Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_avx_128_fma_double.c
blobc75b708f975001fcd4b51ca5ec091d3e734b4d30
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
51 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_128_fma_double
52 * Electrostatics interaction: ReactionField
53 * VdW interaction: LennardJones
54 * Geometry: Particle-Particle
55 * Calculate force/pot: PotentialAndForce
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_128_fma_double
59 (t_nblist * gmx_restrict nlist,
60 rvec * gmx_restrict xx,
61 rvec * gmx_restrict ff,
62 t_forcerec * gmx_restrict fr,
63 t_mdatoms * gmx_restrict mdatoms,
64 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65 t_nrnb * gmx_restrict nrnb)
67 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68 * just 0 for non-waters.
69 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70 * jnr indices corresponding to data put in the four positions in the SIMD register.
72 int i_shift_offset,i_coord_offset,outeriter,inneriter;
73 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74 int jnrA,jnrB;
75 int j_coord_offsetA,j_coord_offsetB;
76 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
77 real rcutoff_scalar;
78 real *shiftvec,*fshift,*x,*f;
79 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80 int vdwioffset0;
81 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82 int vdwjidx0A,vdwjidx0B;
83 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
86 real *charge;
87 int nvdwtype;
88 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89 int *vdwtype;
90 real *vdwparam;
91 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
92 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
93 __m128d rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
94 real rswitch_scalar,d_scalar;
95 __m128d dummy_mask,cutoff_mask;
96 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97 __m128d one = _mm_set1_pd(1.0);
98 __m128d two = _mm_set1_pd(2.0);
99 x = xx[0];
100 f = ff[0];
102 nri = nlist->nri;
103 iinr = nlist->iinr;
104 jindex = nlist->jindex;
105 jjnr = nlist->jjnr;
106 shiftidx = nlist->shift;
107 gid = nlist->gid;
108 shiftvec = fr->shift_vec[0];
109 fshift = fr->fshift[0];
110 facel = _mm_set1_pd(fr->epsfac);
111 charge = mdatoms->chargeA;
112 krf = _mm_set1_pd(fr->ic->k_rf);
113 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
114 crf = _mm_set1_pd(fr->ic->c_rf);
115 nvdwtype = fr->ntype;
116 vdwparam = fr->nbfp;
117 vdwtype = mdatoms->typeA;
119 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
120 rcutoff_scalar = fr->rcoulomb;
121 rcutoff = _mm_set1_pd(rcutoff_scalar);
122 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
124 rswitch_scalar = fr->rvdw_switch;
125 rswitch = _mm_set1_pd(rswitch_scalar);
126 /* Setup switch parameters */
127 d_scalar = rcutoff_scalar-rswitch_scalar;
128 d = _mm_set1_pd(d_scalar);
129 swV3 = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
130 swV4 = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
131 swV5 = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
132 swF2 = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
133 swF3 = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
134 swF4 = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
136 /* Avoid stupid compiler warnings */
137 jnrA = jnrB = 0;
138 j_coord_offsetA = 0;
139 j_coord_offsetB = 0;
141 outeriter = 0;
142 inneriter = 0;
144 /* Start outer loop over neighborlists */
145 for(iidx=0; iidx<nri; iidx++)
147 /* Load shift vector for this list */
148 i_shift_offset = DIM*shiftidx[iidx];
150 /* Load limits for loop over neighbors */
151 j_index_start = jindex[iidx];
152 j_index_end = jindex[iidx+1];
154 /* Get outer coordinate index */
155 inr = iinr[iidx];
156 i_coord_offset = DIM*inr;
158 /* Load i particle coords and add shift vector */
159 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
161 fix0 = _mm_setzero_pd();
162 fiy0 = _mm_setzero_pd();
163 fiz0 = _mm_setzero_pd();
165 /* Load parameters for i particles */
166 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
167 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
169 /* Reset potential sums */
170 velecsum = _mm_setzero_pd();
171 vvdwsum = _mm_setzero_pd();
173 /* Start inner kernel loop */
174 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
177 /* Get j neighbor index, and coordinate index */
178 jnrA = jjnr[jidx];
179 jnrB = jjnr[jidx+1];
180 j_coord_offsetA = DIM*jnrA;
181 j_coord_offsetB = DIM*jnrB;
183 /* load j atom coordinates */
184 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185 &jx0,&jy0,&jz0);
187 /* Calculate displacement vector */
188 dx00 = _mm_sub_pd(ix0,jx0);
189 dy00 = _mm_sub_pd(iy0,jy0);
190 dz00 = _mm_sub_pd(iz0,jz0);
192 /* Calculate squared distance and things based on it */
193 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
195 rinv00 = gmx_mm_invsqrt_pd(rsq00);
197 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
199 /* Load parameters for j particles */
200 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
201 vdwjidx0A = 2*vdwtype[jnrA+0];
202 vdwjidx0B = 2*vdwtype[jnrB+0];
204 /**************************
205 * CALCULATE INTERACTIONS *
206 **************************/
208 if (gmx_mm_any_lt(rsq00,rcutoff2))
211 r00 = _mm_mul_pd(rsq00,rinv00);
213 /* Compute parameters for interactions between i and j atoms */
214 qq00 = _mm_mul_pd(iq0,jq0);
215 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
216 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
218 /* REACTION-FIELD ELECTROSTATICS */
219 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
220 felec = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
222 /* LENNARD-JONES DISPERSION/REPULSION */
224 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
225 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
226 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
227 vvdw = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
228 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
230 d = _mm_sub_pd(r00,rswitch);
231 d = _mm_max_pd(d,_mm_setzero_pd());
232 d2 = _mm_mul_pd(d,d);
233 sw = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
235 dsw = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
237 /* Evaluate switch function */
238 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
239 fvdw = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
240 vvdw = _mm_mul_pd(vvdw,sw);
241 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
243 /* Update potential sum for this i atom from the interaction with this j atom. */
244 velec = _mm_and_pd(velec,cutoff_mask);
245 velecsum = _mm_add_pd(velecsum,velec);
246 vvdw = _mm_and_pd(vvdw,cutoff_mask);
247 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
249 fscal = _mm_add_pd(felec,fvdw);
251 fscal = _mm_and_pd(fscal,cutoff_mask);
253 /* Update vectorial force */
254 fix0 = _mm_macc_pd(dx00,fscal,fix0);
255 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
256 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
258 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
259 _mm_mul_pd(dx00,fscal),
260 _mm_mul_pd(dy00,fscal),
261 _mm_mul_pd(dz00,fscal));
265 /* Inner loop uses 73 flops */
268 if(jidx<j_index_end)
271 jnrA = jjnr[jidx];
272 j_coord_offsetA = DIM*jnrA;
274 /* load j atom coordinates */
275 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
276 &jx0,&jy0,&jz0);
278 /* Calculate displacement vector */
279 dx00 = _mm_sub_pd(ix0,jx0);
280 dy00 = _mm_sub_pd(iy0,jy0);
281 dz00 = _mm_sub_pd(iz0,jz0);
283 /* Calculate squared distance and things based on it */
284 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
286 rinv00 = gmx_mm_invsqrt_pd(rsq00);
288 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
290 /* Load parameters for j particles */
291 jq0 = _mm_load_sd(charge+jnrA+0);
292 vdwjidx0A = 2*vdwtype[jnrA+0];
294 /**************************
295 * CALCULATE INTERACTIONS *
296 **************************/
298 if (gmx_mm_any_lt(rsq00,rcutoff2))
301 r00 = _mm_mul_pd(rsq00,rinv00);
303 /* Compute parameters for interactions between i and j atoms */
304 qq00 = _mm_mul_pd(iq0,jq0);
305 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
307 /* REACTION-FIELD ELECTROSTATICS */
308 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
309 felec = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
311 /* LENNARD-JONES DISPERSION/REPULSION */
313 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
314 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
315 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
316 vvdw = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
317 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
319 d = _mm_sub_pd(r00,rswitch);
320 d = _mm_max_pd(d,_mm_setzero_pd());
321 d2 = _mm_mul_pd(d,d);
322 sw = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
324 dsw = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
326 /* Evaluate switch function */
327 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
328 fvdw = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
329 vvdw = _mm_mul_pd(vvdw,sw);
330 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
332 /* Update potential sum for this i atom from the interaction with this j atom. */
333 velec = _mm_and_pd(velec,cutoff_mask);
334 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
335 velecsum = _mm_add_pd(velecsum,velec);
336 vvdw = _mm_and_pd(vvdw,cutoff_mask);
337 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
338 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
340 fscal = _mm_add_pd(felec,fvdw);
342 fscal = _mm_and_pd(fscal,cutoff_mask);
344 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
346 /* Update vectorial force */
347 fix0 = _mm_macc_pd(dx00,fscal,fix0);
348 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
349 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
351 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
352 _mm_mul_pd(dx00,fscal),
353 _mm_mul_pd(dy00,fscal),
354 _mm_mul_pd(dz00,fscal));
358 /* Inner loop uses 73 flops */
361 /* End of innermost loop */
363 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
364 f+i_coord_offset,fshift+i_shift_offset);
366 ggid = gid[iidx];
367 /* Update potential energies */
368 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
369 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
371 /* Increment number of inner iterations */
372 inneriter += j_index_end - j_index_start;
374 /* Outer loop uses 9 flops */
377 /* Increment number of outer iterations */
378 outeriter += nri;
380 /* Update outer/inner flops */
382 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
385 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_128_fma_double
386 * Electrostatics interaction: ReactionField
387 * VdW interaction: LennardJones
388 * Geometry: Particle-Particle
389 * Calculate force/pot: Force
391 void
392 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_128_fma_double
393 (t_nblist * gmx_restrict nlist,
394 rvec * gmx_restrict xx,
395 rvec * gmx_restrict ff,
396 t_forcerec * gmx_restrict fr,
397 t_mdatoms * gmx_restrict mdatoms,
398 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
399 t_nrnb * gmx_restrict nrnb)
401 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
402 * just 0 for non-waters.
403 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
404 * jnr indices corresponding to data put in the four positions in the SIMD register.
406 int i_shift_offset,i_coord_offset,outeriter,inneriter;
407 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
408 int jnrA,jnrB;
409 int j_coord_offsetA,j_coord_offsetB;
410 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
411 real rcutoff_scalar;
412 real *shiftvec,*fshift,*x,*f;
413 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
414 int vdwioffset0;
415 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
416 int vdwjidx0A,vdwjidx0B;
417 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
418 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
419 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
420 real *charge;
421 int nvdwtype;
422 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
423 int *vdwtype;
424 real *vdwparam;
425 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
426 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
427 __m128d rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
428 real rswitch_scalar,d_scalar;
429 __m128d dummy_mask,cutoff_mask;
430 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
431 __m128d one = _mm_set1_pd(1.0);
432 __m128d two = _mm_set1_pd(2.0);
433 x = xx[0];
434 f = ff[0];
436 nri = nlist->nri;
437 iinr = nlist->iinr;
438 jindex = nlist->jindex;
439 jjnr = nlist->jjnr;
440 shiftidx = nlist->shift;
441 gid = nlist->gid;
442 shiftvec = fr->shift_vec[0];
443 fshift = fr->fshift[0];
444 facel = _mm_set1_pd(fr->epsfac);
445 charge = mdatoms->chargeA;
446 krf = _mm_set1_pd(fr->ic->k_rf);
447 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
448 crf = _mm_set1_pd(fr->ic->c_rf);
449 nvdwtype = fr->ntype;
450 vdwparam = fr->nbfp;
451 vdwtype = mdatoms->typeA;
453 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
454 rcutoff_scalar = fr->rcoulomb;
455 rcutoff = _mm_set1_pd(rcutoff_scalar);
456 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
458 rswitch_scalar = fr->rvdw_switch;
459 rswitch = _mm_set1_pd(rswitch_scalar);
460 /* Setup switch parameters */
461 d_scalar = rcutoff_scalar-rswitch_scalar;
462 d = _mm_set1_pd(d_scalar);
463 swV3 = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
464 swV4 = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
465 swV5 = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
466 swF2 = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
467 swF3 = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
468 swF4 = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
470 /* Avoid stupid compiler warnings */
471 jnrA = jnrB = 0;
472 j_coord_offsetA = 0;
473 j_coord_offsetB = 0;
475 outeriter = 0;
476 inneriter = 0;
478 /* Start outer loop over neighborlists */
479 for(iidx=0; iidx<nri; iidx++)
481 /* Load shift vector for this list */
482 i_shift_offset = DIM*shiftidx[iidx];
484 /* Load limits for loop over neighbors */
485 j_index_start = jindex[iidx];
486 j_index_end = jindex[iidx+1];
488 /* Get outer coordinate index */
489 inr = iinr[iidx];
490 i_coord_offset = DIM*inr;
492 /* Load i particle coords and add shift vector */
493 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
495 fix0 = _mm_setzero_pd();
496 fiy0 = _mm_setzero_pd();
497 fiz0 = _mm_setzero_pd();
499 /* Load parameters for i particles */
500 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
501 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
503 /* Start inner kernel loop */
504 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
507 /* Get j neighbor index, and coordinate index */
508 jnrA = jjnr[jidx];
509 jnrB = jjnr[jidx+1];
510 j_coord_offsetA = DIM*jnrA;
511 j_coord_offsetB = DIM*jnrB;
513 /* load j atom coordinates */
514 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
515 &jx0,&jy0,&jz0);
517 /* Calculate displacement vector */
518 dx00 = _mm_sub_pd(ix0,jx0);
519 dy00 = _mm_sub_pd(iy0,jy0);
520 dz00 = _mm_sub_pd(iz0,jz0);
522 /* Calculate squared distance and things based on it */
523 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
525 rinv00 = gmx_mm_invsqrt_pd(rsq00);
527 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
529 /* Load parameters for j particles */
530 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
531 vdwjidx0A = 2*vdwtype[jnrA+0];
532 vdwjidx0B = 2*vdwtype[jnrB+0];
534 /**************************
535 * CALCULATE INTERACTIONS *
536 **************************/
538 if (gmx_mm_any_lt(rsq00,rcutoff2))
541 r00 = _mm_mul_pd(rsq00,rinv00);
543 /* Compute parameters for interactions between i and j atoms */
544 qq00 = _mm_mul_pd(iq0,jq0);
545 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
546 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
548 /* REACTION-FIELD ELECTROSTATICS */
549 felec = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
551 /* LENNARD-JONES DISPERSION/REPULSION */
553 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
554 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
555 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
556 vvdw = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
557 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
559 d = _mm_sub_pd(r00,rswitch);
560 d = _mm_max_pd(d,_mm_setzero_pd());
561 d2 = _mm_mul_pd(d,d);
562 sw = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
564 dsw = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
566 /* Evaluate switch function */
567 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
568 fvdw = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
569 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
571 fscal = _mm_add_pd(felec,fvdw);
573 fscal = _mm_and_pd(fscal,cutoff_mask);
575 /* Update vectorial force */
576 fix0 = _mm_macc_pd(dx00,fscal,fix0);
577 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
578 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
580 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
581 _mm_mul_pd(dx00,fscal),
582 _mm_mul_pd(dy00,fscal),
583 _mm_mul_pd(dz00,fscal));
587 /* Inner loop uses 64 flops */
590 if(jidx<j_index_end)
593 jnrA = jjnr[jidx];
594 j_coord_offsetA = DIM*jnrA;
596 /* load j atom coordinates */
597 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
598 &jx0,&jy0,&jz0);
600 /* Calculate displacement vector */
601 dx00 = _mm_sub_pd(ix0,jx0);
602 dy00 = _mm_sub_pd(iy0,jy0);
603 dz00 = _mm_sub_pd(iz0,jz0);
605 /* Calculate squared distance and things based on it */
606 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
608 rinv00 = gmx_mm_invsqrt_pd(rsq00);
610 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
612 /* Load parameters for j particles */
613 jq0 = _mm_load_sd(charge+jnrA+0);
614 vdwjidx0A = 2*vdwtype[jnrA+0];
616 /**************************
617 * CALCULATE INTERACTIONS *
618 **************************/
620 if (gmx_mm_any_lt(rsq00,rcutoff2))
623 r00 = _mm_mul_pd(rsq00,rinv00);
625 /* Compute parameters for interactions between i and j atoms */
626 qq00 = _mm_mul_pd(iq0,jq0);
627 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
629 /* REACTION-FIELD ELECTROSTATICS */
630 felec = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
632 /* LENNARD-JONES DISPERSION/REPULSION */
634 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
635 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
636 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
637 vvdw = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
638 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
640 d = _mm_sub_pd(r00,rswitch);
641 d = _mm_max_pd(d,_mm_setzero_pd());
642 d2 = _mm_mul_pd(d,d);
643 sw = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
645 dsw = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
647 /* Evaluate switch function */
648 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
649 fvdw = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
650 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
652 fscal = _mm_add_pd(felec,fvdw);
654 fscal = _mm_and_pd(fscal,cutoff_mask);
656 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
658 /* Update vectorial force */
659 fix0 = _mm_macc_pd(dx00,fscal,fix0);
660 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
661 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
663 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
664 _mm_mul_pd(dx00,fscal),
665 _mm_mul_pd(dy00,fscal),
666 _mm_mul_pd(dz00,fscal));
670 /* Inner loop uses 64 flops */
673 /* End of innermost loop */
675 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
676 f+i_coord_offset,fshift+i_shift_offset);
678 /* Increment number of inner iterations */
679 inneriter += j_index_end - j_index_start;
681 /* Outer loop uses 7 flops */
684 /* Increment number of outer iterations */
685 outeriter += nri;
687 /* Update outer/inner flops */
689 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);