Double precision SSE2 kernels
[gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_sse2_double.c
blob1621fc2eda9220bce36c11619fc2244f266d2096
1 /*
2 * Note: this file was generated by the Gromacs sse2_double kernel generator.
4 * This source code is part of
6 * G R O M A C S
8 * Copyright (c) 2001-2012, The GROMACS Development Team
10 * Gromacs is a library for molecular simulation and trajectory analysis,
11 * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12 * a full list of developers and information, check out http://www.gromacs.org
14 * This program is free software; you can redistribute it and/or modify it under
15 * the terms of the GNU Lesser General Public License as published by the Free
16 * Software Foundation; either version 2 of the License, or (at your option) any
17 * later version.
19 * To help fund GROMACS development, we humbly ask that you cite
20 * the papers people have written on it - you can find them on the website.
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
26 #include <math.h>
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
37 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse2_double
38 * Electrostatics interaction: ReactionField
39 * VdW interaction: CubicSplineTable
40 * Geometry: Water3-Particle
41 * Calculate force/pot: PotentialAndForce
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse2_double
45 (t_nblist * gmx_restrict nlist,
46 rvec * gmx_restrict xx,
47 rvec * gmx_restrict ff,
48 t_forcerec * gmx_restrict fr,
49 t_mdatoms * gmx_restrict mdatoms,
50 nb_kernel_data_t * gmx_restrict kernel_data,
51 t_nrnb * gmx_restrict nrnb)
53 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54 * just 0 for non-waters.
55 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56 * jnr indices corresponding to data put in the four positions in the SIMD register.
58 int i_shift_offset,i_coord_offset,outeriter,inneriter;
59 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60 int jnrA,jnrB;
61 int j_coord_offsetA,j_coord_offsetB;
62 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
63 real rcutoff_scalar;
64 real *shiftvec,*fshift,*x,*f;
65 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66 int vdwioffset0;
67 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68 int vdwioffset1;
69 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70 int vdwioffset2;
71 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72 int vdwjidx0A,vdwjidx0B;
73 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int nvdwtype;
80 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81 int *vdwtype;
82 real *vdwparam;
83 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
84 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
85 __m128i vfitab;
86 __m128i ifour = _mm_set1_epi32(4);
87 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
88 real *vftab;
89 __m128d dummy_mask,cutoff_mask;
90 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
91 __m128d one = _mm_set1_pd(1.0);
92 __m128d two = _mm_set1_pd(2.0);
93 x = xx[0];
94 f = ff[0];
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = _mm_set1_pd(fr->epsfac);
105 charge = mdatoms->chargeA;
106 krf = _mm_set1_pd(fr->ic->k_rf);
107 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
108 crf = _mm_set1_pd(fr->ic->c_rf);
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
113 vftab = kernel_data->table_vdw->data;
114 vftabscale = _mm_set1_pd(kernel_data->table_vdw->scale);
116 /* Setup water-specific parameters */
117 inr = nlist->iinr[0];
118 iq0 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
119 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
120 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
121 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
123 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124 rcutoff_scalar = fr->rcoulomb;
125 rcutoff = _mm_set1_pd(rcutoff_scalar);
126 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
128 /* Avoid stupid compiler warnings */
129 jnrA = jnrB = 0;
130 j_coord_offsetA = 0;
131 j_coord_offsetB = 0;
133 outeriter = 0;
134 inneriter = 0;
136 /* Start outer loop over neighborlists */
137 for(iidx=0; iidx<nri; iidx++)
139 /* Load shift vector for this list */
140 i_shift_offset = DIM*shiftidx[iidx];
142 /* Load limits for loop over neighbors */
143 j_index_start = jindex[iidx];
144 j_index_end = jindex[iidx+1];
146 /* Get outer coordinate index */
147 inr = iinr[iidx];
148 i_coord_offset = DIM*inr;
150 /* Load i particle coords and add shift vector */
151 gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
152 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
154 fix0 = _mm_setzero_pd();
155 fiy0 = _mm_setzero_pd();
156 fiz0 = _mm_setzero_pd();
157 fix1 = _mm_setzero_pd();
158 fiy1 = _mm_setzero_pd();
159 fiz1 = _mm_setzero_pd();
160 fix2 = _mm_setzero_pd();
161 fiy2 = _mm_setzero_pd();
162 fiz2 = _mm_setzero_pd();
164 /* Reset potential sums */
165 velecsum = _mm_setzero_pd();
166 vvdwsum = _mm_setzero_pd();
168 /* Start inner kernel loop */
169 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
172 /* Get j neighbor index, and coordinate index */
173 jnrA = jjnr[jidx];
174 jnrB = jjnr[jidx+1];
175 j_coord_offsetA = DIM*jnrA;
176 j_coord_offsetB = DIM*jnrB;
178 /* load j atom coordinates */
179 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180 &jx0,&jy0,&jz0);
182 /* Calculate displacement vector */
183 dx00 = _mm_sub_pd(ix0,jx0);
184 dy00 = _mm_sub_pd(iy0,jy0);
185 dz00 = _mm_sub_pd(iz0,jz0);
186 dx10 = _mm_sub_pd(ix1,jx0);
187 dy10 = _mm_sub_pd(iy1,jy0);
188 dz10 = _mm_sub_pd(iz1,jz0);
189 dx20 = _mm_sub_pd(ix2,jx0);
190 dy20 = _mm_sub_pd(iy2,jy0);
191 dz20 = _mm_sub_pd(iz2,jz0);
193 /* Calculate squared distance and things based on it */
194 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
195 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
196 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
198 rinv00 = gmx_mm_invsqrt_pd(rsq00);
199 rinv10 = gmx_mm_invsqrt_pd(rsq10);
200 rinv20 = gmx_mm_invsqrt_pd(rsq20);
202 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
203 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
204 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
206 /* Load parameters for j particles */
207 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
208 vdwjidx0A = 2*vdwtype[jnrA+0];
209 vdwjidx0B = 2*vdwtype[jnrB+0];
211 fjx0 = _mm_setzero_pd();
212 fjy0 = _mm_setzero_pd();
213 fjz0 = _mm_setzero_pd();
215 /**************************
216 * CALCULATE INTERACTIONS *
217 **************************/
219 if (gmx_mm_any_lt(rsq00,rcutoff2))
222 r00 = _mm_mul_pd(rsq00,rinv00);
224 /* Compute parameters for interactions between i and j atoms */
225 qq00 = _mm_mul_pd(iq0,jq0);
226 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
227 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
229 /* Calculate table index by multiplying r with table scale and truncate to integer */
230 rt = _mm_mul_pd(r00,vftabscale);
231 vfitab = _mm_cvttpd_epi32(rt);
232 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
233 vfitab = _mm_slli_epi32(vfitab,3);
235 /* REACTION-FIELD ELECTROSTATICS */
236 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
237 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
239 /* CUBIC SPLINE TABLE DISPERSION */
240 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
241 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
242 GMX_MM_TRANSPOSE2_PD(Y,F);
243 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
244 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
245 GMX_MM_TRANSPOSE2_PD(G,H);
246 Heps = _mm_mul_pd(vfeps,H);
247 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
248 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
249 vvdw6 = _mm_mul_pd(c6_00,VV);
250 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
251 fvdw6 = _mm_mul_pd(c6_00,FF);
253 /* CUBIC SPLINE TABLE REPULSION */
254 vfitab = _mm_add_epi32(vfitab,ifour);
255 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
256 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
257 GMX_MM_TRANSPOSE2_PD(Y,F);
258 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
259 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
260 GMX_MM_TRANSPOSE2_PD(G,H);
261 Heps = _mm_mul_pd(vfeps,H);
262 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
263 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
264 vvdw12 = _mm_mul_pd(c12_00,VV);
265 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
266 fvdw12 = _mm_mul_pd(c12_00,FF);
267 vvdw = _mm_add_pd(vvdw12,vvdw6);
268 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
270 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
272 /* Update potential sum for this i atom from the interaction with this j atom. */
273 velec = _mm_and_pd(velec,cutoff_mask);
274 velecsum = _mm_add_pd(velecsum,velec);
275 vvdw = _mm_and_pd(vvdw,cutoff_mask);
276 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
278 fscal = _mm_add_pd(felec,fvdw);
280 fscal = _mm_and_pd(fscal,cutoff_mask);
282 /* Calculate temporary vectorial force */
283 tx = _mm_mul_pd(fscal,dx00);
284 ty = _mm_mul_pd(fscal,dy00);
285 tz = _mm_mul_pd(fscal,dz00);
287 /* Update vectorial force */
288 fix0 = _mm_add_pd(fix0,tx);
289 fiy0 = _mm_add_pd(fiy0,ty);
290 fiz0 = _mm_add_pd(fiz0,tz);
292 fjx0 = _mm_add_pd(fjx0,tx);
293 fjy0 = _mm_add_pd(fjy0,ty);
294 fjz0 = _mm_add_pd(fjz0,tz);
298 /**************************
299 * CALCULATE INTERACTIONS *
300 **************************/
302 if (gmx_mm_any_lt(rsq10,rcutoff2))
305 /* Compute parameters for interactions between i and j atoms */
306 qq10 = _mm_mul_pd(iq1,jq0);
308 /* REACTION-FIELD ELECTROSTATICS */
309 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
310 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
312 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
314 /* Update potential sum for this i atom from the interaction with this j atom. */
315 velec = _mm_and_pd(velec,cutoff_mask);
316 velecsum = _mm_add_pd(velecsum,velec);
318 fscal = felec;
320 fscal = _mm_and_pd(fscal,cutoff_mask);
322 /* Calculate temporary vectorial force */
323 tx = _mm_mul_pd(fscal,dx10);
324 ty = _mm_mul_pd(fscal,dy10);
325 tz = _mm_mul_pd(fscal,dz10);
327 /* Update vectorial force */
328 fix1 = _mm_add_pd(fix1,tx);
329 fiy1 = _mm_add_pd(fiy1,ty);
330 fiz1 = _mm_add_pd(fiz1,tz);
332 fjx0 = _mm_add_pd(fjx0,tx);
333 fjy0 = _mm_add_pd(fjy0,ty);
334 fjz0 = _mm_add_pd(fjz0,tz);
338 /**************************
339 * CALCULATE INTERACTIONS *
340 **************************/
342 if (gmx_mm_any_lt(rsq20,rcutoff2))
345 /* Compute parameters for interactions between i and j atoms */
346 qq20 = _mm_mul_pd(iq2,jq0);
348 /* REACTION-FIELD ELECTROSTATICS */
349 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
350 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
352 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
354 /* Update potential sum for this i atom from the interaction with this j atom. */
355 velec = _mm_and_pd(velec,cutoff_mask);
356 velecsum = _mm_add_pd(velecsum,velec);
358 fscal = felec;
360 fscal = _mm_and_pd(fscal,cutoff_mask);
362 /* Calculate temporary vectorial force */
363 tx = _mm_mul_pd(fscal,dx20);
364 ty = _mm_mul_pd(fscal,dy20);
365 tz = _mm_mul_pd(fscal,dz20);
367 /* Update vectorial force */
368 fix2 = _mm_add_pd(fix2,tx);
369 fiy2 = _mm_add_pd(fiy2,ty);
370 fiz2 = _mm_add_pd(fiz2,tz);
372 fjx0 = _mm_add_pd(fjx0,tx);
373 fjy0 = _mm_add_pd(fjy0,ty);
374 fjz0 = _mm_add_pd(fjz0,tz);
378 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
380 /* Inner loop uses 147 flops */
383 if(jidx<j_index_end)
386 jnrA = jjnr[jidx];
387 j_coord_offsetA = DIM*jnrA;
389 /* load j atom coordinates */
390 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
391 &jx0,&jy0,&jz0);
393 /* Calculate displacement vector */
394 dx00 = _mm_sub_pd(ix0,jx0);
395 dy00 = _mm_sub_pd(iy0,jy0);
396 dz00 = _mm_sub_pd(iz0,jz0);
397 dx10 = _mm_sub_pd(ix1,jx0);
398 dy10 = _mm_sub_pd(iy1,jy0);
399 dz10 = _mm_sub_pd(iz1,jz0);
400 dx20 = _mm_sub_pd(ix2,jx0);
401 dy20 = _mm_sub_pd(iy2,jy0);
402 dz20 = _mm_sub_pd(iz2,jz0);
404 /* Calculate squared distance and things based on it */
405 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
406 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
407 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
409 rinv00 = gmx_mm_invsqrt_pd(rsq00);
410 rinv10 = gmx_mm_invsqrt_pd(rsq10);
411 rinv20 = gmx_mm_invsqrt_pd(rsq20);
413 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
414 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
415 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
417 /* Load parameters for j particles */
418 jq0 = _mm_load_sd(charge+jnrA+0);
419 vdwjidx0A = 2*vdwtype[jnrA+0];
421 fjx0 = _mm_setzero_pd();
422 fjy0 = _mm_setzero_pd();
423 fjz0 = _mm_setzero_pd();
425 /**************************
426 * CALCULATE INTERACTIONS *
427 **************************/
429 if (gmx_mm_any_lt(rsq00,rcutoff2))
432 r00 = _mm_mul_pd(rsq00,rinv00);
434 /* Compute parameters for interactions between i and j atoms */
435 qq00 = _mm_mul_pd(iq0,jq0);
436 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
438 /* Calculate table index by multiplying r with table scale and truncate to integer */
439 rt = _mm_mul_pd(r00,vftabscale);
440 vfitab = _mm_cvttpd_epi32(rt);
441 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
442 vfitab = _mm_slli_epi32(vfitab,3);
444 /* REACTION-FIELD ELECTROSTATICS */
445 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
446 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
448 /* CUBIC SPLINE TABLE DISPERSION */
449 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
450 F = _mm_setzero_pd();
451 GMX_MM_TRANSPOSE2_PD(Y,F);
452 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
453 H = _mm_setzero_pd();
454 GMX_MM_TRANSPOSE2_PD(G,H);
455 Heps = _mm_mul_pd(vfeps,H);
456 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
457 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
458 vvdw6 = _mm_mul_pd(c6_00,VV);
459 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
460 fvdw6 = _mm_mul_pd(c6_00,FF);
462 /* CUBIC SPLINE TABLE REPULSION */
463 vfitab = _mm_add_epi32(vfitab,ifour);
464 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
465 F = _mm_setzero_pd();
466 GMX_MM_TRANSPOSE2_PD(Y,F);
467 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
468 H = _mm_setzero_pd();
469 GMX_MM_TRANSPOSE2_PD(G,H);
470 Heps = _mm_mul_pd(vfeps,H);
471 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
472 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
473 vvdw12 = _mm_mul_pd(c12_00,VV);
474 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
475 fvdw12 = _mm_mul_pd(c12_00,FF);
476 vvdw = _mm_add_pd(vvdw12,vvdw6);
477 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
479 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
481 /* Update potential sum for this i atom from the interaction with this j atom. */
482 velec = _mm_and_pd(velec,cutoff_mask);
483 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
484 velecsum = _mm_add_pd(velecsum,velec);
485 vvdw = _mm_and_pd(vvdw,cutoff_mask);
486 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
487 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
489 fscal = _mm_add_pd(felec,fvdw);
491 fscal = _mm_and_pd(fscal,cutoff_mask);
493 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
495 /* Calculate temporary vectorial force */
496 tx = _mm_mul_pd(fscal,dx00);
497 ty = _mm_mul_pd(fscal,dy00);
498 tz = _mm_mul_pd(fscal,dz00);
500 /* Update vectorial force */
501 fix0 = _mm_add_pd(fix0,tx);
502 fiy0 = _mm_add_pd(fiy0,ty);
503 fiz0 = _mm_add_pd(fiz0,tz);
505 fjx0 = _mm_add_pd(fjx0,tx);
506 fjy0 = _mm_add_pd(fjy0,ty);
507 fjz0 = _mm_add_pd(fjz0,tz);
511 /**************************
512 * CALCULATE INTERACTIONS *
513 **************************/
515 if (gmx_mm_any_lt(rsq10,rcutoff2))
518 /* Compute parameters for interactions between i and j atoms */
519 qq10 = _mm_mul_pd(iq1,jq0);
521 /* REACTION-FIELD ELECTROSTATICS */
522 velec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
523 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
525 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
527 /* Update potential sum for this i atom from the interaction with this j atom. */
528 velec = _mm_and_pd(velec,cutoff_mask);
529 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
530 velecsum = _mm_add_pd(velecsum,velec);
532 fscal = felec;
534 fscal = _mm_and_pd(fscal,cutoff_mask);
536 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
538 /* Calculate temporary vectorial force */
539 tx = _mm_mul_pd(fscal,dx10);
540 ty = _mm_mul_pd(fscal,dy10);
541 tz = _mm_mul_pd(fscal,dz10);
543 /* Update vectorial force */
544 fix1 = _mm_add_pd(fix1,tx);
545 fiy1 = _mm_add_pd(fiy1,ty);
546 fiz1 = _mm_add_pd(fiz1,tz);
548 fjx0 = _mm_add_pd(fjx0,tx);
549 fjy0 = _mm_add_pd(fjy0,ty);
550 fjz0 = _mm_add_pd(fjz0,tz);
554 /**************************
555 * CALCULATE INTERACTIONS *
556 **************************/
558 if (gmx_mm_any_lt(rsq20,rcutoff2))
561 /* Compute parameters for interactions between i and j atoms */
562 qq20 = _mm_mul_pd(iq2,jq0);
564 /* REACTION-FIELD ELECTROSTATICS */
565 velec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
566 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
568 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
570 /* Update potential sum for this i atom from the interaction with this j atom. */
571 velec = _mm_and_pd(velec,cutoff_mask);
572 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
573 velecsum = _mm_add_pd(velecsum,velec);
575 fscal = felec;
577 fscal = _mm_and_pd(fscal,cutoff_mask);
579 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
581 /* Calculate temporary vectorial force */
582 tx = _mm_mul_pd(fscal,dx20);
583 ty = _mm_mul_pd(fscal,dy20);
584 tz = _mm_mul_pd(fscal,dz20);
586 /* Update vectorial force */
587 fix2 = _mm_add_pd(fix2,tx);
588 fiy2 = _mm_add_pd(fiy2,ty);
589 fiz2 = _mm_add_pd(fiz2,tz);
591 fjx0 = _mm_add_pd(fjx0,tx);
592 fjy0 = _mm_add_pd(fjy0,ty);
593 fjz0 = _mm_add_pd(fjz0,tz);
597 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
599 /* Inner loop uses 147 flops */
602 /* End of innermost loop */
604 gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
605 f+i_coord_offset,fshift+i_shift_offset);
607 ggid = gid[iidx];
608 /* Update potential energies */
609 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
610 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
612 /* Increment number of inner iterations */
613 inneriter += j_index_end - j_index_start;
615 /* Outer loop uses 20 flops */
618 /* Increment number of outer iterations */
619 outeriter += nri;
621 /* Update outer/inner flops */
623 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*147);
626 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse2_double
627 * Electrostatics interaction: ReactionField
628 * VdW interaction: CubicSplineTable
629 * Geometry: Water3-Particle
630 * Calculate force/pot: Force
632 void
633 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse2_double
634 (t_nblist * gmx_restrict nlist,
635 rvec * gmx_restrict xx,
636 rvec * gmx_restrict ff,
637 t_forcerec * gmx_restrict fr,
638 t_mdatoms * gmx_restrict mdatoms,
639 nb_kernel_data_t * gmx_restrict kernel_data,
640 t_nrnb * gmx_restrict nrnb)
642 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
643 * just 0 for non-waters.
644 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
645 * jnr indices corresponding to data put in the four positions in the SIMD register.
647 int i_shift_offset,i_coord_offset,outeriter,inneriter;
648 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
649 int jnrA,jnrB;
650 int j_coord_offsetA,j_coord_offsetB;
651 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
652 real rcutoff_scalar;
653 real *shiftvec,*fshift,*x,*f;
654 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
655 int vdwioffset0;
656 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
657 int vdwioffset1;
658 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
659 int vdwioffset2;
660 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
661 int vdwjidx0A,vdwjidx0B;
662 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
663 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
664 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
665 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
666 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
667 real *charge;
668 int nvdwtype;
669 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
670 int *vdwtype;
671 real *vdwparam;
672 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
673 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
674 __m128i vfitab;
675 __m128i ifour = _mm_set1_epi32(4);
676 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
677 real *vftab;
678 __m128d dummy_mask,cutoff_mask;
679 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
680 __m128d one = _mm_set1_pd(1.0);
681 __m128d two = _mm_set1_pd(2.0);
682 x = xx[0];
683 f = ff[0];
685 nri = nlist->nri;
686 iinr = nlist->iinr;
687 jindex = nlist->jindex;
688 jjnr = nlist->jjnr;
689 shiftidx = nlist->shift;
690 gid = nlist->gid;
691 shiftvec = fr->shift_vec[0];
692 fshift = fr->fshift[0];
693 facel = _mm_set1_pd(fr->epsfac);
694 charge = mdatoms->chargeA;
695 krf = _mm_set1_pd(fr->ic->k_rf);
696 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
697 crf = _mm_set1_pd(fr->ic->c_rf);
698 nvdwtype = fr->ntype;
699 vdwparam = fr->nbfp;
700 vdwtype = mdatoms->typeA;
702 vftab = kernel_data->table_vdw->data;
703 vftabscale = _mm_set1_pd(kernel_data->table_vdw->scale);
705 /* Setup water-specific parameters */
706 inr = nlist->iinr[0];
707 iq0 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
708 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
709 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
710 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
712 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
713 rcutoff_scalar = fr->rcoulomb;
714 rcutoff = _mm_set1_pd(rcutoff_scalar);
715 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
717 /* Avoid stupid compiler warnings */
718 jnrA = jnrB = 0;
719 j_coord_offsetA = 0;
720 j_coord_offsetB = 0;
722 outeriter = 0;
723 inneriter = 0;
725 /* Start outer loop over neighborlists */
726 for(iidx=0; iidx<nri; iidx++)
728 /* Load shift vector for this list */
729 i_shift_offset = DIM*shiftidx[iidx];
731 /* Load limits for loop over neighbors */
732 j_index_start = jindex[iidx];
733 j_index_end = jindex[iidx+1];
735 /* Get outer coordinate index */
736 inr = iinr[iidx];
737 i_coord_offset = DIM*inr;
739 /* Load i particle coords and add shift vector */
740 gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
741 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
743 fix0 = _mm_setzero_pd();
744 fiy0 = _mm_setzero_pd();
745 fiz0 = _mm_setzero_pd();
746 fix1 = _mm_setzero_pd();
747 fiy1 = _mm_setzero_pd();
748 fiz1 = _mm_setzero_pd();
749 fix2 = _mm_setzero_pd();
750 fiy2 = _mm_setzero_pd();
751 fiz2 = _mm_setzero_pd();
753 /* Start inner kernel loop */
754 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
757 /* Get j neighbor index, and coordinate index */
758 jnrA = jjnr[jidx];
759 jnrB = jjnr[jidx+1];
760 j_coord_offsetA = DIM*jnrA;
761 j_coord_offsetB = DIM*jnrB;
763 /* load j atom coordinates */
764 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
765 &jx0,&jy0,&jz0);
767 /* Calculate displacement vector */
768 dx00 = _mm_sub_pd(ix0,jx0);
769 dy00 = _mm_sub_pd(iy0,jy0);
770 dz00 = _mm_sub_pd(iz0,jz0);
771 dx10 = _mm_sub_pd(ix1,jx0);
772 dy10 = _mm_sub_pd(iy1,jy0);
773 dz10 = _mm_sub_pd(iz1,jz0);
774 dx20 = _mm_sub_pd(ix2,jx0);
775 dy20 = _mm_sub_pd(iy2,jy0);
776 dz20 = _mm_sub_pd(iz2,jz0);
778 /* Calculate squared distance and things based on it */
779 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
780 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
781 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
783 rinv00 = gmx_mm_invsqrt_pd(rsq00);
784 rinv10 = gmx_mm_invsqrt_pd(rsq10);
785 rinv20 = gmx_mm_invsqrt_pd(rsq20);
787 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
788 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
789 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
791 /* Load parameters for j particles */
792 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
793 vdwjidx0A = 2*vdwtype[jnrA+0];
794 vdwjidx0B = 2*vdwtype[jnrB+0];
796 fjx0 = _mm_setzero_pd();
797 fjy0 = _mm_setzero_pd();
798 fjz0 = _mm_setzero_pd();
800 /**************************
801 * CALCULATE INTERACTIONS *
802 **************************/
804 if (gmx_mm_any_lt(rsq00,rcutoff2))
807 r00 = _mm_mul_pd(rsq00,rinv00);
809 /* Compute parameters for interactions between i and j atoms */
810 qq00 = _mm_mul_pd(iq0,jq0);
811 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
812 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
814 /* Calculate table index by multiplying r with table scale and truncate to integer */
815 rt = _mm_mul_pd(r00,vftabscale);
816 vfitab = _mm_cvttpd_epi32(rt);
817 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
818 vfitab = _mm_slli_epi32(vfitab,3);
820 /* REACTION-FIELD ELECTROSTATICS */
821 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
823 /* CUBIC SPLINE TABLE DISPERSION */
824 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
825 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
826 GMX_MM_TRANSPOSE2_PD(Y,F);
827 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
828 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
829 GMX_MM_TRANSPOSE2_PD(G,H);
830 Heps = _mm_mul_pd(vfeps,H);
831 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
832 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
833 fvdw6 = _mm_mul_pd(c6_00,FF);
835 /* CUBIC SPLINE TABLE REPULSION */
836 vfitab = _mm_add_epi32(vfitab,ifour);
837 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
838 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
839 GMX_MM_TRANSPOSE2_PD(Y,F);
840 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
841 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
842 GMX_MM_TRANSPOSE2_PD(G,H);
843 Heps = _mm_mul_pd(vfeps,H);
844 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
845 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
846 fvdw12 = _mm_mul_pd(c12_00,FF);
847 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
849 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
851 fscal = _mm_add_pd(felec,fvdw);
853 fscal = _mm_and_pd(fscal,cutoff_mask);
855 /* Calculate temporary vectorial force */
856 tx = _mm_mul_pd(fscal,dx00);
857 ty = _mm_mul_pd(fscal,dy00);
858 tz = _mm_mul_pd(fscal,dz00);
860 /* Update vectorial force */
861 fix0 = _mm_add_pd(fix0,tx);
862 fiy0 = _mm_add_pd(fiy0,ty);
863 fiz0 = _mm_add_pd(fiz0,tz);
865 fjx0 = _mm_add_pd(fjx0,tx);
866 fjy0 = _mm_add_pd(fjy0,ty);
867 fjz0 = _mm_add_pd(fjz0,tz);
871 /**************************
872 * CALCULATE INTERACTIONS *
873 **************************/
875 if (gmx_mm_any_lt(rsq10,rcutoff2))
878 /* Compute parameters for interactions between i and j atoms */
879 qq10 = _mm_mul_pd(iq1,jq0);
881 /* REACTION-FIELD ELECTROSTATICS */
882 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
884 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
886 fscal = felec;
888 fscal = _mm_and_pd(fscal,cutoff_mask);
890 /* Calculate temporary vectorial force */
891 tx = _mm_mul_pd(fscal,dx10);
892 ty = _mm_mul_pd(fscal,dy10);
893 tz = _mm_mul_pd(fscal,dz10);
895 /* Update vectorial force */
896 fix1 = _mm_add_pd(fix1,tx);
897 fiy1 = _mm_add_pd(fiy1,ty);
898 fiz1 = _mm_add_pd(fiz1,tz);
900 fjx0 = _mm_add_pd(fjx0,tx);
901 fjy0 = _mm_add_pd(fjy0,ty);
902 fjz0 = _mm_add_pd(fjz0,tz);
906 /**************************
907 * CALCULATE INTERACTIONS *
908 **************************/
910 if (gmx_mm_any_lt(rsq20,rcutoff2))
913 /* Compute parameters for interactions between i and j atoms */
914 qq20 = _mm_mul_pd(iq2,jq0);
916 /* REACTION-FIELD ELECTROSTATICS */
917 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
919 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
921 fscal = felec;
923 fscal = _mm_and_pd(fscal,cutoff_mask);
925 /* Calculate temporary vectorial force */
926 tx = _mm_mul_pd(fscal,dx20);
927 ty = _mm_mul_pd(fscal,dy20);
928 tz = _mm_mul_pd(fscal,dz20);
930 /* Update vectorial force */
931 fix2 = _mm_add_pd(fix2,tx);
932 fiy2 = _mm_add_pd(fiy2,ty);
933 fiz2 = _mm_add_pd(fiz2,tz);
935 fjx0 = _mm_add_pd(fjx0,tx);
936 fjy0 = _mm_add_pd(fjy0,ty);
937 fjz0 = _mm_add_pd(fjz0,tz);
941 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
943 /* Inner loop uses 120 flops */
946 if(jidx<j_index_end)
949 jnrA = jjnr[jidx];
950 j_coord_offsetA = DIM*jnrA;
952 /* load j atom coordinates */
953 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
954 &jx0,&jy0,&jz0);
956 /* Calculate displacement vector */
957 dx00 = _mm_sub_pd(ix0,jx0);
958 dy00 = _mm_sub_pd(iy0,jy0);
959 dz00 = _mm_sub_pd(iz0,jz0);
960 dx10 = _mm_sub_pd(ix1,jx0);
961 dy10 = _mm_sub_pd(iy1,jy0);
962 dz10 = _mm_sub_pd(iz1,jz0);
963 dx20 = _mm_sub_pd(ix2,jx0);
964 dy20 = _mm_sub_pd(iy2,jy0);
965 dz20 = _mm_sub_pd(iz2,jz0);
967 /* Calculate squared distance and things based on it */
968 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
969 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
970 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
972 rinv00 = gmx_mm_invsqrt_pd(rsq00);
973 rinv10 = gmx_mm_invsqrt_pd(rsq10);
974 rinv20 = gmx_mm_invsqrt_pd(rsq20);
976 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
977 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
978 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
980 /* Load parameters for j particles */
981 jq0 = _mm_load_sd(charge+jnrA+0);
982 vdwjidx0A = 2*vdwtype[jnrA+0];
984 fjx0 = _mm_setzero_pd();
985 fjy0 = _mm_setzero_pd();
986 fjz0 = _mm_setzero_pd();
988 /**************************
989 * CALCULATE INTERACTIONS *
990 **************************/
992 if (gmx_mm_any_lt(rsq00,rcutoff2))
995 r00 = _mm_mul_pd(rsq00,rinv00);
997 /* Compute parameters for interactions between i and j atoms */
998 qq00 = _mm_mul_pd(iq0,jq0);
999 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1001 /* Calculate table index by multiplying r with table scale and truncate to integer */
1002 rt = _mm_mul_pd(r00,vftabscale);
1003 vfitab = _mm_cvttpd_epi32(rt);
1004 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1005 vfitab = _mm_slli_epi32(vfitab,3);
1007 /* REACTION-FIELD ELECTROSTATICS */
1008 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
1010 /* CUBIC SPLINE TABLE DISPERSION */
1011 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1012 F = _mm_setzero_pd();
1013 GMX_MM_TRANSPOSE2_PD(Y,F);
1014 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1015 H = _mm_setzero_pd();
1016 GMX_MM_TRANSPOSE2_PD(G,H);
1017 Heps = _mm_mul_pd(vfeps,H);
1018 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1019 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1020 fvdw6 = _mm_mul_pd(c6_00,FF);
1022 /* CUBIC SPLINE TABLE REPULSION */
1023 vfitab = _mm_add_epi32(vfitab,ifour);
1024 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1025 F = _mm_setzero_pd();
1026 GMX_MM_TRANSPOSE2_PD(Y,F);
1027 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1028 H = _mm_setzero_pd();
1029 GMX_MM_TRANSPOSE2_PD(G,H);
1030 Heps = _mm_mul_pd(vfeps,H);
1031 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1032 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1033 fvdw12 = _mm_mul_pd(c12_00,FF);
1034 fvdw = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1036 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
1038 fscal = _mm_add_pd(felec,fvdw);
1040 fscal = _mm_and_pd(fscal,cutoff_mask);
1042 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1044 /* Calculate temporary vectorial force */
1045 tx = _mm_mul_pd(fscal,dx00);
1046 ty = _mm_mul_pd(fscal,dy00);
1047 tz = _mm_mul_pd(fscal,dz00);
1049 /* Update vectorial force */
1050 fix0 = _mm_add_pd(fix0,tx);
1051 fiy0 = _mm_add_pd(fiy0,ty);
1052 fiz0 = _mm_add_pd(fiz0,tz);
1054 fjx0 = _mm_add_pd(fjx0,tx);
1055 fjy0 = _mm_add_pd(fjy0,ty);
1056 fjz0 = _mm_add_pd(fjz0,tz);
1060 /**************************
1061 * CALCULATE INTERACTIONS *
1062 **************************/
1064 if (gmx_mm_any_lt(rsq10,rcutoff2))
1067 /* Compute parameters for interactions between i and j atoms */
1068 qq10 = _mm_mul_pd(iq1,jq0);
1070 /* REACTION-FIELD ELECTROSTATICS */
1071 felec = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1073 cutoff_mask = _mm_cmplt_pd(rsq10,rcutoff2);
1075 fscal = felec;
1077 fscal = _mm_and_pd(fscal,cutoff_mask);
1079 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1081 /* Calculate temporary vectorial force */
1082 tx = _mm_mul_pd(fscal,dx10);
1083 ty = _mm_mul_pd(fscal,dy10);
1084 tz = _mm_mul_pd(fscal,dz10);
1086 /* Update vectorial force */
1087 fix1 = _mm_add_pd(fix1,tx);
1088 fiy1 = _mm_add_pd(fiy1,ty);
1089 fiz1 = _mm_add_pd(fiz1,tz);
1091 fjx0 = _mm_add_pd(fjx0,tx);
1092 fjy0 = _mm_add_pd(fjy0,ty);
1093 fjz0 = _mm_add_pd(fjz0,tz);
1097 /**************************
1098 * CALCULATE INTERACTIONS *
1099 **************************/
1101 if (gmx_mm_any_lt(rsq20,rcutoff2))
1104 /* Compute parameters for interactions between i and j atoms */
1105 qq20 = _mm_mul_pd(iq2,jq0);
1107 /* REACTION-FIELD ELECTROSTATICS */
1108 felec = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1110 cutoff_mask = _mm_cmplt_pd(rsq20,rcutoff2);
1112 fscal = felec;
1114 fscal = _mm_and_pd(fscal,cutoff_mask);
1116 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1118 /* Calculate temporary vectorial force */
1119 tx = _mm_mul_pd(fscal,dx20);
1120 ty = _mm_mul_pd(fscal,dy20);
1121 tz = _mm_mul_pd(fscal,dz20);
1123 /* Update vectorial force */
1124 fix2 = _mm_add_pd(fix2,tx);
1125 fiy2 = _mm_add_pd(fiy2,ty);
1126 fiz2 = _mm_add_pd(fiz2,tz);
1128 fjx0 = _mm_add_pd(fjx0,tx);
1129 fjy0 = _mm_add_pd(fjy0,ty);
1130 fjz0 = _mm_add_pd(fjz0,tz);
1134 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1136 /* Inner loop uses 120 flops */
1139 /* End of innermost loop */
1141 gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1142 f+i_coord_offset,fshift+i_shift_offset);
1144 /* Increment number of inner iterations */
1145 inneriter += j_index_end - j_index_start;
1147 /* Outer loop uses 18 flops */
1150 /* Increment number of outer iterations */
1151 outeriter += nri;
1153 /* Update outer/inner flops */
1155 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*120);