps(iy2,jy0);
763 dz20 = _mm_sub_ps(iz2,jz0);
765 /* Calculate squared distance and things based on it */
766 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
767 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
768 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
770 rinv00 = gmx_mm_invsqrt_ps(rsq00);
771 rinv10 = gmx_mm_invsqrt_ps(rsq10);
772 rinv20 = gmx_mm_invsqrt_ps(rsq20);
774 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
775 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
776 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
778 /* Load parameters for j particles */
779 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
780 charge+jnrC+0,charge+jnrD+0);
781 vdwjidx0A = 2*vdwtype[jnrA+0];
782 vdwjidx0B = 2*vdwtype[jnrB+0];
783 vdwjidx0C = 2*vdwtype[jnrC+0];
784 vdwjidx0D = 2*vdwtype[jnrD+0];
786 fjx0 = _mm_setzero_ps();
787 fjy0 = _mm_setzero_ps();
788 fjz0 = _mm_setzero_ps();
790 /**************************
791 * CALCULATE INTERACTIONS *
792 **************************/
794 if (gmx_mm_any_lt(rsq00,rcutoff2))
797 /* Compute parameters for interactions between i and j atoms */
798 qq00 = _mm_mul_ps(iq0,jq0);
799 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
800 vdwparam+vdwioffset0+vdwjidx0B,
801 vdwparam+vdwioffset0+vdwjidx0C,
802 vdwparam+vdwioffset0+vdwjidx0D,
803 &c6_00,&c12_00);
805 /* REACTION-FIELD ELECTROSTATICS */
806 felec = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
808 /* LENNARD-JONES DISPERSION/REPULSION */
810 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
811 fvdw = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
813 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
815 fscal = _mm_add_ps(felec,fvdw);
817 fscal = _mm_and_ps(fscal,cutoff_mask);
819 /* Update vectorial force */
820 fix0 = _mm_macc_ps(dx00,fscal,fix0);
821 fiy0 = _mm_macc_ps(dy00,fscal,fiy0);
822 fiz0 = _mm_macc_ps(dz00,fscal,fiz0);
824 fjx0 = _mm_macc_ps(dx00,fscal,fjx0);
825 fjy0 = _mm_macc_ps(dy00,fscal,fjy0);
826 fjz0 = _mm_macc_ps(dz00,fscal,fjz0);
830 /**************************
831 * CALCULATE INTERACTIONS *
832 **************************/
834 if (gmx_mm_any_lt(rsq10,rcutoff2))
837 /* Compute parameters for interactions between i and j atoms */
838 qq10 = _mm_mul_ps(iq1,jq0);
840 /* REACTION-FIELD ELECTROSTATICS */
841 felec = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
843 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
845 fscal = felec;
847 fscal = _mm_and_ps(fscal,cutoff_mask);
849 /* Update vectorial force */
850 fix1 = _mm_macc_ps(dx10,fscal,fix1);
851 fiy1 = _mm_macc_ps(dy10,fscal,fiy1);
852 fiz1 = _mm_macc_ps(dz10,fscal,fiz1);
854 fjx0 = _mm_macc_ps(dx10,fscal,fjx0);
855 fjy0 = _mm_macc_ps(dy10,fscal,fjy0);
856 fjz0 = _mm_macc_ps(dz10,fscal,fjz0);
860 /**************************
861 * CALCULATE INTERACTIONS *
862 **************************/
864 if (gmx_mm_any_lt(rsq20,rcutoff2))
867 /* Compute parameters for interactions between i and j atoms */
868 qq20 = _mm_mul_ps(iq2,jq0);
870 /* REACTION-FIELD ELECTROSTATICS */
871 felec = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
873 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
875 fscal = felec;
877 fscal = _mm_and_ps(fscal,cutoff_mask);
879 /* Update vectorial force */
880 fix2 = _mm_macc_ps(dx20,fscal,fix2);
881 fiy2 = _mm_macc_ps(dy20,fscal,fiy2);
882 fiz2 = _mm_macc_ps(dz20,fscal,fiz2);
884 fjx0 = _mm_macc_ps(dx20,fscal,fjx0);
885 fjy0 = _mm_macc_ps(dy20,fscal,fjy0);
886 fjz0 = _mm_macc_ps(dz20,fscal,fjz0);
890 fjptrA = f+j_coord_offsetA;
891 fjptrB = f+j_coord_offsetB;
892 fjptrC = f+j_coord_offsetC;
893 fjptrD = f+j_coord_offsetD;
895 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
897 /* Inner loop uses 106 flops */
900 if(jidx<j_index_end)
903 /* Get j neighbor index, and coordinate index */
904 jnrlistA = jjnr[jidx];
905 jnrlistB = jjnr[jidx+1];
906 jnrlistC = jjnr[jidx+2];
907 jnrlistD = jjnr[jidx+3];
908 /* Sign of each element will be negative for non-real atoms.
909 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
910 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
912 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
913 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
914 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
915 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
916 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
917 j_coord_offsetA = DIM*jnrA;
918 j_coord_offsetB = DIM*jnrB;
919 j_coord_offsetC = DIM*jnrC;
920 j_coord_offsetD = DIM*jnrD;
922 /* load j atom coordinates */
923 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
924 x+j_coord_offsetC,x+j_coord_offsetD,
925 &jx0,&jy0,&jz0);
927 /* Calculate displacement vector */
928 dx00 = _mm_sub_ps(ix0,jx0);
929 dy00 = _mm_sub_ps(iy0,jy0);
930 dz00 = _mm_sub_ps(iz0,jz0);
931 dx10 = _mm_sub_ps(ix1,jx0);
932 dy10 = _mm_sub_ps(iy1,jy0);
933 dz10 = _mm_sub_ps(iz1,jz0);
934 dx20 = _mm_sub_ps(ix2,jx0);
935 dy20 = _mm_sub_ps(iy2,jy0);
936 dz20 = _mm_sub_ps(iz2,jz0);
938 /* Calculate squared distance and things based on it */
939 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
940 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
941 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
943 rinv00 = gmx_mm_invsqrt_ps(rsq00);
944 rinv10 = gmx_mm_invsqrt_ps(rsq10);
945 rinv20 = gmx_mm_invsqrt_ps(rsq20);
947 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
948 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
949 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
951 /* Load parameters for j particles */
952 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
953 charge+jnrC+0,charge+jnrD+0);
954 vdwjidx0A = 2*vdwtype[jnrA+0];
955 vdwjidx0B = 2*vdwtype[jnrB+0];
956 vdwjidx0C = 2*vdwtype[jnrC+0];
957 vdwjidx0D = 2*vdwtype[jnrD+0];
959 fjx0 = _mm_setzero_ps();
960 fjy0 = _mm_setzero_ps();
961 fjz0 = _mm_setzero_ps();
963 /**************************
964 * CALCULATE INTERACTIONS *
965 **************************/
967 if (gmx_mm_any_lt(rsq00,rcutoff2))
970 /* Compute parameters for interactions between i and j atoms */
971 qq00 = _mm_mul_ps(iq0,jq0);
972 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
973 vdwparam+vdwioffset0+vdwjidx0B,
974 vdwparam+vdwioffset0+vdwjidx0C,
975 vdwparam+vdwioffset0+vdwjidx0D,
976 &c6_00,&c12_00);
978 /* REACTION-FIELD ELECTROSTATICS */
979 felec = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
981 /* LENNARD-JONES DISPERSION/REPULSION */
983 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
984 fvdw = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
986 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
988 fscal = _mm_add_ps(felec,fvdw);
990 fscal = _mm_and_ps(fscal,cutoff_mask);
992 fscal = _mm_andnot_ps(dummy_mask,fscal);
994 /* Update vectorial force */
995 fix0 = _mm_macc_ps(dx00,fscal,fix0);
996 fiy0 = _mm_macc_ps(dy00,fscal,fiy0);
997 fiz0 = _mm_macc_ps(dz00,fscal,fiz0);
999 fjx0 = _mm_macc_ps(dx00,fscal,fjx0);
1000 fjy0 = _mm_macc_ps(dy00,fscal,fjy0);
1001 fjz0 = _mm_macc_ps(dz00,fscal,fjz0);
1005 /**************************
1006 * CALCULATE INTERACTIONS *
1007 **************************/
1009 if (gmx_mm_any_lt(rsq10,rcutoff2))
1012 /* Compute parameters for interactions between i and j atoms */
1013 qq10 = _mm_mul_ps(iq1,jq0);
1015 /* REACTION-FIELD ELECTROSTATICS */
1016 felec = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1018 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
1020 fscal = felec;
1022 fscal = _mm_and_ps(fscal,cutoff_mask);
1024 fscal = _mm_andnot_ps(dummy_mask,fscal);
1026 /* Update vectorial force */
1027 fix1 = _mm_macc_ps(dx10,fscal,fix1);
1028 fiy1 = _mm_macc_ps(dy10,fscal,fiy1);
1029 fiz1 = _mm_macc_ps(dz10,fscal,fiz1);
1031 fjx0 = _mm_macc_ps(dx10,fscal,fjx0);
1032 fjy0 = _mm_macc_ps(dy10,fscal,fjy0);
1033 fjz0 = _mm_macc_ps(dz10,fscal,fjz0);
1037 /**************************
1038 * CALCULATE INTERACTIONS *
1039 **************************/
1041 if (gmx_mm_any_lt(rsq20,rcutoff2))
1044 /* Compute parameters for interactions between i and j atoms */
1045 qq20 = _mm_mul_ps(iq2,jq0);
1047 /* REACTION-FIELD ELECTROSTATICS */
1048 felec = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1050 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
1052 fscal = felec;
1054 fscal = _mm_and_ps(fscal,cutoff_mask);
1056 fscal = _mm_andnot_ps(dummy_mask,fscal);
1058 /* Update vectorial force */
1059 fix2 = _mm_macc_ps(dx20,fscal,fix2);
1060 fiy2 = _mm_macc_ps(dy20,fscal,fiy2);
1061 fiz2 = _mm_macc_ps(dz20,fscal,fiz2);
1063 fjx0 = _mm_macc_ps(dx20,fscal,fjx0);
1064 fjy0 = _mm_macc_ps(dy20,fscal,fjy0);
1065 fjz0 = _mm_macc_ps(dz20,fscal,fjz0);
1069 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1070 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1071 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1072 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1074 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1076 /* Inner loop uses 106 flops */
1079 /* End of innermost loop */
1081 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1082 f+i_coord_offset,fshift+i_shift_offset);
1084 /* Increment number of inner iterations */
1085 inneriter += j_index_end - j_index_start;
1087 /* Outer loop uses 18 flops */
1090 /* Increment number of outer iterations */
1091 outeriter += nri;
1093 /* Update outer/inner flops */
1095 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*106);