Remove all unnecessary HAVE_CONFIG_H
[gromacs.git] / src / gromacs / gmxana / gmx_tcaf.c
blob30eef0af6a412695de0b3761f9b63e7c8bb66da6
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 #include "config.h"
39 #include <math.h>
40 #include <stdio.h>
41 #include <string.h>
43 #include "gromacs/fileio/confio.h"
44 #include "gromacs/utility/fatalerror.h"
45 #include "gromacs/utility/futil.h"
46 #include "gstat.h"
47 #include "macros.h"
48 #include "gromacs/math/utilities.h"
49 #include "gromacs/math/units.h"
50 #include "gromacs/topology/index.h"
51 #include "gromacs/utility/smalloc.h"
52 #include "gromacs/commandline/pargs.h"
53 #include "txtdump.h"
54 #include "typedefs.h"
55 #include "gromacs/math/vec.h"
56 #include "gromacs/fileio/xvgr.h"
57 #include "viewit.h"
58 #include "gromacs/pbcutil/pbc.h"
59 #include "gmx_ana.h"
60 #include "gromacs/fileio/trxio.h"
63 #define NK 24
64 #define NPK 4
66 #define NKC 6
67 #define NKC0 4
68 int kset_c[NKC+1] = { 0, 3, 9, 13, 16, 19, NK };
70 rvec v0[NK] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 1, 0}, {1, -1, 0}, {1, 0, 1}, {1, 0, -1}, {0, 1, 1}, {0, 1, -1}, {1, 1, 1}, {1, 1, -1}, {1, -1, 1}, {-1, 1, 1}, {2, 0, 0}, {0, 2, 0}, {0, 0, 2}, {3, 0, 0}, {0, 3, 0}, {0, 0, 3}, {4, 0, 0}, {0, 4, 0}, {0, 0, 4}};
71 rvec v1[NK] = {{0, 1, 0}, {0, 0, 1}, {1, 0, 0}, {0, 0, 1}, {0, 0, 1}, {0, 1, 0}, {0, 1, 0}, {1, 0, 0}, {1, 0, 0}, {1, -1, 0}, {1, -1, 0}, {1, 0, -1}, { 0, 1, -1}, {0, 1, 0}, {0, 0, 1}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 0, 0}};
72 rvec v2[NK] = {{0, 0, 1}, {1, 0, 0}, {0, 1, 0}, {1, -1, 0}, {1, 1, 0}, {1, 0, -1}, {1, 0, 1}, {0, 1, -1}, {0, 1, 1}, {1, 1, -2}, {1, 1, 2}, {1, 2, 1}, { 2, 1, 1}, {0, 0, 1}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 0, 0}, {0, 1, 0}};
74 static void process_tcaf(int nframes, real dt, int nkc, real **tc, rvec *kfac,
75 real rho, real wt, const char *fn_trans,
76 const char *fn_tca, const char *fn_tc,
77 const char *fn_tcf, const char *fn_cub,
78 const char *fn_vk, const output_env_t oenv)
80 FILE *fp, *fp_vk, *fp_cub = NULL;
81 int nk, ntc;
82 real **tcaf, **tcafc = NULL, eta;
83 int i, j, k, kc;
84 int ncorr;
85 real fitparms[3], *sig;
87 nk = kset_c[nkc];
88 ntc = nk*NPK;
90 if (fn_trans)
92 fp = xvgropen(fn_trans, "Transverse Current", "Time (ps)", "TC (nm/ps)",
93 oenv);
94 for (i = 0; i < nframes; i++)
96 fprintf(fp, "%g", i*dt);
97 for (j = 0; j < ntc; j++)
99 fprintf(fp, " %g", tc[j][i]);
101 fprintf(fp, "\n");
103 gmx_ffclose(fp);
104 do_view(oenv, fn_trans, "-nxy");
107 ncorr = (nframes+1)/2;
108 if (ncorr > (int)(5*wt/dt+0.5))
110 ncorr = (int)(5*wt/dt+0.5)+1;
112 snew(tcaf, nk);
113 for (k = 0; k < nk; k++)
115 snew(tcaf[k], ncorr);
117 if (fn_cub)
119 snew(tcafc, nkc);
120 for (k = 0; k < nkc; k++)
122 snew(tcafc[k], ncorr);
125 snew(sig, ncorr);
126 for (i = 0; i < ncorr; i++)
128 sig[i] = exp(0.5*i*dt/wt);
131 low_do_autocorr(fn_tca, oenv, "Transverse Current Autocorrelation Functions",
132 nframes, ntc, ncorr, tc, dt, eacNormal,
133 1, FALSE, FALSE, FALSE, 0, 0, 0);
134 do_view(oenv, fn_tca, "-nxy");
136 fp = xvgropen(fn_tc, "Transverse Current Autocorrelation Functions",
137 "Time (ps)", "TCAF", oenv);
138 for (i = 0; i < ncorr; i++)
140 kc = 0;
141 fprintf(fp, "%g", i*dt);
142 for (k = 0; k < nk; k++)
144 for (j = 0; j < NPK; j++)
146 tcaf[k][i] += tc[NPK*k+j][i];
148 if (fn_cub)
150 for (j = 0; j < NPK; j++)
152 tcafc[kc][i] += tc[NPK*k+j][i];
155 if (i == 0)
157 fprintf(fp, " %g", 1.0);
159 else
161 tcaf[k][i] /= tcaf[k][0];
162 fprintf(fp, " %g", tcaf[k][i]);
164 if (k+1 == kset_c[kc+1])
166 kc++;
169 fprintf(fp, "\n");
171 gmx_ffclose(fp);
172 do_view(oenv, fn_tc, "-nxy");
174 if (fn_cub)
176 fp_cub = xvgropen(fn_cub, "TCAFs and fits", "Time (ps)", "TCAF", oenv);
177 for (kc = 0; kc < nkc; kc++)
179 fprintf(fp_cub, "%g %g\n", 0.0, 1.0);
180 for (i = 1; i < ncorr; i++)
182 tcafc[kc][i] /= tcafc[kc][0];
183 fprintf(fp_cub, "%g %g\n", i*dt, tcafc[kc][i]);
185 fprintf(fp_cub, "%s\n", output_env_get_print_xvgr_codes(oenv) ? "&" : "");
186 tcafc[kc][0] = 1.0;
190 fp_vk = xvgropen(fn_vk, "Fits", "k (nm\\S-1\\N)",
191 "\\8h\\4 (10\\S-3\\N kg m\\S-1\\N s\\S-1\\N)", oenv);
192 if (output_env_get_print_xvgr_codes(oenv))
194 fprintf(fp_vk, "@ s0 symbol 2\n");
195 fprintf(fp_vk, "@ s0 symbol color 1\n");
196 fprintf(fp_vk, "@ s0 linestyle 0\n");
197 if (fn_cub)
199 fprintf(fp_vk, "@ s1 symbol 3\n");
200 fprintf(fp_vk, "@ s1 symbol color 2\n");
203 fp = xvgropen(fn_tcf, "TCAF Fits", "Time (ps)", "", oenv);
204 for (k = 0; k < nk; k++)
206 tcaf[k][0] = 1.0;
207 fitparms[0] = 1;
208 fitparms[1] = 1;
209 do_lmfit(ncorr, tcaf[k], sig, dt, 0, 0, ncorr*dt,
210 oenv, bDebugMode(), effnVAC, fitparms, 0);
211 eta = 1000*fitparms[1]*rho/
212 (4*fitparms[0]*PICO*norm2(kfac[k])/(NANO*NANO));
213 fprintf(stdout, "k %6.3f tau %6.3f eta %8.5f 10^-3 kg/(m s)\n",
214 norm(kfac[k]), fitparms[0], eta);
215 fprintf(fp_vk, "%6.3f %g\n", norm(kfac[k]), eta);
216 for (i = 0; i < ncorr; i++)
218 fprintf(fp, "%g %g\n", i*dt, fit_function(effnVAC, fitparms, i*dt));
220 fprintf(fp, "%s\n", output_env_get_print_xvgr_codes(oenv) ? "&" : "");
222 gmx_ffclose(fp);
223 do_view(oenv, fn_tcf, "-nxy");
225 if (fn_cub)
227 fprintf(stdout, "Averaged over k-vectors:\n");
228 fprintf(fp_vk, "%s\n", output_env_get_print_xvgr_codes(oenv) ? "&" : "");
229 for (k = 0; k < nkc; k++)
231 tcafc[k][0] = 1.0;
232 fitparms[0] = 1;
233 fitparms[1] = 1;
234 do_lmfit(ncorr, tcafc[k], sig, dt, 0, 0, ncorr*dt,
235 oenv, bDebugMode(), effnVAC, fitparms, 0);
236 eta = 1000*fitparms[1]*rho/
237 (4*fitparms[0]*PICO*norm2(kfac[kset_c[k]])/(NANO*NANO));
238 fprintf(stdout,
239 "k %6.3f tau %6.3f Omega %6.3f eta %8.5f 10^-3 kg/(m s)\n",
240 norm(kfac[kset_c[k]]), fitparms[0], fitparms[1], eta);
241 fprintf(fp_vk, "%6.3f %g\n", norm(kfac[kset_c[k]]), eta);
242 for (i = 0; i < ncorr; i++)
244 fprintf(fp_cub, "%g %g\n", i*dt, fit_function(effnVAC, fitparms, i*dt));
246 fprintf(fp_cub, "%s\n", output_env_get_print_xvgr_codes(oenv) ? "&" : "");
248 fprintf(fp_vk, "%s\n", output_env_get_print_xvgr_codes(oenv) ? "&" : "");
249 gmx_ffclose(fp_cub);
250 do_view(oenv, fn_cub, "-nxy");
252 gmx_ffclose(fp_vk);
253 do_view(oenv, fn_vk, "-nxy");
257 int gmx_tcaf(int argc, char *argv[])
259 const char *desc[] = {
260 "[THISMODULE] computes tranverse current autocorrelations.",
261 "These are used to estimate the shear viscosity, [GRK]eta[grk].",
262 "For details see: Palmer, Phys. Rev. E 49 (1994) pp 359-366.[PAR]",
263 "Transverse currents are calculated using the",
264 "k-vectors (1,0,0) and (2,0,0) each also in the [IT]y[it]- and [IT]z[it]-direction,",
265 "(1,1,0) and (1,-1,0) each also in the 2 other planes (these vectors",
266 "are not independent) and (1,1,1) and the 3 other box diagonals (also",
267 "not independent). For each k-vector the sine and cosine are used, in",
268 "combination with the velocity in 2 perpendicular directions. This gives",
269 "a total of 16*2*2=64 transverse currents. One autocorrelation is",
270 "calculated fitted for each k-vector, which gives 16 TCAFs. Each of",
271 "these TCAFs is fitted to [MATH]f(t) = [EXP]-v[exp]([COSH]Wv[cosh] + 1/W [SINH]Wv[sinh])[math],",
272 "[MATH]v = -t/(2 [GRK]tau[grk])[math], [MATH]W = [SQRT]1 - 4 [GRK]tau[grk] [GRK]eta[grk]/[GRK]rho[grk] k^2[sqrt][math], which gives 16 values of [GRK]tau[grk]",
273 "and [GRK]eta[grk]. The fit weights decay exponentially with time constant [MATH]w[math] (given with [TT]-wt[tt]) as [MATH][EXP]-t/w[exp][math], and the TCAF and",
274 "fit are calculated up to time [MATH]5*w[math].",
275 "The [GRK]eta[grk] values should be fitted to [MATH]1 - a [GRK]eta[grk](k) k^2[math], from which",
276 "one can estimate the shear viscosity at k=0.[PAR]",
277 "When the box is cubic, one can use the option [TT]-oc[tt], which",
278 "averages the TCAFs over all k-vectors with the same length.",
279 "This results in more accurate TCAFs.",
280 "Both the cubic TCAFs and fits are written to [TT]-oc[tt]",
281 "The cubic [GRK]eta[grk] estimates are also written to [TT]-ov[tt].[PAR]",
282 "With option [TT]-mol[tt], the transverse current is determined of",
283 "molecules instead of atoms. In this case, the index group should",
284 "consist of molecule numbers instead of atom numbers.[PAR]",
285 "The k-dependent viscosities in the [TT]-ov[tt] file should be",
286 "fitted to [MATH][GRK]eta[grk](k) = [GRK]eta[grk][SUB]0[sub] (1 - a k^2)[math] to obtain the viscosity at",
287 "infinite wavelength.[PAR]",
288 "[BB]Note:[bb] make sure you write coordinates and velocities often enough.",
289 "The initial, non-exponential, part of the autocorrelation function",
290 "is very important for obtaining a good fit."
293 static gmx_bool bMol = FALSE, bK34 = FALSE;
294 static real wt = 5;
295 t_pargs pa[] = {
296 { "-mol", FALSE, etBOOL, {&bMol},
297 "Calculate TCAF of molecules" },
298 { "-k34", FALSE, etBOOL, {&bK34},
299 "Also use k=(3,0,0) and k=(4,0,0)" },
300 { "-wt", FALSE, etREAL, {&wt},
301 "Exponential decay time for the TCAF fit weights" }
304 t_topology top;
305 int ePBC;
306 t_trxframe fr;
307 matrix box;
308 gmx_bool bTPS, bTop; /* ,bCubic; */
309 int gnx;
310 atom_id *index, *atndx = NULL, at;
311 char *grpname;
312 char title[256];
313 real t0, t1, dt, m, mtot, sysmass, rho, sx, cx;
314 t_trxstatus *status;
315 int nframes, n_alloc, i, j, k, d;
316 rvec mv_mol, cm_mol, kfac[NK];
317 int nkc, nk, ntc;
318 real **c1, **tc;
319 output_env_t oenv;
321 #define NHISTO 360
323 t_filenm fnm[] = {
324 { efTRN, "-f", NULL, ffREAD },
325 { efTPS, NULL, NULL, ffOPTRD },
326 { efNDX, NULL, NULL, ffOPTRD },
327 { efXVG, "-ot", "transcur", ffOPTWR },
328 { efXVG, "-oa", "tcaf_all", ffWRITE },
329 { efXVG, "-o", "tcaf", ffWRITE },
330 { efXVG, "-of", "tcaf_fit", ffWRITE },
331 { efXVG, "-oc", "tcaf_cub", ffOPTWR },
332 { efXVG, "-ov", "visc_k", ffWRITE }
334 #define NFILE asize(fnm)
335 int npargs;
336 t_pargs *ppa;
338 npargs = asize(pa);
339 ppa = add_acf_pargs(&npargs, pa);
341 if (!parse_common_args(&argc, argv, PCA_CAN_VIEW | PCA_CAN_TIME | PCA_BE_NICE,
342 NFILE, fnm, npargs, ppa, asize(desc), desc, 0, NULL, &oenv))
344 return 0;
347 bTop = read_tps_conf(ftp2fn(efTPS, NFILE, fnm), title, &top, &ePBC, NULL, NULL, box,
348 TRUE);
349 get_index(&top.atoms, ftp2fn_null(efNDX, NFILE, fnm), 1, &gnx, &index, &grpname);
351 if (bMol)
353 if (!bTop)
355 gmx_fatal(FARGS, "Need a topology to determine the molecules");
357 atndx = top.mols.index;
360 if (bK34)
362 nkc = NKC;
364 else
366 nkc = NKC0;
368 nk = kset_c[nkc];
369 ntc = nk*NPK;
371 sprintf(title, "Velocity Autocorrelation Function for %s", grpname);
373 sysmass = 0;
374 for (i = 0; i < nk; i++)
376 if (iprod(v0[i], v1[i]) != 0)
378 gmx_fatal(FARGS, "DEATH HORROR: vectors not orthogonal");
380 if (iprod(v0[i], v2[i]) != 0)
382 gmx_fatal(FARGS, "DEATH HORROR: vectors not orthogonal");
384 if (iprod(v1[i], v2[i]) != 0)
386 gmx_fatal(FARGS, "DEATH HORROR: vectors not orthogonal");
388 unitv(v1[i], v1[i]);
389 unitv(v2[i], v2[i]);
391 snew(tc, ntc);
392 for (i = 0; i < top.atoms.nr; i++)
394 sysmass += top.atoms.atom[i].m;
397 read_first_frame(oenv, &status, ftp2fn(efTRN, NFILE, fnm), &fr,
398 TRX_NEED_X | TRX_NEED_V);
399 t0 = fr.time;
401 n_alloc = 0;
402 nframes = 0;
403 rho = 0;
404 /* bCubic = TRUE; */
408 bCubic = bCubic && !TRICLINIC(fr.box) &&
409 fabs(fr.box[XX][XX]-fr.box[YY][YY]) < 0.001*fr.box[XX][XX] &&
410 fabs(fr.box[XX][XX]-fr.box[ZZ][ZZ]) < 0.001*fr.box[XX][XX];
413 if (nframes >= n_alloc)
415 n_alloc += 100;
416 for (i = 0; i < ntc; i++)
418 srenew(tc[i], n_alloc);
422 rho += 1/det(fr.box);
423 for (k = 0; k < nk; k++)
425 for (d = 0; d < DIM; d++)
427 kfac[k][d] = 2*M_PI*v0[k][d]/fr.box[d][d];
430 for (i = 0; i < ntc; i++)
432 tc[i][nframes] = 0;
435 for (i = 0; i < gnx; i++)
437 if (bMol)
439 clear_rvec(mv_mol);
440 clear_rvec(cm_mol);
441 mtot = 0;
442 for (j = 0; j < atndx[index[i]+1] - atndx[index[i]]; j++)
444 at = atndx[index[i]] + j;
445 m = top.atoms.atom[at].m;
446 mv_mol[XX] += m*fr.v[at][XX];
447 mv_mol[YY] += m*fr.v[at][YY];
448 mv_mol[ZZ] += m*fr.v[at][ZZ];
449 cm_mol[XX] += m*fr.x[at][XX];
450 cm_mol[YY] += m*fr.x[at][YY];
451 cm_mol[ZZ] += m*fr.x[at][ZZ];
452 mtot += m;
454 svmul(1.0/mtot, cm_mol, cm_mol);
456 else
458 svmul(top.atoms.atom[index[i]].m, fr.v[index[i]], mv_mol);
461 if (!bMol)
463 copy_rvec(fr.x[index[i]], cm_mol);
465 j = 0;
466 for (k = 0; k < nk; k++)
468 sx = sin(iprod(kfac[k], cm_mol));
469 cx = cos(iprod(kfac[k], cm_mol));
470 tc[j][nframes] += sx*iprod(v1[k], mv_mol);
471 j++;
472 tc[j][nframes] += cx*iprod(v1[k], mv_mol);
473 j++;
474 tc[j][nframes] += sx*iprod(v2[k], mv_mol);
475 j++;
476 tc[j][nframes] += cx*iprod(v2[k], mv_mol);
477 j++;
481 t1 = fr.time;
482 nframes++;
484 while (read_next_frame(oenv, status, &fr));
485 close_trj(status);
487 dt = (t1-t0)/(nframes-1);
489 rho *= sysmass/nframes*AMU/(NANO*NANO*NANO);
490 fprintf(stdout, "Density = %g (kg/m^3)\n", rho);
491 process_tcaf(nframes, dt, nkc, tc, kfac, rho, wt,
492 opt2fn_null("-ot", NFILE, fnm),
493 opt2fn("-oa", NFILE, fnm), opt2fn("-o", NFILE, fnm),
494 opt2fn("-of", NFILE, fnm), opt2fn_null("-oc", NFILE, fnm),
495 opt2fn("-ov", NFILE, fnm), oenv);
497 return 0;