Double precision SSE2 kernels
[gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRF_VdwLJ_GeomP1P1_sse2_double.c
blob4f3444c7cc0a528d859093cb2b1b4fb1247a98b1
1 /*
2 * Note: this file was generated by the Gromacs sse2_double kernel generator.
4 * This source code is part of
6 * G R O M A C S
8 * Copyright (c) 2001-2012, The GROMACS Development Team
10 * Gromacs is a library for molecular simulation and trajectory analysis,
11 * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12 * a full list of developers and information, check out http://www.gromacs.org
14 * This program is free software; you can redistribute it and/or modify it under
15 * the terms of the GNU Lesser General Public License as published by the Free
16 * Software Foundation; either version 2 of the License, or (at your option) any
17 * later version.
19 * To help fund GROMACS development, we humbly ask that you cite
20 * the papers people have written on it - you can find them on the website.
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
26 #include <math.h>
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
37 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse2_double
38 * Electrostatics interaction: ReactionField
39 * VdW interaction: LennardJones
40 * Geometry: Particle-Particle
41 * Calculate force/pot: PotentialAndForce
43 void
44 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse2_double
45 (t_nblist * gmx_restrict nlist,
46 rvec * gmx_restrict xx,
47 rvec * gmx_restrict ff,
48 t_forcerec * gmx_restrict fr,
49 t_mdatoms * gmx_restrict mdatoms,
50 nb_kernel_data_t * gmx_restrict kernel_data,
51 t_nrnb * gmx_restrict nrnb)
53 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54 * just 0 for non-waters.
55 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56 * jnr indices corresponding to data put in the four positions in the SIMD register.
58 int i_shift_offset,i_coord_offset,outeriter,inneriter;
59 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60 int jnrA,jnrB;
61 int j_coord_offsetA,j_coord_offsetB;
62 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
63 real rcutoff_scalar;
64 real *shiftvec,*fshift,*x,*f;
65 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66 int vdwioffset0;
67 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68 int vdwjidx0A,vdwjidx0B;
69 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
72 real *charge;
73 int nvdwtype;
74 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75 int *vdwtype;
76 real *vdwparam;
77 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
78 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
79 __m128d dummy_mask,cutoff_mask;
80 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
81 __m128d one = _mm_set1_pd(1.0);
82 __m128d two = _mm_set1_pd(2.0);
83 x = xx[0];
84 f = ff[0];
86 nri = nlist->nri;
87 iinr = nlist->iinr;
88 jindex = nlist->jindex;
89 jjnr = nlist->jjnr;
90 shiftidx = nlist->shift;
91 gid = nlist->gid;
92 shiftvec = fr->shift_vec[0];
93 fshift = fr->fshift[0];
94 facel = _mm_set1_pd(fr->epsfac);
95 charge = mdatoms->chargeA;
96 krf = _mm_set1_pd(fr->ic->k_rf);
97 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
98 crf = _mm_set1_pd(fr->ic->c_rf);
99 nvdwtype = fr->ntype;
100 vdwparam = fr->nbfp;
101 vdwtype = mdatoms->typeA;
103 /* Avoid stupid compiler warnings */
104 jnrA = jnrB = 0;
105 j_coord_offsetA = 0;
106 j_coord_offsetB = 0;
108 outeriter = 0;
109 inneriter = 0;
111 /* Start outer loop over neighborlists */
112 for(iidx=0; iidx<nri; iidx++)
114 /* Load shift vector for this list */
115 i_shift_offset = DIM*shiftidx[iidx];
117 /* Load limits for loop over neighbors */
118 j_index_start = jindex[iidx];
119 j_index_end = jindex[iidx+1];
121 /* Get outer coordinate index */
122 inr = iinr[iidx];
123 i_coord_offset = DIM*inr;
125 /* Load i particle coords and add shift vector */
126 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
128 fix0 = _mm_setzero_pd();
129 fiy0 = _mm_setzero_pd();
130 fiz0 = _mm_setzero_pd();
132 /* Load parameters for i particles */
133 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
134 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
136 /* Reset potential sums */
137 velecsum = _mm_setzero_pd();
138 vvdwsum = _mm_setzero_pd();
140 /* Start inner kernel loop */
141 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
144 /* Get j neighbor index, and coordinate index */
145 jnrA = jjnr[jidx];
146 jnrB = jjnr[jidx+1];
147 j_coord_offsetA = DIM*jnrA;
148 j_coord_offsetB = DIM*jnrB;
150 /* load j atom coordinates */
151 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
152 &jx0,&jy0,&jz0);
154 /* Calculate displacement vector */
155 dx00 = _mm_sub_pd(ix0,jx0);
156 dy00 = _mm_sub_pd(iy0,jy0);
157 dz00 = _mm_sub_pd(iz0,jz0);
159 /* Calculate squared distance and things based on it */
160 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
162 rinv00 = gmx_mm_invsqrt_pd(rsq00);
164 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
166 /* Load parameters for j particles */
167 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
168 vdwjidx0A = 2*vdwtype[jnrA+0];
169 vdwjidx0B = 2*vdwtype[jnrB+0];
171 /**************************
172 * CALCULATE INTERACTIONS *
173 **************************/
175 /* Compute parameters for interactions between i and j atoms */
176 qq00 = _mm_mul_pd(iq0,jq0);
177 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
178 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
180 /* REACTION-FIELD ELECTROSTATICS */
181 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
182 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
184 /* LENNARD-JONES DISPERSION/REPULSION */
186 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
187 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
188 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
189 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
190 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
192 /* Update potential sum for this i atom from the interaction with this j atom. */
193 velecsum = _mm_add_pd(velecsum,velec);
194 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
196 fscal = _mm_add_pd(felec,fvdw);
198 /* Calculate temporary vectorial force */
199 tx = _mm_mul_pd(fscal,dx00);
200 ty = _mm_mul_pd(fscal,dy00);
201 tz = _mm_mul_pd(fscal,dz00);
203 /* Update vectorial force */
204 fix0 = _mm_add_pd(fix0,tx);
205 fiy0 = _mm_add_pd(fiy0,ty);
206 fiz0 = _mm_add_pd(fiz0,tz);
208 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
210 /* Inner loop uses 44 flops */
213 if(jidx<j_index_end)
216 jnrA = jjnr[jidx];
217 j_coord_offsetA = DIM*jnrA;
219 /* load j atom coordinates */
220 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
221 &jx0,&jy0,&jz0);
223 /* Calculate displacement vector */
224 dx00 = _mm_sub_pd(ix0,jx0);
225 dy00 = _mm_sub_pd(iy0,jy0);
226 dz00 = _mm_sub_pd(iz0,jz0);
228 /* Calculate squared distance and things based on it */
229 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
231 rinv00 = gmx_mm_invsqrt_pd(rsq00);
233 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
235 /* Load parameters for j particles */
236 jq0 = _mm_load_sd(charge+jnrA+0);
237 vdwjidx0A = 2*vdwtype[jnrA+0];
239 /**************************
240 * CALCULATE INTERACTIONS *
241 **************************/
243 /* Compute parameters for interactions between i and j atoms */
244 qq00 = _mm_mul_pd(iq0,jq0);
245 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
247 /* REACTION-FIELD ELECTROSTATICS */
248 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
249 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
251 /* LENNARD-JONES DISPERSION/REPULSION */
253 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
254 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
255 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
256 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
257 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
259 /* Update potential sum for this i atom from the interaction with this j atom. */
260 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
261 velecsum = _mm_add_pd(velecsum,velec);
262 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
263 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
265 fscal = _mm_add_pd(felec,fvdw);
267 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
269 /* Calculate temporary vectorial force */
270 tx = _mm_mul_pd(fscal,dx00);
271 ty = _mm_mul_pd(fscal,dy00);
272 tz = _mm_mul_pd(fscal,dz00);
274 /* Update vectorial force */
275 fix0 = _mm_add_pd(fix0,tx);
276 fiy0 = _mm_add_pd(fiy0,ty);
277 fiz0 = _mm_add_pd(fiz0,tz);
279 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
281 /* Inner loop uses 44 flops */
284 /* End of innermost loop */
286 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
287 f+i_coord_offset,fshift+i_shift_offset);
289 ggid = gid[iidx];
290 /* Update potential energies */
291 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
292 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
294 /* Increment number of inner iterations */
295 inneriter += j_index_end - j_index_start;
297 /* Outer loop uses 9 flops */
300 /* Increment number of outer iterations */
301 outeriter += nri;
303 /* Update outer/inner flops */
305 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*44);
308 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse2_double
309 * Electrostatics interaction: ReactionField
310 * VdW interaction: LennardJones
311 * Geometry: Particle-Particle
312 * Calculate force/pot: Force
314 void
315 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse2_double
316 (t_nblist * gmx_restrict nlist,
317 rvec * gmx_restrict xx,
318 rvec * gmx_restrict ff,
319 t_forcerec * gmx_restrict fr,
320 t_mdatoms * gmx_restrict mdatoms,
321 nb_kernel_data_t * gmx_restrict kernel_data,
322 t_nrnb * gmx_restrict nrnb)
324 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
325 * just 0 for non-waters.
326 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
327 * jnr indices corresponding to data put in the four positions in the SIMD register.
329 int i_shift_offset,i_coord_offset,outeriter,inneriter;
330 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
331 int jnrA,jnrB;
332 int j_coord_offsetA,j_coord_offsetB;
333 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
334 real rcutoff_scalar;
335 real *shiftvec,*fshift,*x,*f;
336 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
337 int vdwioffset0;
338 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
339 int vdwjidx0A,vdwjidx0B;
340 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
341 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
342 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
343 real *charge;
344 int nvdwtype;
345 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
346 int *vdwtype;
347 real *vdwparam;
348 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
349 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
350 __m128d dummy_mask,cutoff_mask;
351 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
352 __m128d one = _mm_set1_pd(1.0);
353 __m128d two = _mm_set1_pd(2.0);
354 x = xx[0];
355 f = ff[0];
357 nri = nlist->nri;
358 iinr = nlist->iinr;
359 jindex = nlist->jindex;
360 jjnr = nlist->jjnr;
361 shiftidx = nlist->shift;
362 gid = nlist->gid;
363 shiftvec = fr->shift_vec[0];
364 fshift = fr->fshift[0];
365 facel = _mm_set1_pd(fr->epsfac);
366 charge = mdatoms->chargeA;
367 krf = _mm_set1_pd(fr->ic->k_rf);
368 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
369 crf = _mm_set1_pd(fr->ic->c_rf);
370 nvdwtype = fr->ntype;
371 vdwparam = fr->nbfp;
372 vdwtype = mdatoms->typeA;
374 /* Avoid stupid compiler warnings */
375 jnrA = jnrB = 0;
376 j_coord_offsetA = 0;
377 j_coord_offsetB = 0;
379 outeriter = 0;
380 inneriter = 0;
382 /* Start outer loop over neighborlists */
383 for(iidx=0; iidx<nri; iidx++)
385 /* Load shift vector for this list */
386 i_shift_offset = DIM*shiftidx[iidx];
388 /* Load limits for loop over neighbors */
389 j_index_start = jindex[iidx];
390 j_index_end = jindex[iidx+1];
392 /* Get outer coordinate index */
393 inr = iinr[iidx];
394 i_coord_offset = DIM*inr;
396 /* Load i particle coords and add shift vector */
397 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
399 fix0 = _mm_setzero_pd();
400 fiy0 = _mm_setzero_pd();
401 fiz0 = _mm_setzero_pd();
403 /* Load parameters for i particles */
404 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
405 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
407 /* Start inner kernel loop */
408 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
411 /* Get j neighbor index, and coordinate index */
412 jnrA = jjnr[jidx];
413 jnrB = jjnr[jidx+1];
414 j_coord_offsetA = DIM*jnrA;
415 j_coord_offsetB = DIM*jnrB;
417 /* load j atom coordinates */
418 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
419 &jx0,&jy0,&jz0);
421 /* Calculate displacement vector */
422 dx00 = _mm_sub_pd(ix0,jx0);
423 dy00 = _mm_sub_pd(iy0,jy0);
424 dz00 = _mm_sub_pd(iz0,jz0);
426 /* Calculate squared distance and things based on it */
427 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
429 rinv00 = gmx_mm_invsqrt_pd(rsq00);
431 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
433 /* Load parameters for j particles */
434 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
435 vdwjidx0A = 2*vdwtype[jnrA+0];
436 vdwjidx0B = 2*vdwtype[jnrB+0];
438 /**************************
439 * CALCULATE INTERACTIONS *
440 **************************/
442 /* Compute parameters for interactions between i and j atoms */
443 qq00 = _mm_mul_pd(iq0,jq0);
444 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
445 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
447 /* REACTION-FIELD ELECTROSTATICS */
448 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
450 /* LENNARD-JONES DISPERSION/REPULSION */
452 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
453 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
455 fscal = _mm_add_pd(felec,fvdw);
457 /* Calculate temporary vectorial force */
458 tx = _mm_mul_pd(fscal,dx00);
459 ty = _mm_mul_pd(fscal,dy00);
460 tz = _mm_mul_pd(fscal,dz00);
462 /* Update vectorial force */
463 fix0 = _mm_add_pd(fix0,tx);
464 fiy0 = _mm_add_pd(fiy0,ty);
465 fiz0 = _mm_add_pd(fiz0,tz);
467 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
469 /* Inner loop uses 34 flops */
472 if(jidx<j_index_end)
475 jnrA = jjnr[jidx];
476 j_coord_offsetA = DIM*jnrA;
478 /* load j atom coordinates */
479 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
480 &jx0,&jy0,&jz0);
482 /* Calculate displacement vector */
483 dx00 = _mm_sub_pd(ix0,jx0);
484 dy00 = _mm_sub_pd(iy0,jy0);
485 dz00 = _mm_sub_pd(iz0,jz0);
487 /* Calculate squared distance and things based on it */
488 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
490 rinv00 = gmx_mm_invsqrt_pd(rsq00);
492 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
494 /* Load parameters for j particles */
495 jq0 = _mm_load_sd(charge+jnrA+0);
496 vdwjidx0A = 2*vdwtype[jnrA+0];
498 /**************************
499 * CALCULATE INTERACTIONS *
500 **************************/
502 /* Compute parameters for interactions between i and j atoms */
503 qq00 = _mm_mul_pd(iq0,jq0);
504 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
506 /* REACTION-FIELD ELECTROSTATICS */
507 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
509 /* LENNARD-JONES DISPERSION/REPULSION */
511 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
512 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
514 fscal = _mm_add_pd(felec,fvdw);
516 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
518 /* Calculate temporary vectorial force */
519 tx = _mm_mul_pd(fscal,dx00);
520 ty = _mm_mul_pd(fscal,dy00);
521 tz = _mm_mul_pd(fscal,dz00);
523 /* Update vectorial force */
524 fix0 = _mm_add_pd(fix0,tx);
525 fiy0 = _mm_add_pd(fiy0,ty);
526 fiz0 = _mm_add_pd(fiz0,tz);
528 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
530 /* Inner loop uses 34 flops */
533 /* End of innermost loop */
535 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
536 f+i_coord_offset,fshift+i_shift_offset);
538 /* Increment number of inner iterations */
539 inneriter += j_index_end - j_index_start;
541 /* Outer loop uses 7 flops */
544 /* Increment number of outer iterations */
545 outeriter += nri;
547 /* Update outer/inner flops */
549 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*34);