Double precision SSE2 kernels
[gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_sse2_double.c
blob7de89b608c03092620115cd3a518cc2107d16810
1 /*
2 * Note: this file was generated by the Gromacs sse2_double kernel generator.
4 * This source code is part of
6 * G R O M A C S
8 * Copyright (c) 2001-2012, The GROMACS Development Team
10 * Gromacs is a library for molecular simulation and trajectory analysis,
11 * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12 * a full list of developers and information, check out http://www.gromacs.org
14 * This program is free software; you can redistribute it and/or modify it under
15 * the terms of the GNU Lesser General Public License as published by the Free
16 * Software Foundation; either version 2 of the License, or (at your option) any
17 * later version.
19 * To help fund GROMACS development, we humbly ask that you cite
20 * the papers people have written on it - you can find them on the website.
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
26 #include <math.h>
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
37 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse2_double
38 * Electrostatics interaction: ReactionField
39 * VdW interaction: LennardJones
40 * Geometry: Particle-Particle
41 * Calculate force/pot: PotentialAndForce
43 void
44 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse2_double
45 (t_nblist * gmx_restrict nlist,
46 rvec * gmx_restrict xx,
47 rvec * gmx_restrict ff,
48 t_forcerec * gmx_restrict fr,
49 t_mdatoms * gmx_restrict mdatoms,
50 nb_kernel_data_t * gmx_restrict kernel_data,
51 t_nrnb * gmx_restrict nrnb)
53 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54 * just 0 for non-waters.
55 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56 * jnr indices corresponding to data put in the four positions in the SIMD register.
58 int i_shift_offset,i_coord_offset,outeriter,inneriter;
59 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60 int jnrA,jnrB;
61 int j_coord_offsetA,j_coord_offsetB;
62 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
63 real rcutoff_scalar;
64 real *shiftvec,*fshift,*x,*f;
65 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66 int vdwioffset0;
67 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68 int vdwjidx0A,vdwjidx0B;
69 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
72 real *charge;
73 int nvdwtype;
74 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75 int *vdwtype;
76 real *vdwparam;
77 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
78 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
79 __m128d dummy_mask,cutoff_mask;
80 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
81 __m128d one = _mm_set1_pd(1.0);
82 __m128d two = _mm_set1_pd(2.0);
83 x = xx[0];
84 f = ff[0];
86 nri = nlist->nri;
87 iinr = nlist->iinr;
88 jindex = nlist->jindex;
89 jjnr = nlist->jjnr;
90 shiftidx = nlist->shift;
91 gid = nlist->gid;
92 shiftvec = fr->shift_vec[0];
93 fshift = fr->fshift[0];
94 facel = _mm_set1_pd(fr->epsfac);
95 charge = mdatoms->chargeA;
96 krf = _mm_set1_pd(fr->ic->k_rf);
97 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
98 crf = _mm_set1_pd(fr->ic->c_rf);
99 nvdwtype = fr->ntype;
100 vdwparam = fr->nbfp;
101 vdwtype = mdatoms->typeA;
103 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
104 rcutoff_scalar = fr->rcoulomb;
105 rcutoff = _mm_set1_pd(rcutoff_scalar);
106 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
108 sh_vdw_invrcut6 = _mm_set1_pd(fr->ic->sh_invrc6);
109 rvdw = _mm_set1_pd(fr->rvdw);
111 /* Avoid stupid compiler warnings */
112 jnrA = jnrB = 0;
113 j_coord_offsetA = 0;
114 j_coord_offsetB = 0;
116 outeriter = 0;
117 inneriter = 0;
119 /* Start outer loop over neighborlists */
120 for(iidx=0; iidx<nri; iidx++)
122 /* Load shift vector for this list */
123 i_shift_offset = DIM*shiftidx[iidx];
125 /* Load limits for loop over neighbors */
126 j_index_start = jindex[iidx];
127 j_index_end = jindex[iidx+1];
129 /* Get outer coordinate index */
130 inr = iinr[iidx];
131 i_coord_offset = DIM*inr;
133 /* Load i particle coords and add shift vector */
134 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
136 fix0 = _mm_setzero_pd();
137 fiy0 = _mm_setzero_pd();
138 fiz0 = _mm_setzero_pd();
140 /* Load parameters for i particles */
141 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
142 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
144 /* Reset potential sums */
145 velecsum = _mm_setzero_pd();
146 vvdwsum = _mm_setzero_pd();
148 /* Start inner kernel loop */
149 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
152 /* Get j neighbor index, and coordinate index */
153 jnrA = jjnr[jidx];
154 jnrB = jjnr[jidx+1];
155 j_coord_offsetA = DIM*jnrA;
156 j_coord_offsetB = DIM*jnrB;
158 /* load j atom coordinates */
159 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
160 &jx0,&jy0,&jz0);
162 /* Calculate displacement vector */
163 dx00 = _mm_sub_pd(ix0,jx0);
164 dy00 = _mm_sub_pd(iy0,jy0);
165 dz00 = _mm_sub_pd(iz0,jz0);
167 /* Calculate squared distance and things based on it */
168 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
170 rinv00 = gmx_mm_invsqrt_pd(rsq00);
172 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
174 /* Load parameters for j particles */
175 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
176 vdwjidx0A = 2*vdwtype[jnrA+0];
177 vdwjidx0B = 2*vdwtype[jnrB+0];
179 /**************************
180 * CALCULATE INTERACTIONS *
181 **************************/
183 if (gmx_mm_any_lt(rsq00,rcutoff2))
186 /* Compute parameters for interactions between i and j atoms */
187 qq00 = _mm_mul_pd(iq0,jq0);
188 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
189 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
191 /* REACTION-FIELD ELECTROSTATICS */
192 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
193 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
195 /* LENNARD-JONES DISPERSION/REPULSION */
197 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
198 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
199 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
200 vvdw = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
201 _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
202 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
204 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
206 /* Update potential sum for this i atom from the interaction with this j atom. */
207 velec = _mm_and_pd(velec,cutoff_mask);
208 velecsum = _mm_add_pd(velecsum,velec);
209 vvdw = _mm_and_pd(vvdw,cutoff_mask);
210 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
212 fscal = _mm_add_pd(felec,fvdw);
214 fscal = _mm_and_pd(fscal,cutoff_mask);
216 /* Calculate temporary vectorial force */
217 tx = _mm_mul_pd(fscal,dx00);
218 ty = _mm_mul_pd(fscal,dy00);
219 tz = _mm_mul_pd(fscal,dz00);
221 /* Update vectorial force */
222 fix0 = _mm_add_pd(fix0,tx);
223 fiy0 = _mm_add_pd(fiy0,ty);
224 fiz0 = _mm_add_pd(fiz0,tz);
226 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
230 /* Inner loop uses 54 flops */
233 if(jidx<j_index_end)
236 jnrA = jjnr[jidx];
237 j_coord_offsetA = DIM*jnrA;
239 /* load j atom coordinates */
240 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
241 &jx0,&jy0,&jz0);
243 /* Calculate displacement vector */
244 dx00 = _mm_sub_pd(ix0,jx0);
245 dy00 = _mm_sub_pd(iy0,jy0);
246 dz00 = _mm_sub_pd(iz0,jz0);
248 /* Calculate squared distance and things based on it */
249 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
251 rinv00 = gmx_mm_invsqrt_pd(rsq00);
253 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
255 /* Load parameters for j particles */
256 jq0 = _mm_load_sd(charge+jnrA+0);
257 vdwjidx0A = 2*vdwtype[jnrA+0];
259 /**************************
260 * CALCULATE INTERACTIONS *
261 **************************/
263 if (gmx_mm_any_lt(rsq00,rcutoff2))
266 /* Compute parameters for interactions between i and j atoms */
267 qq00 = _mm_mul_pd(iq0,jq0);
268 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
270 /* REACTION-FIELD ELECTROSTATICS */
271 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
272 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
274 /* LENNARD-JONES DISPERSION/REPULSION */
276 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
277 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
278 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
279 vvdw = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
280 _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
281 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
283 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
285 /* Update potential sum for this i atom from the interaction with this j atom. */
286 velec = _mm_and_pd(velec,cutoff_mask);
287 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
288 velecsum = _mm_add_pd(velecsum,velec);
289 vvdw = _mm_and_pd(vvdw,cutoff_mask);
290 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
291 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
293 fscal = _mm_add_pd(felec,fvdw);
295 fscal = _mm_and_pd(fscal,cutoff_mask);
297 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
299 /* Calculate temporary vectorial force */
300 tx = _mm_mul_pd(fscal,dx00);
301 ty = _mm_mul_pd(fscal,dy00);
302 tz = _mm_mul_pd(fscal,dz00);
304 /* Update vectorial force */
305 fix0 = _mm_add_pd(fix0,tx);
306 fiy0 = _mm_add_pd(fiy0,ty);
307 fiz0 = _mm_add_pd(fiz0,tz);
309 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
313 /* Inner loop uses 54 flops */
316 /* End of innermost loop */
318 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
319 f+i_coord_offset,fshift+i_shift_offset);
321 ggid = gid[iidx];
322 /* Update potential energies */
323 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
324 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
326 /* Increment number of inner iterations */
327 inneriter += j_index_end - j_index_start;
329 /* Outer loop uses 9 flops */
332 /* Increment number of outer iterations */
333 outeriter += nri;
335 /* Update outer/inner flops */
337 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
340 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse2_double
341 * Electrostatics interaction: ReactionField
342 * VdW interaction: LennardJones
343 * Geometry: Particle-Particle
344 * Calculate force/pot: Force
346 void
347 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse2_double
348 (t_nblist * gmx_restrict nlist,
349 rvec * gmx_restrict xx,
350 rvec * gmx_restrict ff,
351 t_forcerec * gmx_restrict fr,
352 t_mdatoms * gmx_restrict mdatoms,
353 nb_kernel_data_t * gmx_restrict kernel_data,
354 t_nrnb * gmx_restrict nrnb)
356 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
357 * just 0 for non-waters.
358 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
359 * jnr indices corresponding to data put in the four positions in the SIMD register.
361 int i_shift_offset,i_coord_offset,outeriter,inneriter;
362 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
363 int jnrA,jnrB;
364 int j_coord_offsetA,j_coord_offsetB;
365 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
366 real rcutoff_scalar;
367 real *shiftvec,*fshift,*x,*f;
368 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
369 int vdwioffset0;
370 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
371 int vdwjidx0A,vdwjidx0B;
372 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
373 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
374 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
375 real *charge;
376 int nvdwtype;
377 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
378 int *vdwtype;
379 real *vdwparam;
380 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
381 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
382 __m128d dummy_mask,cutoff_mask;
383 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
384 __m128d one = _mm_set1_pd(1.0);
385 __m128d two = _mm_set1_pd(2.0);
386 x = xx[0];
387 f = ff[0];
389 nri = nlist->nri;
390 iinr = nlist->iinr;
391 jindex = nlist->jindex;
392 jjnr = nlist->jjnr;
393 shiftidx = nlist->shift;
394 gid = nlist->gid;
395 shiftvec = fr->shift_vec[0];
396 fshift = fr->fshift[0];
397 facel = _mm_set1_pd(fr->epsfac);
398 charge = mdatoms->chargeA;
399 krf = _mm_set1_pd(fr->ic->k_rf);
400 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
401 crf = _mm_set1_pd(fr->ic->c_rf);
402 nvdwtype = fr->ntype;
403 vdwparam = fr->nbfp;
404 vdwtype = mdatoms->typeA;
406 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
407 rcutoff_scalar = fr->rcoulomb;
408 rcutoff = _mm_set1_pd(rcutoff_scalar);
409 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
411 sh_vdw_invrcut6 = _mm_set1_pd(fr->ic->sh_invrc6);
412 rvdw = _mm_set1_pd(fr->rvdw);
414 /* Avoid stupid compiler warnings */
415 jnrA = jnrB = 0;
416 j_coord_offsetA = 0;
417 j_coord_offsetB = 0;
419 outeriter = 0;
420 inneriter = 0;
422 /* Start outer loop over neighborlists */
423 for(iidx=0; iidx<nri; iidx++)
425 /* Load shift vector for this list */
426 i_shift_offset = DIM*shiftidx[iidx];
428 /* Load limits for loop over neighbors */
429 j_index_start = jindex[iidx];
430 j_index_end = jindex[iidx+1];
432 /* Get outer coordinate index */
433 inr = iinr[iidx];
434 i_coord_offset = DIM*inr;
436 /* Load i particle coords and add shift vector */
437 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
439 fix0 = _mm_setzero_pd();
440 fiy0 = _mm_setzero_pd();
441 fiz0 = _mm_setzero_pd();
443 /* Load parameters for i particles */
444 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
445 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
447 /* Start inner kernel loop */
448 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
451 /* Get j neighbor index, and coordinate index */
452 jnrA = jjnr[jidx];
453 jnrB = jjnr[jidx+1];
454 j_coord_offsetA = DIM*jnrA;
455 j_coord_offsetB = DIM*jnrB;
457 /* load j atom coordinates */
458 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
459 &jx0,&jy0,&jz0);
461 /* Calculate displacement vector */
462 dx00 = _mm_sub_pd(ix0,jx0);
463 dy00 = _mm_sub_pd(iy0,jy0);
464 dz00 = _mm_sub_pd(iz0,jz0);
466 /* Calculate squared distance and things based on it */
467 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
469 rinv00 = gmx_mm_invsqrt_pd(rsq00);
471 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
473 /* Load parameters for j particles */
474 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
475 vdwjidx0A = 2*vdwtype[jnrA+0];
476 vdwjidx0B = 2*vdwtype[jnrB+0];
478 /**************************
479 * CALCULATE INTERACTIONS *
480 **************************/
482 if (gmx_mm_any_lt(rsq00,rcutoff2))
485 /* Compute parameters for interactions between i and j atoms */
486 qq00 = _mm_mul_pd(iq0,jq0);
487 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
488 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
490 /* REACTION-FIELD ELECTROSTATICS */
491 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
493 /* LENNARD-JONES DISPERSION/REPULSION */
495 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
496 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
498 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
500 fscal = _mm_add_pd(felec,fvdw);
502 fscal = _mm_and_pd(fscal,cutoff_mask);
504 /* Calculate temporary vectorial force */
505 tx = _mm_mul_pd(fscal,dx00);
506 ty = _mm_mul_pd(fscal,dy00);
507 tz = _mm_mul_pd(fscal,dz00);
509 /* Update vectorial force */
510 fix0 = _mm_add_pd(fix0,tx);
511 fiy0 = _mm_add_pd(fiy0,ty);
512 fiz0 = _mm_add_pd(fiz0,tz);
514 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
518 /* Inner loop uses 37 flops */
521 if(jidx<j_index_end)
524 jnrA = jjnr[jidx];
525 j_coord_offsetA = DIM*jnrA;
527 /* load j atom coordinates */
528 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
529 &jx0,&jy0,&jz0);
531 /* Calculate displacement vector */
532 dx00 = _mm_sub_pd(ix0,jx0);
533 dy00 = _mm_sub_pd(iy0,jy0);
534 dz00 = _mm_sub_pd(iz0,jz0);
536 /* Calculate squared distance and things based on it */
537 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
539 rinv00 = gmx_mm_invsqrt_pd(rsq00);
541 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
543 /* Load parameters for j particles */
544 jq0 = _mm_load_sd(charge+jnrA+0);
545 vdwjidx0A = 2*vdwtype[jnrA+0];
547 /**************************
548 * CALCULATE INTERACTIONS *
549 **************************/
551 if (gmx_mm_any_lt(rsq00,rcutoff2))
554 /* Compute parameters for interactions between i and j atoms */
555 qq00 = _mm_mul_pd(iq0,jq0);
556 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
558 /* REACTION-FIELD ELECTROSTATICS */
559 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
561 /* LENNARD-JONES DISPERSION/REPULSION */
563 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
564 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
566 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
568 fscal = _mm_add_pd(felec,fvdw);
570 fscal = _mm_and_pd(fscal,cutoff_mask);
572 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
574 /* Calculate temporary vectorial force */
575 tx = _mm_mul_pd(fscal,dx00);
576 ty = _mm_mul_pd(fscal,dy00);
577 tz = _mm_mul_pd(fscal,dz00);
579 /* Update vectorial force */
580 fix0 = _mm_add_pd(fix0,tx);
581 fiy0 = _mm_add_pd(fiy0,ty);
582 fiz0 = _mm_add_pd(fiz0,tz);
584 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
588 /* Inner loop uses 37 flops */
591 /* End of innermost loop */
593 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
594 f+i_coord_offset,fshift+i_shift_offset);
596 /* Increment number of inner iterations */
597 inneriter += j_index_end - j_index_start;
599 /* Outer loop uses 7 flops */
602 /* Increment number of outer iterations */
603 outeriter += nri;
605 /* Update outer/inner flops */
607 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);