Double precision SSE2 kernels
[gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_sse2_double.c
blob7a3519921310b445bfc25b0698047e2e6494defa
1 /*
2 * Note: this file was generated by the Gromacs sse2_double kernel generator.
4 * This source code is part of
6 * G R O M A C S
8 * Copyright (c) 2001-2012, The GROMACS Development Team
10 * Gromacs is a library for molecular simulation and trajectory analysis,
11 * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12 * a full list of developers and information, check out http://www.gromacs.org
14 * This program is free software; you can redistribute it and/or modify it under
15 * the terms of the GNU Lesser General Public License as published by the Free
16 * Software Foundation; either version 2 of the License, or (at your option) any
17 * later version.
19 * To help fund GROMACS development, we humbly ask that you cite
20 * the papers people have written on it - you can find them on the website.
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
26 #include <math.h>
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
37 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse2_double
38 * Electrostatics interaction: ReactionField
39 * VdW interaction: CubicSplineTable
40 * Geometry: Water4-Particle
41 * Calculate force/pot: PotentialAndForce
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse2_double
45 (t_nblist * gmx_restrict nlist,
46 rvec * gmx_restrict xx,
47 rvec * gmx_restrict ff,
48 t_forcerec * gmx_restrict fr,
49 t_mdatoms * gmx_restrict mdatoms,
50 nb_kernel_data_t * gmx_restrict kernel_data,
51 t_nrnb * gmx_restrict nrnb)
53 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54 * just 0 for non-waters.
55 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56 * jnr indices corresponding to data put in the four positions in the SIMD register.
58 int i_shift_offset,i_coord_offset,outeriter,inneriter;
59 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60 int jnrA,jnrB;
61 int j_coord_offsetA,j_coord_offsetB;
62 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
63 real rcutoff_scalar;
64 real *shiftvec,*fshift,*x,*f;
65 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66 int vdwioffset0;
67 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68 int vdwioffset1;
69 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70 int vdwioffset2;
71 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72 int vdwioffset3;
73 __m128d ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74 int vdwjidx0A,vdwjidx0B;
75 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79 __m128d dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
81 real *charge;
82 int nvdwtype;
83 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84 int *vdwtype;
85 real *vdwparam;
86 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
87 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
88 __m128i vfitab;
89 __m128i ifour = _mm_set1_epi32(4);
90 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
91 real *vftab;
92 __m128d dummy_mask,cutoff_mask;
93 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94 __m128d one = _mm_set1_pd(1.0);
95 __m128d two = _mm_set1_pd(2.0);
96 x = xx[0];
97 f = ff[0];
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 facel = _mm_set1_pd(fr->epsfac);
108 charge = mdatoms->chargeA;
109 krf = _mm_set1_pd(fr->ic->k_rf);
110 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
111 crf = _mm_set1_pd(fr->ic->c_rf);
112 nvdwtype = fr->ntype;
113 vdwparam = fr->nbfp;
114 vdwtype = mdatoms->typeA;
116 vftab = kernel_data->table_vdw->data;
117 vftabscale = _mm_set1_pd(kernel_data->table_vdw->scale);
119 /* Setup water-specific parameters */
120 inr = nlist->iinr[0];
121 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
122 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
123 iq3 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
124 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
126 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127 rcutoff_scalar = fr->rcoulomb;
128 rcutoff = _mm_set1_pd(rcutoff_scalar);
129 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
131 /* Avoid stupid compiler warnings */
132 jnrA = jnrB = 0;
133 j_coord_offsetA = 0;
134 j_coord_offsetB = 0;
136 outeriter = 0;
137 inneriter = 0;
139 /* Start outer loop over neighborlists */
140 for(iidx=0; iidx<nri; iidx++)
142 /* Load shift vector for this list */
143 i_shift_offset = DIM*shiftidx[iidx];
145 /* Load limits for loop over neighbors */
146 j_index_start = jindex[iidx];
147 j_index_end = jindex[iidx+1];
149 /* Get outer coordinate index */
150 inr = iinr[iidx];
151 i_coord_offset = DIM*inr;
153 /* Load i particle coords and add shift vector */
154 gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
155 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
157 fix0 = _mm_setzero_pd();
158 fiy0 = _mm_setzero_pd();
159 fiz0 = _mm_setzero_pd();
160 fix1 = _mm_setzero_pd();
161 fiy1 = _mm_setzero_pd();
162 fiz1 = _mm_setzero_pd();
163 fix2 = _mm_setzero_pd();
164 fiy2 = _mm_setzero_pd();
165 fiz2 = _mm_setzero_pd();
166 fix3 = _mm_setzero_pd();
167 fiy3 = _mm_setzero_pd();
168 fiz3 = _mm_setzero_pd();
170 /* Reset potential sums */
171 velecsum = _mm_setzero_pd();
172 vvdwsum = _mm_setzero_pd();
174 /* Start inner kernel loop */
175 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
178 /* Get j neighbor index, and coordinate index */
179 jnrA = jjnr[jidx];
180 jnrB = jjnr[jidx+1];
181 j_coord_offsetA = DIM*jnrA;
182 j_coord_offsetB = DIM*jnrB;
184 /* load j atom coordinates */
185 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186 &jx0,&jy0,&jz0);
188 /* Calculate displacement vector */
189 dx00 = _mm_sub_pd(ix0,jx0);
190 dy00 = _mm_sub_pd(iy0,jy0);
191 dz00 = _mm_sub_pd(iz0,jz0);
192 dx10 = _mm_sub_pd(ix1,jx0);
193 dy10 = _mm_sub_pd(iy1,jy0);
194 dz10 = _mm_sub_pd(iz1,jz0);
195 dx20 = _mm_sub_pd(ix2,jx0);
196 dy20 = _mm_sub_pd(iy2,jy0);
197 dz20 = _mm_sub_pd(iz2,jz0);
198 dx30 = _mm_sub_pd(ix3,jx0);
199 dy30 = _mm_sub_pd(iy3,jy0);
200 dz30 = _mm_sub_pd(iz3,jz0);
202 /* Calculate squared distance and things based on it */
203 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
204 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
205 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
206 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
208 rinv00 = gmx_mm_invsqrt_pd(rsq00);
209 rinv10 = gmx_mm_invsqrt_pd(rsq10);
210 rinv20 = gmx_mm_invsqrt_pd(rsq20);
211 rinv30 = gmx_mm_invsqrt_pd(rsq30);
213 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
214 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
215 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
217 /* Load parameters for j particles */
218 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
219 vdwjidx0A = 2*vdwtype[jnrA+0];
220 vdwjidx0B = 2*vdwtype[jnrB+0];
222 fjx0 = _mm_setzero_pd();
223 fjy0 = _mm_setzero_pd();
224 fjz0 = _mm_setzero_pd();
226 /**************************
227 * CALCULATE INTERACTIONS *
228 **************************/
230 r00 = _mm_mul_pd(rsq00,rinv00);
232 /* Compute parameters for interactions between i and j atoms */
233 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
234 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
236 /* Calculate table index by multiplying r with table scale and truncate to integer */
237 rt = _mm_mul_pd(r00,vftabscale);
238 vfitab = _mm_cvttpd_epi32(rt);
239 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
240 vfitab = _mm_slli_epi32(vfitab,3);
242 /* CUBIC SPLINE TABLE DISPERSION */
243 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
244 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
245 GMX_MM_TRANSPOSE2_PD(Y,F);
246 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
247 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
248 GMX_MM_TRANSPOSE2_PD(G,H);
249 Heps = _mm_mul_pd(vfeps,H);
250 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
251 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
252 vvdw6 = _mm_mul_pd(c6_00,VV);
253 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
254 fvdw6 = _mm_mul_pd(c6_00,FF);
256 /* CUBIC SPLINE TABLE REPULSION */
257 vfitab = _mm_add_epi32(vfitab,ifour);
258 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
259 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
260 GMX_MM_TRANSPOSE2_PD(Y,F);
261 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
262 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
263 GMX_MM_TRANSPOSE2_PD(G,H);
264 Heps = _mm_mul_pd(vfeps,H);
265 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
266 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
267 vvdw12 = _mm_mul_pd(c12_00,VV);
268 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
269 fvdw12 = _mm_mul_pd(c12_00,FF);
270 vvdw = _mm_add_pd(vvdw12,vvdw6);
271 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
273 /* Update potential sum for this i atom from the interaction with this j atom. */
274 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
276 fscal = fvdw;
278 /* Calculate temporary vectorial force */
279 tx = _mm_mul_pd(fscal,dx00);
280 ty = _mm_mul_pd(fscal,dy00);
281 tz = _mm_mul_pd(fscal,dz00);
283 /* Update vectorial force */
284 fix0 = _mm_add_pd(fix0,tx);
285 fiy0 = _mm_add_pd(fiy0,ty);
286 fiz0 = _mm_add_pd(fiz0,tz);
288 fjx0 = _mm_add_pd(fjx0,tx);
289 fjy0 = _mm_add_pd(fjy0,ty);
290 fjz0 = _mm_add_pd(fjz0,tz);
292 /**************************
293 * CALCULATE INTERACTIONS *
294 **************************/
296 if (gmx_mm_any_lt(rsq10,rcutoff2))
299 /* Compute parameters for interactions between i and j atoms */
300 qq10 = _mm_mul_pd(iq1,jq0);
302 /* REACTION-FIELD ELECTROSTATICS */
303 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
304 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
306 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
308 /* Update potential sum for this i atom from the interaction with this j atom. */
309 velec = _mm_and_pd(velec,cutoff_mask);
310 velecsum = _mm_add_pd(velecsum,velec);
312 fscal = felec;
314 fscal = _mm_and_pd(fscal,cutoff_mask);
316 /* Calculate temporary vectorial force */
317 tx = _mm_mul_pd(fscal,dx10);
318 ty = _mm_mul_pd(fscal,dy10);
319 tz = _mm_mul_pd(fscal,dz10);
321 /* Update vectorial force */
322 fix1 = _mm_add_pd(fix1,tx);
323 fiy1 = _mm_add_pd(fiy1,ty);
324 fiz1 = _mm_add_pd(fiz1,tz);
326 fjx0 = _mm_add_pd(fjx0,tx);
327 fjy0 = _mm_add_pd(fjy0,ty);
328 fjz0 = _mm_add_pd(fjz0,tz);
332 /**************************
333 * CALCULATE INTERACTIONS *
334 **************************/
336 if (gmx_mm_any_lt(rsq20,rcutoff2))
339 /* Compute parameters for interactions between i and j atoms */
340 qq20 = _mm_mul_pd(iq2,jq0);
342 /* REACTION-FIELD ELECTROSTATICS */
343 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
344 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
346 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
348 /* Update potential sum for this i atom from the interaction with this j atom. */
349 velec = _mm_and_pd(velec,cutoff_mask);
350 velecsum = _mm_add_pd(velecsum,velec);
352 fscal = felec;
354 fscal = _mm_and_pd(fscal,cutoff_mask);
356 /* Calculate temporary vectorial force */
357 tx = _mm_mul_pd(fscal,dx20);
358 ty = _mm_mul_pd(fscal,dy20);
359 tz = _mm_mul_pd(fscal,dz20);
361 /* Update vectorial force */
362 fix2 = _mm_add_pd(fix2,tx);
363 fiy2 = _mm_add_pd(fiy2,ty);
364 fiz2 = _mm_add_pd(fiz2,tz);
366 fjx0 = _mm_add_pd(fjx0,tx);
367 fjy0 = _mm_add_pd(fjy0,ty);
368 fjz0 = _mm_add_pd(fjz0,tz);
372 /**************************
373 * CALCULATE INTERACTIONS *
374 **************************/
376 if (gmx_mm_any_lt(rsq30,rcutoff2))
379 /* Compute parameters for interactions between i and j atoms */
380 qq30 = _mm_mul_pd(iq3,jq0);
382 /* REACTION-FIELD ELECTROSTATICS */
383 velec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
384 felec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
386 cutoff_mask = _mm_cmplt_pd(rsq30,rcutoff2);
388 /* Update potential sum for this i atom from the interaction with this j atom. */
389 velec = _mm_and_pd(velec,cutoff_mask);
390 velecsum = _mm_add_pd(velecsum,velec);
392 fscal = felec;
394 fscal = _mm_and_pd(fscal,cutoff_mask);
396 /* Calculate temporary vectorial force */
397 tx = _mm_mul_pd(fscal,dx30);
398 ty = _mm_mul_pd(fscal,dy30);
399 tz = _mm_mul_pd(fscal,dz30);
401 /* Update vectorial force */
402 fix3 = _mm_add_pd(fix3,tx);
403 fiy3 = _mm_add_pd(fiy3,ty);
404 fiz3 = _mm_add_pd(fiz3,tz);
406 fjx0 = _mm_add_pd(fjx0,tx);
407 fjy0 = _mm_add_pd(fjy0,ty);
408 fjz0 = _mm_add_pd(fjz0,tz);
412 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
414 /* Inner loop uses 167 flops */
417 if(jidx<j_index_end)
420 jnrA = jjnr[jidx];
421 j_coord_offsetA = DIM*jnrA;
423 /* load j atom coordinates */
424 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
425 &jx0,&jy0,&jz0);
427 /* Calculate displacement vector */
428 dx00 = _mm_sub_pd(ix0,jx0);
429 dy00 = _mm_sub_pd(iy0,jy0);
430 dz00 = _mm_sub_pd(iz0,jz0);
431 dx10 = _mm_sub_pd(ix1,jx0);
432 dy10 = _mm_sub_pd(iy1,jy0);
433 dz10 = _mm_sub_pd(iz1,jz0);
434 dx20 = _mm_sub_pd(ix2,jx0);
435 dy20 = _mm_sub_pd(iy2,jy0);
436 dz20 = _mm_sub_pd(iz2,jz0);
437 dx30 = _mm_sub_pd(ix3,jx0);
438 dy30 = _mm_sub_pd(iy3,jy0);
439 dz30 = _mm_sub_pd(iz3,jz0);
441 /* Calculate squared distance and things based on it */
442 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
443 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
444 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
445 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
447 rinv00 = gmx_mm_invsqrt_pd(rsq00);
448 rinv10 = gmx_mm_invsqrt_pd(rsq10);
449 rinv20 = gmx_mm_invsqrt_pd(rsq20);
450 rinv30 = gmx_mm_invsqrt_pd(rsq30);
452 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
453 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
454 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
456 /* Load parameters for j particles */
457 jq0 = _mm_load_sd(charge+jnrA+0);
458 vdwjidx0A = 2*vdwtype[jnrA+0];
460 fjx0 = _mm_setzero_pd();
461 fjy0 = _mm_setzero_pd();
462 fjz0 = _mm_setzero_pd();
464 /**************************
465 * CALCULATE INTERACTIONS *
466 **************************/
468 r00 = _mm_mul_pd(rsq00,rinv00);
470 /* Compute parameters for interactions between i and j atoms */
471 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
473 /* Calculate table index by multiplying r with table scale and truncate to integer */
474 rt = _mm_mul_pd(r00,vftabscale);
475 vfitab = _mm_cvttpd_epi32(rt);
476 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
477 vfitab = _mm_slli_epi32(vfitab,3);
479 /* CUBIC SPLINE TABLE DISPERSION */
480 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
481 F = _mm_setzero_pd();
482 GMX_MM_TRANSPOSE2_PD(Y,F);
483 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
484 H = _mm_setzero_pd();
485 GMX_MM_TRANSPOSE2_PD(G,H);
486 Heps = _mm_mul_pd(vfeps,H);
487 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
488 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
489 vvdw6 = _mm_mul_pd(c6_00,VV);
490 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
491 fvdw6 = _mm_mul_pd(c6_00,FF);
493 /* CUBIC SPLINE TABLE REPULSION */
494 vfitab = _mm_add_epi32(vfitab,ifour);
495 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
496 F = _mm_setzero_pd();
497 GMX_MM_TRANSPOSE2_PD(Y,F);
498 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
499 H = _mm_setzero_pd();
500 GMX_MM_TRANSPOSE2_PD(G,H);
501 Heps = _mm_mul_pd(vfeps,H);
502 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
503 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
504 vvdw12 = _mm_mul_pd(c12_00,VV);
505 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
506 fvdw12 = _mm_mul_pd(c12_00,FF);
507 vvdw = _mm_add_pd(vvdw12,vvdw6);
508 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
510 /* Update potential sum for this i atom from the interaction with this j atom. */
511 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
512 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
514 fscal = fvdw;
516 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
518 /* Calculate temporary vectorial force */
519 tx = _mm_mul_pd(fscal,dx00);
520 ty = _mm_mul_pd(fscal,dy00);
521 tz = _mm_mul_pd(fscal,dz00);
523 /* Update vectorial force */
524 fix0 = _mm_add_pd(fix0,tx);
525 fiy0 = _mm_add_pd(fiy0,ty);
526 fiz0 = _mm_add_pd(fiz0,tz);
528 fjx0 = _mm_add_pd(fjx0,tx);
529 fjy0 = _mm_add_pd(fjy0,ty);
530 fjz0 = _mm_add_pd(fjz0,tz);
532 /**************************
533 * CALCULATE INTERACTIONS *
534 **************************/
536 if (gmx_mm_any_lt(rsq10,rcutoff2))
539 /* Compute parameters for interactions between i and j atoms */
540 qq10 = _mm_mul_pd(iq1,jq0);
542 /* REACTION-FIELD ELECTROSTATICS */
543 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
544 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
546 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
548 /* Update potential sum for this i atom from the interaction with this j atom. */
549 velec = _mm_and_pd(velec,cutoff_mask);
550 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
551 velecsum = _mm_add_pd(velecsum,velec);
553 fscal = felec;
555 fscal = _mm_and_pd(fscal,cutoff_mask);
557 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
559 /* Calculate temporary vectorial force */
560 tx = _mm_mul_pd(fscal,dx10);
561 ty = _mm_mul_pd(fscal,dy10);
562 tz = _mm_mul_pd(fscal,dz10);
564 /* Update vectorial force */
565 fix1 = _mm_add_pd(fix1,tx);
566 fiy1 = _mm_add_pd(fiy1,ty);
567 fiz1 = _mm_add_pd(fiz1,tz);
569 fjx0 = _mm_add_pd(fjx0,tx);
570 fjy0 = _mm_add_pd(fjy0,ty);
571 fjz0 = _mm_add_pd(fjz0,tz);
575 /**************************
576 * CALCULATE INTERACTIONS *
577 **************************/
579 if (gmx_mm_any_lt(rsq20,rcutoff2))
582 /* Compute parameters for interactions between i and j atoms */
583 qq20 = _mm_mul_pd(iq2,jq0);
585 /* REACTION-FIELD ELECTROSTATICS */
586 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
587 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
589 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
591 /* Update potential sum for this i atom from the interaction with this j atom. */
592 velec = _mm_and_pd(velec,cutoff_mask);
593 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
594 velecsum = _mm_add_pd(velecsum,velec);
596 fscal = felec;
598 fscal = _mm_and_pd(fscal,cutoff_mask);
600 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
602 /* Calculate temporary vectorial force */
603 tx = _mm_mul_pd(fscal,dx20);
604 ty = _mm_mul_pd(fscal,dy20);
605 tz = _mm_mul_pd(fscal,dz20);
607 /* Update vectorial force */
608 fix2 = _mm_add_pd(fix2,tx);
609 fiy2 = _mm_add_pd(fiy2,ty);
610 fiz2 = _mm_add_pd(fiz2,tz);
612 fjx0 = _mm_add_pd(fjx0,tx);
613 fjy0 = _mm_add_pd(fjy0,ty);
614 fjz0 = _mm_add_pd(fjz0,tz);
618 /**************************
619 * CALCULATE INTERACTIONS *
620 **************************/
622 if (gmx_mm_any_lt(rsq30,rcutoff2))
625 /* Compute parameters for interactions between i and j atoms */
626 qq30 = _mm_mul_pd(iq3,jq0);
628 /* REACTION-FIELD ELECTROSTATICS */
629 velec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
630 felec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
632 cutoff_mask = _mm_cmplt_pd(rsq30,rcutoff2);
634 /* Update potential sum for this i atom from the interaction with this j atom. */
635 velec = _mm_and_pd(velec,cutoff_mask);
636 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
637 velecsum = _mm_add_pd(velecsum,velec);
639 fscal = felec;
641 fscal = _mm_and_pd(fscal,cutoff_mask);
643 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
645 /* Calculate temporary vectorial force */
646 tx = _mm_mul_pd(fscal,dx30);
647 ty = _mm_mul_pd(fscal,dy30);
648 tz = _mm_mul_pd(fscal,dz30);
650 /* Update vectorial force */
651 fix3 = _mm_add_pd(fix3,tx);
652 fiy3 = _mm_add_pd(fiy3,ty);
653 fiz3 = _mm_add_pd(fiz3,tz);
655 fjx0 = _mm_add_pd(fjx0,tx);
656 fjy0 = _mm_add_pd(fjy0,ty);
657 fjz0 = _mm_add_pd(fjz0,tz);
661 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
663 /* Inner loop uses 167 flops */
666 /* End of innermost loop */
668 gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
669 f+i_coord_offset,fshift+i_shift_offset);
671 ggid = gid[iidx];
672 /* Update potential energies */
673 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
674 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
676 /* Increment number of inner iterations */
677 inneriter += j_index_end - j_index_start;
679 /* Outer loop uses 26 flops */
682 /* Increment number of outer iterations */
683 outeriter += nri;
685 /* Update outer/inner flops */
687 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*167);
690 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse2_double
691 * Electrostatics interaction: ReactionField
692 * VdW interaction: CubicSplineTable
693 * Geometry: Water4-Particle
694 * Calculate force/pot: Force
696 void
697 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse2_double
698 (t_nblist * gmx_restrict nlist,
699 rvec * gmx_restrict xx,
700 rvec * gmx_restrict ff,
701 t_forcerec * gmx_restrict fr,
702 t_mdatoms * gmx_restrict mdatoms,
703 nb_kernel_data_t * gmx_restrict kernel_data,
704 t_nrnb * gmx_restrict nrnb)
706 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
707 * just 0 for non-waters.
708 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
709 * jnr indices corresponding to data put in the four positions in the SIMD register.
711 int i_shift_offset,i_coord_offset,outeriter,inneriter;
712 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
713 int jnrA,jnrB;
714 int j_coord_offsetA,j_coord_offsetB;
715 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
716 real rcutoff_scalar;
717 real *shiftvec,*fshift,*x,*f;
718 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
719 int vdwioffset0;
720 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
721 int vdwioffset1;
722 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
723 int vdwioffset2;
724 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
725 int vdwioffset3;
726 __m128d ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
727 int vdwjidx0A,vdwjidx0B;
728 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
729 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
730 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
731 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
732 __m128d dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
733 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
734 real *charge;
735 int nvdwtype;
736 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
737 int *vdwtype;
738 real *vdwparam;
739 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
740 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
741 __m128i vfitab;
742 __m128i ifour = _mm_set1_epi32(4);
743 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
744 real *vftab;
745 __m128d dummy_mask,cutoff_mask;
746 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
747 __m128d one = _mm_set1_pd(1.0);
748 __m128d two = _mm_set1_pd(2.0);
749 x = xx[0];
750 f = ff[0];
752 nri = nlist->nri;
753 iinr = nlist->iinr;
754 jindex = nlist->jindex;
755 jjnr = nlist->jjnr;
756 shiftidx = nlist->shift;
757 gid = nlist->gid;
758 shiftvec = fr->shift_vec[0];
759 fshift = fr->fshift[0];
760 facel = _mm_set1_pd(fr->epsfac);
761 charge = mdatoms->chargeA;
762 krf = _mm_set1_pd(fr->ic->k_rf);
763 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
764 crf = _mm_set1_pd(fr->ic->c_rf);
765 nvdwtype = fr->ntype;
766 vdwparam = fr->nbfp;
767 vdwtype = mdatoms->typeA;
769 vftab = kernel_data->table_vdw->data;
770 vftabscale = _mm_set1_pd(kernel_data->table_vdw->scale);
772 /* Setup water-specific parameters */
773 inr = nlist->iinr[0];
774 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
775 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
776 iq3 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
777 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
779 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
780 rcutoff_scalar = fr->rcoulomb;
781 rcutoff = _mm_set1_pd(rcutoff_scalar);
782 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
784 /* Avoid stupid compiler warnings */
785 jnrA = jnrB = 0;
786 j_coord_offsetA = 0;
787 j_coord_offsetB = 0;
789 outeriter = 0;
790 inneriter = 0;
792 /* Start outer loop over neighborlists */
793 for(iidx=0; iidx<nri; iidx++)
795 /* Load shift vector for this list */
796 i_shift_offset = DIM*shiftidx[iidx];
798 /* Load limits for loop over neighbors */
799 j_index_start = jindex[iidx];
800 j_index_end = jindex[iidx+1];
802 /* Get outer coordinate index */
803 inr = iinr[iidx];
804 i_coord_offset = DIM*inr;
806 /* Load i particle coords and add shift vector */
807 gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
808 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
810 fix0 = _mm_setzero_pd();
811 fiy0 = _mm_setzero_pd();
812 fiz0 = _mm_setzero_pd();
813 fix1 = _mm_setzero_pd();
814 fiy1 = _mm_setzero_pd();
815 fiz1 = _mm_setzero_pd();
816 fix2 = _mm_setzero_pd();
817 fiy2 = _mm_setzero_pd();
818 fiz2 = _mm_setzero_pd();
819 fix3 = _mm_setzero_pd();
820 fiy3 = _mm_setzero_pd();
821 fiz3 = _mm_setzero_pd();
823 /* Start inner kernel loop */
824 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
827 /* Get j neighbor index, and coordinate index */
828 jnrA = jjnr[jidx];
829 jnrB = jjnr[jidx+1];
830 j_coord_offsetA = DIM*jnrA;
831 j_coord_offsetB = DIM*jnrB;
833 /* load j atom coordinates */
834 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
835 &jx0,&jy0,&jz0);
837 /* Calculate displacement vector */
838 dx00 = _mm_sub_pd(ix0,jx0);
839 dy00 = _mm_sub_pd(iy0,jy0);
840 dz00 = _mm_sub_pd(iz0,jz0);
841 dx10 = _mm_sub_pd(ix1,jx0);
842 dy10 = _mm_sub_pd(iy1,jy0);
843 dz10 = _mm_sub_pd(iz1,jz0);
844 dx20 = _mm_sub_pd(ix2,jx0);
845 dy20 = _mm_sub_pd(iy2,jy0);
846 dz20 = _mm_sub_pd(iz2,jz0);
847 dx30 = _mm_sub_pd(ix3,jx0);
848 dy30 = _mm_sub_pd(iy3,jy0);
849 dz30 = _mm_sub_pd(iz3,jz0);
851 /* Calculate squared distance and things based on it */
852 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
853 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
854 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
855 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
857 rinv00 = gmx_mm_invsqrt_pd(rsq00);
858 rinv10 = gmx_mm_invsqrt_pd(rsq10);
859 rinv20 = gmx_mm_invsqrt_pd(rsq20);
860 rinv30 = gmx_mm_invsqrt_pd(rsq30);
862 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
863 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
864 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
866 /* Load parameters for j particles */
867 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
868 vdwjidx0A = 2*vdwtype[jnrA+0];
869 vdwjidx0B = 2*vdwtype[jnrB+0];
871 fjx0 = _mm_setzero_pd();
872 fjy0 = _mm_setzero_pd();
873 fjz0 = _mm_setzero_pd();
875 /**************************
876 * CALCULATE INTERACTIONS *
877 **************************/
879 r00 = _mm_mul_pd(rsq00,rinv00);
881 /* Compute parameters for interactions between i and j atoms */
882 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
883 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
885 /* Calculate table index by multiplying r with table scale and truncate to integer */
886 rt = _mm_mul_pd(r00,vftabscale);
887 vfitab = _mm_cvttpd_epi32(rt);
888 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
889 vfitab = _mm_slli_epi32(vfitab,3);
891 /* CUBIC SPLINE TABLE DISPERSION */
892 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
893 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
894 GMX_MM_TRANSPOSE2_PD(Y,F);
895 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
896 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
897 GMX_MM_TRANSPOSE2_PD(G,H);
898 Heps = _mm_mul_pd(vfeps,H);
899 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
900 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
901 fvdw6 = _mm_mul_pd(c6_00,FF);
903 /* CUBIC SPLINE TABLE REPULSION */
904 vfitab = _mm_add_epi32(vfitab,ifour);
905 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
906 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
907 GMX_MM_TRANSPOSE2_PD(Y,F);
908 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
909 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
910 GMX_MM_TRANSPOSE2_PD(G,H);
911 Heps = _mm_mul_pd(vfeps,H);
912 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
913 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
914 fvdw12 = _mm_mul_pd(c12_00,FF);
915 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
917 fscal = fvdw;
919 /* Calculate temporary vectorial force */
920 tx = _mm_mul_pd(fscal,dx00);
921 ty = _mm_mul_pd(fscal,dy00);
922 tz = _mm_mul_pd(fscal,dz00);
924 /* Update vectorial force */
925 fix0 = _mm_add_pd(fix0,tx);
926 fiy0 = _mm_add_pd(fiy0,ty);
927 fiz0 = _mm_add_pd(fiz0,tz);
929 fjx0 = _mm_add_pd(fjx0,tx);
930 fjy0 = _mm_add_pd(fjy0,ty);
931 fjz0 = _mm_add_pd(fjz0,tz);
933 /**************************
934 * CALCULATE INTERACTIONS *
935 **************************/
937 if (gmx_mm_any_lt(rsq10,rcutoff2))
940 /* Compute parameters for interactions between i and j atoms */
941 qq10 = _mm_mul_pd(iq1,jq0);
943 /* REACTION-FIELD ELECTROSTATICS */
944 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
946 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
948 fscal = felec;
950 fscal = _mm_and_pd(fscal,cutoff_mask);
952 /* Calculate temporary vectorial force */
953 tx = _mm_mul_pd(fscal,dx10);
954 ty = _mm_mul_pd(fscal,dy10);
955 tz = _mm_mul_pd(fscal,dz10);
957 /* Update vectorial force */
958 fix1 = _mm_add_pd(fix1,tx);
959 fiy1 = _mm_add_pd(fiy1,ty);
960 fiz1 = _mm_add_pd(fiz1,tz);
962 fjx0 = _mm_add_pd(fjx0,tx);
963 fjy0 = _mm_add_pd(fjy0,ty);
964 fjz0 = _mm_add_pd(fjz0,tz);
968 /**************************
969 * CALCULATE INTERACTIONS *
970 **************************/
972 if (gmx_mm_any_lt(rsq20,rcutoff2))
975 /* Compute parameters for interactions between i and j atoms */
976 qq20 = _mm_mul_pd(iq2,jq0);
978 /* REACTION-FIELD ELECTROSTATICS */
979 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
981 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
983 fscal = felec;
985 fscal = _mm_and_pd(fscal,cutoff_mask);
987 /* Calculate temporary vectorial force */
988 tx = _mm_mul_pd(fscal,dx20);
989 ty = _mm_mul_pd(fscal,dy20);
990 tz = _mm_mul_pd(fscal,dz20);
992 /* Update vectorial force */
993 fix2 = _mm_add_pd(fix2,tx);
994 fiy2 = _mm_add_pd(fiy2,ty);
995 fiz2 = _mm_add_pd(fiz2,tz);
997 fjx0 = _mm_add_pd(fjx0,tx);
998 fjy0 = _mm_add_pd(fjy0,ty);
999 fjz0 = _mm_add_pd(fjz0,tz);
1003 /**************************
1004 * CALCULATE INTERACTIONS *
1005 **************************/
1007 if (gmx_mm_any_lt(rsq30,rcutoff2))
1010 /* Compute parameters for interactions between i and j atoms */
1011 qq30 = _mm_mul_pd(iq3,jq0);
1013 /* REACTION-FIELD ELECTROSTATICS */
1014 felec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1016 cutoff_mask = _mm_cmplt_pd(rsq30,rcutoff2);
1018 fscal = felec;
1020 fscal = _mm_and_pd(fscal,cutoff_mask);
1022 /* Calculate temporary vectorial force */
1023 tx = _mm_mul_pd(fscal,dx30);
1024 ty = _mm_mul_pd(fscal,dy30);
1025 tz = _mm_mul_pd(fscal,dz30);
1027 /* Update vectorial force */
1028 fix3 = _mm_add_pd(fix3,tx);
1029 fiy3 = _mm_add_pd(fiy3,ty);
1030 fiz3 = _mm_add_pd(fiz3,tz);
1032 fjx0 = _mm_add_pd(fjx0,tx);
1033 fjy0 = _mm_add_pd(fjy0,ty);
1034 fjz0 = _mm_add_pd(fjz0,tz);
1038 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1040 /* Inner loop uses 141 flops */
1043 if(jidx<j_index_end)
1046 jnrA = jjnr[jidx];
1047 j_coord_offsetA = DIM*jnrA;
1049 /* load j atom coordinates */
1050 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1051 &jx0,&jy0,&jz0);
1053 /* Calculate displacement vector */
1054 dx00 = _mm_sub_pd(ix0,jx0);
1055 dy00 = _mm_sub_pd(iy0,jy0);
1056 dz00 = _mm_sub_pd(iz0,jz0);
1057 dx10 = _mm_sub_pd(ix1,jx0);
1058 dy10 = _mm_sub_pd(iy1,jy0);
1059 dz10 = _mm_sub_pd(iz1,jz0);
1060 dx20 = _mm_sub_pd(ix2,jx0);
1061 dy20 = _mm_sub_pd(iy2,jy0);
1062 dz20 = _mm_sub_pd(iz2,jz0);
1063 dx30 = _mm_sub_pd(ix3,jx0);
1064 dy30 = _mm_sub_pd(iy3,jy0);
1065 dz30 = _mm_sub_pd(iz3,jz0);
1067 /* Calculate squared distance and things based on it */
1068 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1069 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1070 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1071 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1073 rinv00 = gmx_mm_invsqrt_pd(rsq00);
1074 rinv10 = gmx_mm_invsqrt_pd(rsq10);
1075 rinv20 = gmx_mm_invsqrt_pd(rsq20);
1076 rinv30 = gmx_mm_invsqrt_pd(rsq30);
1078 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
1079 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
1080 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
1082 /* Load parameters for j particles */
1083 jq0 = _mm_load_sd(charge+jnrA+0);
1084 vdwjidx0A = 2*vdwtype[jnrA+0];
1086 fjx0 = _mm_setzero_pd();
1087 fjy0 = _mm_setzero_pd();
1088 fjz0 = _mm_setzero_pd();
1090 /**************************
1091 * CALCULATE INTERACTIONS *
1092 **************************/
1094 r00 = _mm_mul_pd(rsq00,rinv00);
1096 /* Compute parameters for interactions between i and j atoms */
1097 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1099 /* Calculate table index by multiplying r with table scale and truncate to integer */
1100 rt = _mm_mul_pd(r00,vftabscale);
1101 vfitab = _mm_cvttpd_epi32(rt);
1102 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1103 vfitab = _mm_slli_epi32(vfitab,3);
1105 /* CUBIC SPLINE TABLE DISPERSION */
1106 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1107 F = _mm_setzero_pd();
1108 GMX_MM_TRANSPOSE2_PD(Y,F);
1109 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1110 H = _mm_setzero_pd();
1111 GMX_MM_TRANSPOSE2_PD(G,H);
1112 Heps = _mm_mul_pd(vfeps,H);
1113 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1114 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1115 fvdw6 = _mm_mul_pd(c6_00,FF);
1117 /* CUBIC SPLINE TABLE REPULSION */
1118 vfitab = _mm_add_epi32(vfitab,ifour);
1119 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1120 F = _mm_setzero_pd();
1121 GMX_MM_TRANSPOSE2_PD(Y,F);
1122 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1123 H = _mm_setzero_pd();
1124 GMX_MM_TRANSPOSE2_PD(G,H);
1125 Heps = _mm_mul_pd(vfeps,H);
1126 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1127 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1128 fvdw12 = _mm_mul_pd(c12_00,FF);
1129 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1131 fscal = fvdw;
1133 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1135 /* Calculate temporary vectorial force */
1136 tx = _mm_mul_pd(fscal,dx00);
1137 ty = _mm_mul_pd(fscal,dy00);
1138 tz = _mm_mul_pd(fscal,dz00);
1140 /* Update vectorial force */
1141 fix0 = _mm_add_pd(fix0,tx);
1142 fiy0 = _mm_add_pd(fiy0,ty);
1143 fiz0 = _mm_add_pd(fiz0,tz);
1145 fjx0 = _mm_add_pd(fjx0,tx);
1146 fjy0 = _mm_add_pd(fjy0,ty);
1147 fjz0 = _mm_add_pd(fjz0,tz);
1149 /**************************
1150 * CALCULATE INTERACTIONS *
1151 **************************/
1153 if (gmx_mm_any_lt(rsq10,rcutoff2))
1156 /* Compute parameters for interactions between i and j atoms */
1157 qq10 = _mm_mul_pd(iq1,jq0);
1159 /* REACTION-FIELD ELECTROSTATICS */
1160 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1162 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
1164 fscal = felec;
1166 fscal = _mm_and_pd(fscal,cutoff_mask);
1168 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1170 /* Calculate temporary vectorial force */
1171 tx = _mm_mul_pd(fscal,dx10);
1172 ty = _mm_mul_pd(fscal,dy10);
1173 tz = _mm_mul_pd(fscal,dz10);
1175 /* Update vectorial force */
1176 fix1 = _mm_add_pd(fix1,tx);
1177 fiy1 = _mm_add_pd(fiy1,ty);
1178 fiz1 = _mm_add_pd(fiz1,tz);
1180 fjx0 = _mm_add_pd(fjx0,tx);
1181 fjy0 = _mm_add_pd(fjy0,ty);
1182 fjz0 = _mm_add_pd(fjz0,tz);
1186 /**************************
1187 * CALCULATE INTERACTIONS *
1188 **************************/
1190 if (gmx_mm_any_lt(rsq20,rcutoff2))
1193 /* Compute parameters for interactions between i and j atoms */
1194 qq20 = _mm_mul_pd(iq2,jq0);
1196 /* REACTION-FIELD ELECTROSTATICS */
1197 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1199 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
1201 fscal = felec;
1203 fscal = _mm_and_pd(fscal,cutoff_mask);
1205 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1207 /* Calculate temporary vectorial force */
1208 tx = _mm_mul_pd(fscal,dx20);
1209 ty = _mm_mul_pd(fscal,dy20);
1210 tz = _mm_mul_pd(fscal,dz20);
1212 /* Update vectorial force */
1213 fix2 = _mm_add_pd(fix2,tx);
1214 fiy2 = _mm_add_pd(fiy2,ty);
1215 fiz2 = _mm_add_pd(fiz2,tz);
1217 fjx0 = _mm_add_pd(fjx0,tx);
1218 fjy0 = _mm_add_pd(fjy0,ty);
1219 fjz0 = _mm_add_pd(fjz0,tz);
1223 /**************************
1224 * CALCULATE INTERACTIONS *
1225 **************************/
1227 if (gmx_mm_any_lt(rsq30,rcutoff2))
1230 /* Compute parameters for interactions between i and j atoms */
1231 qq30 = _mm_mul_pd(iq3,jq0);
1233 /* REACTION-FIELD ELECTROSTATICS */
1234 felec = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1236 cutoff_mask = _mm_cmplt_pd(rsq30,rcutoff2);
1238 fscal = felec;
1240 fscal = _mm_and_pd(fscal,cutoff_mask);
1242 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1244 /* Calculate temporary vectorial force */
1245 tx = _mm_mul_pd(fscal,dx30);
1246 ty = _mm_mul_pd(fscal,dy30);
1247 tz = _mm_mul_pd(fscal,dz30);
1249 /* Update vectorial force */
1250 fix3 = _mm_add_pd(fix3,tx);
1251 fiy3 = _mm_add_pd(fiy3,ty);
1252 fiz3 = _mm_add_pd(fiz3,tz);
1254 fjx0 = _mm_add_pd(fjx0,tx);
1255 fjy0 = _mm_add_pd(fjy0,ty);
1256 fjz0 = _mm_add_pd(fjz0,tz);
1260 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1262 /* Inner loop uses 141 flops */
1265 /* End of innermost loop */
1267 gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1268 f+i_coord_offset,fshift+i_shift_offset);
1270 /* Increment number of inner iterations */
1271 inneriter += j_index_end - j_index_start;
1273 /* Outer loop uses 24 flops */
1276 /* Increment number of outer iterations */
1277 outeriter += nri;
1279 /* Update outer/inner flops */
1281 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*141);