Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJ_GeomP1P1_avx_128_fma_double.c
blob009c168f613e0e1c48814e2f00bcb33e4a79d080
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
38 #include "config.h"
40 #include <math.h>
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
51 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_double
52 * Electrostatics interaction: Ewald
53 * VdW interaction: LennardJones
54 * Geometry: Particle-Particle
55 * Calculate force/pot: PotentialAndForce
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_double
59 (t_nblist * gmx_restrict nlist,
60 rvec * gmx_restrict xx,
61 rvec * gmx_restrict ff,
62 t_forcerec * gmx_restrict fr,
63 t_mdatoms * gmx_restrict mdatoms,
64 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65 t_nrnb * gmx_restrict nrnb)
67 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68 * just 0 for non-waters.
69 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70 * jnr indices corresponding to data put in the four positions in the SIMD register.
72 int i_shift_offset,i_coord_offset,outeriter,inneriter;
73 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74 int jnrA,jnrB;
75 int j_coord_offsetA,j_coord_offsetB;
76 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
77 real rcutoff_scalar;
78 real *shiftvec,*fshift,*x,*f;
79 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80 int vdwioffset0;
81 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82 int vdwjidx0A,vdwjidx0B;
83 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
86 real *charge;
87 int nvdwtype;
88 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89 int *vdwtype;
90 real *vdwparam;
91 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
92 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
93 __m128i ewitab;
94 __m128d ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95 real *ewtab;
96 __m128d dummy_mask,cutoff_mask;
97 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
98 __m128d one = _mm_set1_pd(1.0);
99 __m128d two = _mm_set1_pd(2.0);
100 x = xx[0];
101 f = ff[0];
103 nri = nlist->nri;
104 iinr = nlist->iinr;
105 jindex = nlist->jindex;
106 jjnr = nlist->jjnr;
107 shiftidx = nlist->shift;
108 gid = nlist->gid;
109 shiftvec = fr->shift_vec[0];
110 fshift = fr->fshift[0];
111 facel = _mm_set1_pd(fr->epsfac);
112 charge = mdatoms->chargeA;
113 nvdwtype = fr->ntype;
114 vdwparam = fr->nbfp;
115 vdwtype = mdatoms->typeA;
117 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
118 ewtab = fr->ic->tabq_coul_FDV0;
119 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
120 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
122 /* Avoid stupid compiler warnings */
123 jnrA = jnrB = 0;
124 j_coord_offsetA = 0;
125 j_coord_offsetB = 0;
127 outeriter = 0;
128 inneriter = 0;
130 /* Start outer loop over neighborlists */
131 for(iidx=0; iidx<nri; iidx++)
133 /* Load shift vector for this list */
134 i_shift_offset = DIM*shiftidx[iidx];
136 /* Load limits for loop over neighbors */
137 j_index_start = jindex[iidx];
138 j_index_end = jindex[iidx+1];
140 /* Get outer coordinate index */
141 inr = iinr[iidx];
142 i_coord_offset = DIM*inr;
144 /* Load i particle coords and add shift vector */
145 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
147 fix0 = _mm_setzero_pd();
148 fiy0 = _mm_setzero_pd();
149 fiz0 = _mm_setzero_pd();
151 /* Load parameters for i particles */
152 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
153 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
155 /* Reset potential sums */
156 velecsum = _mm_setzero_pd();
157 vvdwsum = _mm_setzero_pd();
159 /* Start inner kernel loop */
160 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
163 /* Get j neighbor index, and coordinate index */
164 jnrA = jjnr[jidx];
165 jnrB = jjnr[jidx+1];
166 j_coord_offsetA = DIM*jnrA;
167 j_coord_offsetB = DIM*jnrB;
169 /* load j atom coordinates */
170 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
171 &jx0,&jy0,&jz0);
173 /* Calculate displacement vector */
174 dx00 = _mm_sub_pd(ix0,jx0);
175 dy00 = _mm_sub_pd(iy0,jy0);
176 dz00 = _mm_sub_pd(iz0,jz0);
178 /* Calculate squared distance and things based on it */
179 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
181 rinv00 = gmx_mm_invsqrt_pd(rsq00);
183 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
185 /* Load parameters for j particles */
186 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
187 vdwjidx0A = 2*vdwtype[jnrA+0];
188 vdwjidx0B = 2*vdwtype[jnrB+0];
190 /**************************
191 * CALCULATE INTERACTIONS *
192 **************************/
194 r00 = _mm_mul_pd(rsq00,rinv00);
196 /* Compute parameters for interactions between i and j atoms */
197 qq00 = _mm_mul_pd(iq0,jq0);
198 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
199 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
201 /* EWALD ELECTROSTATICS */
203 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
204 ewrt = _mm_mul_pd(r00,ewtabscale);
205 ewitab = _mm_cvttpd_epi32(ewrt);
206 #ifdef __XOP__
207 eweps = _mm_frcz_pd(ewrt);
208 #else
209 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
210 #endif
211 twoeweps = _mm_add_pd(eweps,eweps);
212 ewitab = _mm_slli_epi32(ewitab,2);
213 ewtabF = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
214 ewtabD = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
215 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
216 ewtabV = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
217 ewtabFn = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
218 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
219 felec = _mm_macc_pd(eweps,ewtabD,ewtabF);
220 velec = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
221 velec = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
222 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
224 /* LENNARD-JONES DISPERSION/REPULSION */
226 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
227 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
228 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
229 vvdw = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
230 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
232 /* Update potential sum for this i atom from the interaction with this j atom. */
233 velecsum = _mm_add_pd(velecsum,velec);
234 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
236 fscal = _mm_add_pd(felec,fvdw);
238 /* Update vectorial force */
239 fix0 = _mm_macc_pd(dx00,fscal,fix0);
240 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
241 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
243 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
244 _mm_mul_pd(dx00,fscal),
245 _mm_mul_pd(dy00,fscal),
246 _mm_mul_pd(dz00,fscal));
248 /* Inner loop uses 56 flops */
251 if(jidx<j_index_end)
254 jnrA = jjnr[jidx];
255 j_coord_offsetA = DIM*jnrA;
257 /* load j atom coordinates */
258 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
259 &jx0,&jy0,&jz0);
261 /* Calculate displacement vector */
262 dx00 = _mm_sub_pd(ix0,jx0);
263 dy00 = _mm_sub_pd(iy0,jy0);
264 dz00 = _mm_sub_pd(iz0,jz0);
266 /* Calculate squared distance and things based on it */
267 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
269 rinv00 = gmx_mm_invsqrt_pd(rsq00);
271 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
273 /* Load parameters for j particles */
274 jq0 = _mm_load_sd(charge+jnrA+0);
275 vdwjidx0A = 2*vdwtype[jnrA+0];
277 /**************************
278 * CALCULATE INTERACTIONS *
279 **************************/
281 r00 = _mm_mul_pd(rsq00,rinv00);
283 /* Compute parameters for interactions between i and j atoms */
284 qq00 = _mm_mul_pd(iq0,jq0);
285 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
287 /* EWALD ELECTROSTATICS */
289 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
290 ewrt = _mm_mul_pd(r00,ewtabscale);
291 ewitab = _mm_cvttpd_epi32(ewrt);
292 #ifdef __XOP__
293 eweps = _mm_frcz_pd(ewrt);
294 #else
295 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
296 #endif
297 twoeweps = _mm_add_pd(eweps,eweps);
298 ewitab = _mm_slli_epi32(ewitab,2);
299 ewtabF = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
300 ewtabD = _mm_setzero_pd();
301 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
302 ewtabV = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
303 ewtabFn = _mm_setzero_pd();
304 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
305 felec = _mm_macc_pd(eweps,ewtabD,ewtabF);
306 velec = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
307 velec = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
308 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
310 /* LENNARD-JONES DISPERSION/REPULSION */
312 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
313 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
314 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
315 vvdw = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
316 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
318 /* Update potential sum for this i atom from the interaction with this j atom. */
319 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
320 velecsum = _mm_add_pd(velecsum,velec);
321 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
322 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
324 fscal = _mm_add_pd(felec,fvdw);
326 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
328 /* Update vectorial force */
329 fix0 = _mm_macc_pd(dx00,fscal,fix0);
330 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
331 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
333 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
334 _mm_mul_pd(dx00,fscal),
335 _mm_mul_pd(dy00,fscal),
336 _mm_mul_pd(dz00,fscal));
338 /* Inner loop uses 56 flops */
341 /* End of innermost loop */
343 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
344 f+i_coord_offset,fshift+i_shift_offset);
346 ggid = gid[iidx];
347 /* Update potential energies */
348 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
349 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
351 /* Increment number of inner iterations */
352 inneriter += j_index_end - j_index_start;
354 /* Outer loop uses 9 flops */
357 /* Increment number of outer iterations */
358 outeriter += nri;
360 /* Update outer/inner flops */
362 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*56);
365 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_double
366 * Electrostatics interaction: Ewald
367 * VdW interaction: LennardJones
368 * Geometry: Particle-Particle
369 * Calculate force/pot: Force
371 void
372 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_double
373 (t_nblist * gmx_restrict nlist,
374 rvec * gmx_restrict xx,
375 rvec * gmx_restrict ff,
376 t_forcerec * gmx_restrict fr,
377 t_mdatoms * gmx_restrict mdatoms,
378 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
379 t_nrnb * gmx_restrict nrnb)
381 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
382 * just 0 for non-waters.
383 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
384 * jnr indices corresponding to data put in the four positions in the SIMD register.
386 int i_shift_offset,i_coord_offset,outeriter,inneriter;
387 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
388 int jnrA,jnrB;
389 int j_coord_offsetA,j_coord_offsetB;
390 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
391 real rcutoff_scalar;
392 real *shiftvec,*fshift,*x,*f;
393 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
394 int vdwioffset0;
395 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
396 int vdwjidx0A,vdwjidx0B;
397 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
398 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
399 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
400 real *charge;
401 int nvdwtype;
402 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
403 int *vdwtype;
404 real *vdwparam;
405 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
406 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
407 __m128i ewitab;
408 __m128d ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
409 real *ewtab;
410 __m128d dummy_mask,cutoff_mask;
411 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
412 __m128d one = _mm_set1_pd(1.0);
413 __m128d two = _mm_set1_pd(2.0);
414 x = xx[0];
415 f = ff[0];
417 nri = nlist->nri;
418 iinr = nlist->iinr;
419 jindex = nlist->jindex;
420 jjnr = nlist->jjnr;
421 shiftidx = nlist->shift;
422 gid = nlist->gid;
423 shiftvec = fr->shift_vec[0];
424 fshift = fr->fshift[0];
425 facel = _mm_set1_pd(fr->epsfac);
426 charge = mdatoms->chargeA;
427 nvdwtype = fr->ntype;
428 vdwparam = fr->nbfp;
429 vdwtype = mdatoms->typeA;
431 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
432 ewtab = fr->ic->tabq_coul_F;
433 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
434 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
436 /* Avoid stupid compiler warnings */
437 jnrA = jnrB = 0;
438 j_coord_offsetA = 0;
439 j_coord_offsetB = 0;
441 outeriter = 0;
442 inneriter = 0;
444 /* Start outer loop over neighborlists */
445 for(iidx=0; iidx<nri; iidx++)
447 /* Load shift vector for this list */
448 i_shift_offset = DIM*shiftidx[iidx];
450 /* Load limits for loop over neighbors */
451 j_index_start = jindex[iidx];
452 j_index_end = jindex[iidx+1];
454 /* Get outer coordinate index */
455 inr = iinr[iidx];
456 i_coord_offset = DIM*inr;
458 /* Load i particle coords and add shift vector */
459 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
461 fix0 = _mm_setzero_pd();
462 fiy0 = _mm_setzero_pd();
463 fiz0 = _mm_setzero_pd();
465 /* Load parameters for i particles */
466 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
467 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
469 /* Start inner kernel loop */
470 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
473 /* Get j neighbor index, and coordinate index */
474 jnrA = jjnr[jidx];
475 jnrB = jjnr[jidx+1];
476 j_coord_offsetA = DIM*jnrA;
477 j_coord_offsetB = DIM*jnrB;
479 /* load j atom coordinates */
480 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
481 &jx0,&jy0,&jz0);
483 /* Calculate displacement vector */
484 dx00 = _mm_sub_pd(ix0,jx0);
485 dy00 = _mm_sub_pd(iy0,jy0);
486 dz00 = _mm_sub_pd(iz0,jz0);
488 /* Calculate squared distance and things based on it */
489 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
491 rinv00 = gmx_mm_invsqrt_pd(rsq00);
493 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
495 /* Load parameters for j particles */
496 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
497 vdwjidx0A = 2*vdwtype[jnrA+0];
498 vdwjidx0B = 2*vdwtype[jnrB+0];
500 /**************************
501 * CALCULATE INTERACTIONS *
502 **************************/
504 r00 = _mm_mul_pd(rsq00,rinv00);
506 /* Compute parameters for interactions between i and j atoms */
507 qq00 = _mm_mul_pd(iq0,jq0);
508 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
509 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
511 /* EWALD ELECTROSTATICS */
513 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
514 ewrt = _mm_mul_pd(r00,ewtabscale);
515 ewitab = _mm_cvttpd_epi32(ewrt);
516 #ifdef __XOP__
517 eweps = _mm_frcz_pd(ewrt);
518 #else
519 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
520 #endif
521 twoeweps = _mm_add_pd(eweps,eweps);
522 gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
523 &ewtabF,&ewtabFn);
524 felec = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
525 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
527 /* LENNARD-JONES DISPERSION/REPULSION */
529 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
530 fvdw = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
532 fscal = _mm_add_pd(felec,fvdw);
534 /* Update vectorial force */
535 fix0 = _mm_macc_pd(dx00,fscal,fix0);
536 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
537 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
539 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
540 _mm_mul_pd(dx00,fscal),
541 _mm_mul_pd(dy00,fscal),
542 _mm_mul_pd(dz00,fscal));
544 /* Inner loop uses 46 flops */
547 if(jidx<j_index_end)
550 jnrA = jjnr[jidx];
551 j_coord_offsetA = DIM*jnrA;
553 /* load j atom coordinates */
554 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
555 &jx0,&jy0,&jz0);
557 /* Calculate displacement vector */
558 dx00 = _mm_sub_pd(ix0,jx0);
559 dy00 = _mm_sub_pd(iy0,jy0);
560 dz00 = _mm_sub_pd(iz0,jz0);
562 /* Calculate squared distance and things based on it */
563 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
565 rinv00 = gmx_mm_invsqrt_pd(rsq00);
567 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
569 /* Load parameters for j particles */
570 jq0 = _mm_load_sd(charge+jnrA+0);
571 vdwjidx0A = 2*vdwtype[jnrA+0];
573 /**************************
574 * CALCULATE INTERACTIONS *
575 **************************/
577 r00 = _mm_mul_pd(rsq00,rinv00);
579 /* Compute parameters for interactions between i and j atoms */
580 qq00 = _mm_mul_pd(iq0,jq0);
581 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
583 /* EWALD ELECTROSTATICS */
585 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
586 ewrt = _mm_mul_pd(r00,ewtabscale);
587 ewitab = _mm_cvttpd_epi32(ewrt);
588 #ifdef __XOP__
589 eweps = _mm_frcz_pd(ewrt);
590 #else
591 eweps = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
592 #endif
593 twoeweps = _mm_add_pd(eweps,eweps);
594 gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
595 felec = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
596 felec = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
598 /* LENNARD-JONES DISPERSION/REPULSION */
600 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
601 fvdw = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
603 fscal = _mm_add_pd(felec,fvdw);
605 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
607 /* Update vectorial force */
608 fix0 = _mm_macc_pd(dx00,fscal,fix0);
609 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
610 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
612 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
613 _mm_mul_pd(dx00,fscal),
614 _mm_mul_pd(dy00,fscal),
615 _mm_mul_pd(dz00,fscal));
617 /* Inner loop uses 46 flops */
620 /* End of innermost loop */
622 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
623 f+i_coord_offset,fshift+i_shift_offset);
625 /* Increment number of inner iterations */
626 inneriter += j_index_end - j_index_start;
628 /* Outer loop uses 7 flops */
631 /* Increment number of outer iterations */
632 outeriter += nri;
634 /* Update outer/inner flops */
636 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*46);