Double precision SSE2 kernels
[gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJ_GeomW4P1_sse2_double.c
blobf62b4651e5c770ec39d5fc926bac61bab28bc5c6
1 /*
2 * Note: this file was generated by the Gromacs sse2_double kernel generator.
4 * This source code is part of
6 * G R O M A C S
8 * Copyright (c) 2001-2012, The GROMACS Development Team
10 * Gromacs is a library for molecular simulation and trajectory analysis,
11 * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12 * a full list of developers and information, check out http://www.gromacs.org
14 * This program is free software; you can redistribute it and/or modify it under
15 * the terms of the GNU Lesser General Public License as published by the Free
16 * Software Foundation; either version 2 of the License, or (at your option) any
17 * later version.
19 * To help fund GROMACS development, we humbly ask that you cite
20 * the papers people have written on it - you can find them on the website.
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
26 #include <math.h>
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
37 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse2_double
38 * Electrostatics interaction: Ewald
39 * VdW interaction: LennardJones
40 * Geometry: Water4-Particle
41 * Calculate force/pot: PotentialAndForce
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse2_double
45 (t_nblist * gmx_restrict nlist,
46 rvec * gmx_restrict xx,
47 rvec * gmx_restrict ff,
48 t_forcerec * gmx_restrict fr,
49 t_mdatoms * gmx_restrict mdatoms,
50 nb_kernel_data_t * gmx_restrict kernel_data,
51 t_nrnb * gmx_restrict nrnb)
53 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54 * just 0 for non-waters.
55 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56 * jnr indices corresponding to data put in the four positions in the SIMD register.
58 int i_shift_offset,i_coord_offset,outeriter,inneriter;
59 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60 int jnrA,jnrB;
61 int j_coord_offsetA,j_coord_offsetB;
62 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
63 real rcutoff_scalar;
64 real *shiftvec,*fshift,*x,*f;
65 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66 int vdwioffset0;
67 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68 int vdwioffset1;
69 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70 int vdwioffset2;
71 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72 int vdwioffset3;
73 __m128d ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74 int vdwjidx0A,vdwjidx0B;
75 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79 __m128d dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
81 real *charge;
82 int nvdwtype;
83 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84 int *vdwtype;
85 real *vdwparam;
86 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
87 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
88 __m128i ewitab;
89 __m128d ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90 real *ewtab;
91 __m128d dummy_mask,cutoff_mask;
92 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
93 __m128d one = _mm_set1_pd(1.0);
94 __m128d two = _mm_set1_pd(2.0);
95 x = xx[0];
96 f = ff[0];
98 nri = nlist->nri;
99 iinr = nlist->iinr;
100 jindex = nlist->jindex;
101 jjnr = nlist->jjnr;
102 shiftidx = nlist->shift;
103 gid = nlist->gid;
104 shiftvec = fr->shift_vec[0];
105 fshift = fr->fshift[0];
106 facel = _mm_set1_pd(fr->epsfac);
107 charge = mdatoms->chargeA;
108 nvdwtype = fr->ntype;
109 vdwparam = fr->nbfp;
110 vdwtype = mdatoms->typeA;
112 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
113 ewtab = fr->ic->tabq_coul_FDV0;
114 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
115 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
117 /* Setup water-specific parameters */
118 inr = nlist->iinr[0];
119 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
120 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
121 iq3 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
122 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
124 /* Avoid stupid compiler warnings */
125 jnrA = jnrB = 0;
126 j_coord_offsetA = 0;
127 j_coord_offsetB = 0;
129 outeriter = 0;
130 inneriter = 0;
132 /* Start outer loop over neighborlists */
133 for(iidx=0; iidx<nri; iidx++)
135 /* Load shift vector for this list */
136 i_shift_offset = DIM*shiftidx[iidx];
138 /* Load limits for loop over neighbors */
139 j_index_start = jindex[iidx];
140 j_index_end = jindex[iidx+1];
142 /* Get outer coordinate index */
143 inr = iinr[iidx];
144 i_coord_offset = DIM*inr;
146 /* Load i particle coords and add shift vector */
147 gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
148 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
150 fix0 = _mm_setzero_pd();
151 fiy0 = _mm_setzero_pd();
152 fiz0 = _mm_setzero_pd();
153 fix1 = _mm_setzero_pd();
154 fiy1 = _mm_setzero_pd();
155 fiz1 = _mm_setzero_pd();
156 fix2 = _mm_setzero_pd();
157 fiy2 = _mm_setzero_pd();
158 fiz2 = _mm_setzero_pd();
159 fix3 = _mm_setzero_pd();
160 fiy3 = _mm_setzero_pd();
161 fiz3 = _mm_setzero_pd();
163 /* Reset potential sums */
164 velecsum = _mm_setzero_pd();
165 vvdwsum = _mm_setzero_pd();
167 /* Start inner kernel loop */
168 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
171 /* Get j neighbor index, and coordinate index */
172 jnrA = jjnr[jidx];
173 jnrB = jjnr[jidx+1];
174 j_coord_offsetA = DIM*jnrA;
175 j_coord_offsetB = DIM*jnrB;
177 /* load j atom coordinates */
178 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
179 &jx0,&jy0,&jz0);
181 /* Calculate displacement vector */
182 dx00 = _mm_sub_pd(ix0,jx0);
183 dy00 = _mm_sub_pd(iy0,jy0);
184 dz00 = _mm_sub_pd(iz0,jz0);
185 dx10 = _mm_sub_pd(ix1,jx0);
186 dy10 = _mm_sub_pd(iy1,jy0);
187 dz10 = _mm_sub_pd(iz1,jz0);
188 dx20 = _mm_sub_pd(ix2,jx0);
189 dy20 = _mm_sub_pd(iy2,jy0);
190 dz20 = _mm_sub_pd(iz2,jz0);
191 dx30 = _mm_sub_pd(ix3,jx0);
192 dy30 = _mm_sub_pd(iy3,jy0);
193 dz30 = _mm_sub_pd(iz3,jz0);
195 /* Calculate squared distance and things based on it */
196 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
197 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
198 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
199 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
201 rinv10 = gmx_mm_invsqrt_pd(rsq10);
202 rinv20 = gmx_mm_invsqrt_pd(rsq20);
203 rinv30 = gmx_mm_invsqrt_pd(rsq30);
205 rinvsq00 = gmx_mm_inv_pd(rsq00);
206 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
207 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
208 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
210 /* Load parameters for j particles */
211 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
212 vdwjidx0A = 2*vdwtype[jnrA+0];
213 vdwjidx0B = 2*vdwtype[jnrB+0];
215 fjx0 = _mm_setzero_pd();
216 fjy0 = _mm_setzero_pd();
217 fjz0 = _mm_setzero_pd();
219 /**************************
220 * CALCULATE INTERACTIONS *
221 **************************/
223 /* Compute parameters for interactions between i and j atoms */
224 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
225 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
227 /* LENNARD-JONES DISPERSION/REPULSION */
229 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
230 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
231 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
232 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
233 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
235 /* Update potential sum for this i atom from the interaction with this j atom. */
236 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
238 fscal = fvdw;
240 /* Calculate temporary vectorial force */
241 tx = _mm_mul_pd(fscal,dx00);
242 ty = _mm_mul_pd(fscal,dy00);
243 tz = _mm_mul_pd(fscal,dz00);
245 /* Update vectorial force */
246 fix0 = _mm_add_pd(fix0,tx);
247 fiy0 = _mm_add_pd(fiy0,ty);
248 fiz0 = _mm_add_pd(fiz0,tz);
250 fjx0 = _mm_add_pd(fjx0,tx);
251 fjy0 = _mm_add_pd(fjy0,ty);
252 fjz0 = _mm_add_pd(fjz0,tz);
254 /**************************
255 * CALCULATE INTERACTIONS *
256 **************************/
258 r10 = _mm_mul_pd(rsq10,rinv10);
260 /* Compute parameters for interactions between i and j atoms */
261 qq10 = _mm_mul_pd(iq1,jq0);
263 /* EWALD ELECTROSTATICS */
265 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
266 ewrt = _mm_mul_pd(r10,ewtabscale);
267 ewitab = _mm_cvttpd_epi32(ewrt);
268 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
269 ewitab = _mm_slli_epi32(ewitab,2);
270 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
271 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
272 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
273 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
274 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
275 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
276 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
277 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
278 velec = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
279 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
281 /* Update potential sum for this i atom from the interaction with this j atom. */
282 velecsum = _mm_add_pd(velecsum,velec);
284 fscal = felec;
286 /* Calculate temporary vectorial force */
287 tx = _mm_mul_pd(fscal,dx10);
288 ty = _mm_mul_pd(fscal,dy10);
289 tz = _mm_mul_pd(fscal,dz10);
291 /* Update vectorial force */
292 fix1 = _mm_add_pd(fix1,tx);
293 fiy1 = _mm_add_pd(fiy1,ty);
294 fiz1 = _mm_add_pd(fiz1,tz);
296 fjx0 = _mm_add_pd(fjx0,tx);
297 fjy0 = _mm_add_pd(fjy0,ty);
298 fjz0 = _mm_add_pd(fjz0,tz);
300 /**************************
301 * CALCULATE INTERACTIONS *
302 **************************/
304 r20 = _mm_mul_pd(rsq20,rinv20);
306 /* Compute parameters for interactions between i and j atoms */
307 qq20 = _mm_mul_pd(iq2,jq0);
309 /* EWALD ELECTROSTATICS */
311 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312 ewrt = _mm_mul_pd(r20,ewtabscale);
313 ewitab = _mm_cvttpd_epi32(ewrt);
314 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
315 ewitab = _mm_slli_epi32(ewitab,2);
316 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
317 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
318 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
319 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
320 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
321 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
322 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
323 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
324 velec = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
325 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
327 /* Update potential sum for this i atom from the interaction with this j atom. */
328 velecsum = _mm_add_pd(velecsum,velec);
330 fscal = felec;
332 /* Calculate temporary vectorial force */
333 tx = _mm_mul_pd(fscal,dx20);
334 ty = _mm_mul_pd(fscal,dy20);
335 tz = _mm_mul_pd(fscal,dz20);
337 /* Update vectorial force */
338 fix2 = _mm_add_pd(fix2,tx);
339 fiy2 = _mm_add_pd(fiy2,ty);
340 fiz2 = _mm_add_pd(fiz2,tz);
342 fjx0 = _mm_add_pd(fjx0,tx);
343 fjy0 = _mm_add_pd(fjy0,ty);
344 fjz0 = _mm_add_pd(fjz0,tz);
346 /**************************
347 * CALCULATE INTERACTIONS *
348 **************************/
350 r30 = _mm_mul_pd(rsq30,rinv30);
352 /* Compute parameters for interactions between i and j atoms */
353 qq30 = _mm_mul_pd(iq3,jq0);
355 /* EWALD ELECTROSTATICS */
357 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
358 ewrt = _mm_mul_pd(r30,ewtabscale);
359 ewitab = _mm_cvttpd_epi32(ewrt);
360 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
361 ewitab = _mm_slli_epi32(ewitab,2);
362 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
363 ewtabD = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
364 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
365 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
366 ewtabFn = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
367 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
368 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
369 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
370 velec = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
371 felec = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
373 /* Update potential sum for this i atom from the interaction with this j atom. */
374 velecsum = _mm_add_pd(velecsum,velec);
376 fscal = felec;
378 /* Calculate temporary vectorial force */
379 tx = _mm_mul_pd(fscal,dx30);
380 ty = _mm_mul_pd(fscal,dy30);
381 tz = _mm_mul_pd(fscal,dz30);
383 /* Update vectorial force */
384 fix3 = _mm_add_pd(fix3,tx);
385 fiy3 = _mm_add_pd(fiy3,ty);
386 fiz3 = _mm_add_pd(fiz3,tz);
388 fjx0 = _mm_add_pd(fjx0,tx);
389 fjy0 = _mm_add_pd(fjy0,ty);
390 fjz0 = _mm_add_pd(fjz0,tz);
392 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
394 /* Inner loop uses 158 flops */
397 if(jidx<j_index_end)
400 jnrA = jjnr[jidx];
401 j_coord_offsetA = DIM*jnrA;
403 /* load j atom coordinates */
404 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
405 &jx0,&jy0,&jz0);
407 /* Calculate displacement vector */
408 dx00 = _mm_sub_pd(ix0,jx0);
409 dy00 = _mm_sub_pd(iy0,jy0);
410 dz00 = _mm_sub_pd(iz0,jz0);
411 dx10 = _mm_sub_pd(ix1,jx0);
412 dy10 = _mm_sub_pd(iy1,jy0);
413 dz10 = _mm_sub_pd(iz1,jz0);
414 dx20 = _mm_sub_pd(ix2,jx0);
415 dy20 = _mm_sub_pd(iy2,jy0);
416 dz20 = _mm_sub_pd(iz2,jz0);
417 dx30 = _mm_sub_pd(ix3,jx0);
418 dy30 = _mm_sub_pd(iy3,jy0);
419 dz30 = _mm_sub_pd(iz3,jz0);
421 /* Calculate squared distance and things based on it */
422 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
423 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
424 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
425 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
427 rinv10 = gmx_mm_invsqrt_pd(rsq10);
428 rinv20 = gmx_mm_invsqrt_pd(rsq20);
429 rinv30 = gmx_mm_invsqrt_pd(rsq30);
431 rinvsq00 = gmx_mm_inv_pd(rsq00);
432 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
433 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
434 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
436 /* Load parameters for j particles */
437 jq0 = _mm_load_sd(charge+jnrA+0);
438 vdwjidx0A = 2*vdwtype[jnrA+0];
440 fjx0 = _mm_setzero_pd();
441 fjy0 = _mm_setzero_pd();
442 fjz0 = _mm_setzero_pd();
444 /**************************
445 * CALCULATE INTERACTIONS *
446 **************************/
448 /* Compute parameters for interactions between i and j atoms */
449 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
451 /* LENNARD-JONES DISPERSION/REPULSION */
453 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
454 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
455 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
456 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
457 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
459 /* Update potential sum for this i atom from the interaction with this j atom. */
460 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
461 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
463 fscal = fvdw;
465 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
467 /* Calculate temporary vectorial force */
468 tx = _mm_mul_pd(fscal,dx00);
469 ty = _mm_mul_pd(fscal,dy00);
470 tz = _mm_mul_pd(fscal,dz00);
472 /* Update vectorial force */
473 fix0 = _mm_add_pd(fix0,tx);
474 fiy0 = _mm_add_pd(fiy0,ty);
475 fiz0 = _mm_add_pd(fiz0,tz);
477 fjx0 = _mm_add_pd(fjx0,tx);
478 fjy0 = _mm_add_pd(fjy0,ty);
479 fjz0 = _mm_add_pd(fjz0,tz);
481 /**************************
482 * CALCULATE INTERACTIONS *
483 **************************/
485 r10 = _mm_mul_pd(rsq10,rinv10);
487 /* Compute parameters for interactions between i and j atoms */
488 qq10 = _mm_mul_pd(iq1,jq0);
490 /* EWALD ELECTROSTATICS */
492 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
493 ewrt = _mm_mul_pd(r10,ewtabscale);
494 ewitab = _mm_cvttpd_epi32(ewrt);
495 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
496 ewitab = _mm_slli_epi32(ewitab,2);
497 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
498 ewtabD = _mm_setzero_pd();
499 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
500 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
501 ewtabFn = _mm_setzero_pd();
502 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
503 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
504 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
505 velec = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
506 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
508 /* Update potential sum for this i atom from the interaction with this j atom. */
509 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
510 velecsum = _mm_add_pd(velecsum,velec);
512 fscal = felec;
514 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
516 /* Calculate temporary vectorial force */
517 tx = _mm_mul_pd(fscal,dx10);
518 ty = _mm_mul_pd(fscal,dy10);
519 tz = _mm_mul_pd(fscal,dz10);
521 /* Update vectorial force */
522 fix1 = _mm_add_pd(fix1,tx);
523 fiy1 = _mm_add_pd(fiy1,ty);
524 fiz1 = _mm_add_pd(fiz1,tz);
526 fjx0 = _mm_add_pd(fjx0,tx);
527 fjy0 = _mm_add_pd(fjy0,ty);
528 fjz0 = _mm_add_pd(fjz0,tz);
530 /**************************
531 * CALCULATE INTERACTIONS *
532 **************************/
534 r20 = _mm_mul_pd(rsq20,rinv20);
536 /* Compute parameters for interactions between i and j atoms */
537 qq20 = _mm_mul_pd(iq2,jq0);
539 /* EWALD ELECTROSTATICS */
541 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
542 ewrt = _mm_mul_pd(r20,ewtabscale);
543 ewitab = _mm_cvttpd_epi32(ewrt);
544 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
545 ewitab = _mm_slli_epi32(ewitab,2);
546 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
547 ewtabD = _mm_setzero_pd();
548 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
549 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
550 ewtabFn = _mm_setzero_pd();
551 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
552 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
553 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
554 velec = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
555 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
557 /* Update potential sum for this i atom from the interaction with this j atom. */
558 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
559 velecsum = _mm_add_pd(velecsum,velec);
561 fscal = felec;
563 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
565 /* Calculate temporary vectorial force */
566 tx = _mm_mul_pd(fscal,dx20);
567 ty = _mm_mul_pd(fscal,dy20);
568 tz = _mm_mul_pd(fscal,dz20);
570 /* Update vectorial force */
571 fix2 = _mm_add_pd(fix2,tx);
572 fiy2 = _mm_add_pd(fiy2,ty);
573 fiz2 = _mm_add_pd(fiz2,tz);
575 fjx0 = _mm_add_pd(fjx0,tx);
576 fjy0 = _mm_add_pd(fjy0,ty);
577 fjz0 = _mm_add_pd(fjz0,tz);
579 /**************************
580 * CALCULATE INTERACTIONS *
581 **************************/
583 r30 = _mm_mul_pd(rsq30,rinv30);
585 /* Compute parameters for interactions between i and j atoms */
586 qq30 = _mm_mul_pd(iq3,jq0);
588 /* EWALD ELECTROSTATICS */
590 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
591 ewrt = _mm_mul_pd(r30,ewtabscale);
592 ewitab = _mm_cvttpd_epi32(ewrt);
593 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
594 ewitab = _mm_slli_epi32(ewitab,2);
595 ewtabF = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
596 ewtabD = _mm_setzero_pd();
597 GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
598 ewtabV = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
599 ewtabFn = _mm_setzero_pd();
600 GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
601 felec = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
602 velec = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
603 velec = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
604 felec = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
606 /* Update potential sum for this i atom from the interaction with this j atom. */
607 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
608 velecsum = _mm_add_pd(velecsum,velec);
610 fscal = felec;
612 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
614 /* Calculate temporary vectorial force */
615 tx = _mm_mul_pd(fscal,dx30);
616 ty = _mm_mul_pd(fscal,dy30);
617 tz = _mm_mul_pd(fscal,dz30);
619 /* Update vectorial force */
620 fix3 = _mm_add_pd(fix3,tx);
621 fiy3 = _mm_add_pd(fiy3,ty);
622 fiz3 = _mm_add_pd(fiz3,tz);
624 fjx0 = _mm_add_pd(fjx0,tx);
625 fjy0 = _mm_add_pd(fjy0,ty);
626 fjz0 = _mm_add_pd(fjz0,tz);
628 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
630 /* Inner loop uses 158 flops */
633 /* End of innermost loop */
635 gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
636 f+i_coord_offset,fshift+i_shift_offset);
638 ggid = gid[iidx];
639 /* Update potential energies */
640 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
641 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
643 /* Increment number of inner iterations */
644 inneriter += j_index_end - j_index_start;
646 /* Outer loop uses 26 flops */
649 /* Increment number of outer iterations */
650 outeriter += nri;
652 /* Update outer/inner flops */
654 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*158);
657 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse2_double
658 * Electrostatics interaction: Ewald
659 * VdW interaction: LennardJones
660 * Geometry: Water4-Particle
661 * Calculate force/pot: Force
663 void
664 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse2_double
665 (t_nblist * gmx_restrict nlist,
666 rvec * gmx_restrict xx,
667 rvec * gmx_restrict ff,
668 t_forcerec * gmx_restrict fr,
669 t_mdatoms * gmx_restrict mdatoms,
670 nb_kernel_data_t * gmx_restrict kernel_data,
671 t_nrnb * gmx_restrict nrnb)
673 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
674 * just 0 for non-waters.
675 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
676 * jnr indices corresponding to data put in the four positions in the SIMD register.
678 int i_shift_offset,i_coord_offset,outeriter,inneriter;
679 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
680 int jnrA,jnrB;
681 int j_coord_offsetA,j_coord_offsetB;
682 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
683 real rcutoff_scalar;
684 real *shiftvec,*fshift,*x,*f;
685 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
686 int vdwioffset0;
687 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
688 int vdwioffset1;
689 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
690 int vdwioffset2;
691 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
692 int vdwioffset3;
693 __m128d ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
694 int vdwjidx0A,vdwjidx0B;
695 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
696 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
697 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
698 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
699 __m128d dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
700 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
701 real *charge;
702 int nvdwtype;
703 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
704 int *vdwtype;
705 real *vdwparam;
706 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
707 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
708 __m128i ewitab;
709 __m128d ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
710 real *ewtab;
711 __m128d dummy_mask,cutoff_mask;
712 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
713 __m128d one = _mm_set1_pd(1.0);
714 __m128d two = _mm_set1_pd(2.0);
715 x = xx[0];
716 f = ff[0];
718 nri = nlist->nri;
719 iinr = nlist->iinr;
720 jindex = nlist->jindex;
721 jjnr = nlist->jjnr;
722 shiftidx = nlist->shift;
723 gid = nlist->gid;
724 shiftvec = fr->shift_vec[0];
725 fshift = fr->fshift[0];
726 facel = _mm_set1_pd(fr->epsfac);
727 charge = mdatoms->chargeA;
728 nvdwtype = fr->ntype;
729 vdwparam = fr->nbfp;
730 vdwtype = mdatoms->typeA;
732 sh_ewald = _mm_set1_pd(fr->ic->sh_ewald);
733 ewtab = fr->ic->tabq_coul_F;
734 ewtabscale = _mm_set1_pd(fr->ic->tabq_scale);
735 ewtabhalfspace = _mm_set1_pd(0.5/fr->ic->tabq_scale);
737 /* Setup water-specific parameters */
738 inr = nlist->iinr[0];
739 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
740 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
741 iq3 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
742 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
744 /* Avoid stupid compiler warnings */
745 jnrA = jnrB = 0;
746 j_coord_offsetA = 0;
747 j_coord_offsetB = 0;
749 outeriter = 0;
750 inneriter = 0;
752 /* Start outer loop over neighborlists */
753 for(iidx=0; iidx<nri; iidx++)
755 /* Load shift vector for this list */
756 i_shift_offset = DIM*shiftidx[iidx];
758 /* Load limits for loop over neighbors */
759 j_index_start = jindex[iidx];
760 j_index_end = jindex[iidx+1];
762 /* Get outer coordinate index */
763 inr = iinr[iidx];
764 i_coord_offset = DIM*inr;
766 /* Load i particle coords and add shift vector */
767 gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
768 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
770 fix0 = _mm_setzero_pd();
771 fiy0 = _mm_setzero_pd();
772 fiz0 = _mm_setzero_pd();
773 fix1 = _mm_setzero_pd();
774 fiy1 = _mm_setzero_pd();
775 fiz1 = _mm_setzero_pd();
776 fix2 = _mm_setzero_pd();
777 fiy2 = _mm_setzero_pd();
778 fiz2 = _mm_setzero_pd();
779 fix3 = _mm_setzero_pd();
780 fiy3 = _mm_setzero_pd();
781 fiz3 = _mm_setzero_pd();
783 /* Start inner kernel loop */
784 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
787 /* Get j neighbor index, and coordinate index */
788 jnrA = jjnr[jidx];
789 jnrB = jjnr[jidx+1];
790 j_coord_offsetA = DIM*jnrA;
791 j_coord_offsetB = DIM*jnrB;
793 /* load j atom coordinates */
794 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
795 &jx0,&jy0,&jz0);
797 /* Calculate displacement vector */
798 dx00 = _mm_sub_pd(ix0,jx0);
799 dy00 = _mm_sub_pd(iy0,jy0);
800 dz00 = _mm_sub_pd(iz0,jz0);
801 dx10 = _mm_sub_pd(ix1,jx0);
802 dy10 = _mm_sub_pd(iy1,jy0);
803 dz10 = _mm_sub_pd(iz1,jz0);
804 dx20 = _mm_sub_pd(ix2,jx0);
805 dy20 = _mm_sub_pd(iy2,jy0);
806 dz20 = _mm_sub_pd(iz2,jz0);
807 dx30 = _mm_sub_pd(ix3,jx0);
808 dy30 = _mm_sub_pd(iy3,jy0);
809 dz30 = _mm_sub_pd(iz3,jz0);
811 /* Calculate squared distance and things based on it */
812 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
813 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
814 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
815 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
817 rinv10 = gmx_mm_invsqrt_pd(rsq10);
818 rinv20 = gmx_mm_invsqrt_pd(rsq20);
819 rinv30 = gmx_mm_invsqrt_pd(rsq30);
821 rinvsq00 = gmx_mm_inv_pd(rsq00);
822 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
823 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
824 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
826 /* Load parameters for j particles */
827 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
828 vdwjidx0A = 2*vdwtype[jnrA+0];
829 vdwjidx0B = 2*vdwtype[jnrB+0];
831 fjx0 = _mm_setzero_pd();
832 fjy0 = _mm_setzero_pd();
833 fjz0 = _mm_setzero_pd();
835 /**************************
836 * CALCULATE INTERACTIONS *
837 **************************/
839 /* Compute parameters for interactions between i and j atoms */
840 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
841 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
843 /* LENNARD-JONES DISPERSION/REPULSION */
845 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
846 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
848 fscal = fvdw;
850 /* Calculate temporary vectorial force */
851 tx = _mm_mul_pd(fscal,dx00);
852 ty = _mm_mul_pd(fscal,dy00);
853 tz = _mm_mul_pd(fscal,dz00);
855 /* Update vectorial force */
856 fix0 = _mm_add_pd(fix0,tx);
857 fiy0 = _mm_add_pd(fiy0,ty);
858 fiz0 = _mm_add_pd(fiz0,tz);
860 fjx0 = _mm_add_pd(fjx0,tx);
861 fjy0 = _mm_add_pd(fjy0,ty);
862 fjz0 = _mm_add_pd(fjz0,tz);
864 /**************************
865 * CALCULATE INTERACTIONS *
866 **************************/
868 r10 = _mm_mul_pd(rsq10,rinv10);
870 /* Compute parameters for interactions between i and j atoms */
871 qq10 = _mm_mul_pd(iq1,jq0);
873 /* EWALD ELECTROSTATICS */
875 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
876 ewrt = _mm_mul_pd(r10,ewtabscale);
877 ewitab = _mm_cvttpd_epi32(ewrt);
878 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
879 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
880 &ewtabF,&ewtabFn);
881 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
882 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
884 fscal = felec;
886 /* Calculate temporary vectorial force */
887 tx = _mm_mul_pd(fscal,dx10);
888 ty = _mm_mul_pd(fscal,dy10);
889 tz = _mm_mul_pd(fscal,dz10);
891 /* Update vectorial force */
892 fix1 = _mm_add_pd(fix1,tx);
893 fiy1 = _mm_add_pd(fiy1,ty);
894 fiz1 = _mm_add_pd(fiz1,tz);
896 fjx0 = _mm_add_pd(fjx0,tx);
897 fjy0 = _mm_add_pd(fjy0,ty);
898 fjz0 = _mm_add_pd(fjz0,tz);
900 /**************************
901 * CALCULATE INTERACTIONS *
902 **************************/
904 r20 = _mm_mul_pd(rsq20,rinv20);
906 /* Compute parameters for interactions between i and j atoms */
907 qq20 = _mm_mul_pd(iq2,jq0);
909 /* EWALD ELECTROSTATICS */
911 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
912 ewrt = _mm_mul_pd(r20,ewtabscale);
913 ewitab = _mm_cvttpd_epi32(ewrt);
914 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
915 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
916 &ewtabF,&ewtabFn);
917 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
918 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
920 fscal = felec;
922 /* Calculate temporary vectorial force */
923 tx = _mm_mul_pd(fscal,dx20);
924 ty = _mm_mul_pd(fscal,dy20);
925 tz = _mm_mul_pd(fscal,dz20);
927 /* Update vectorial force */
928 fix2 = _mm_add_pd(fix2,tx);
929 fiy2 = _mm_add_pd(fiy2,ty);
930 fiz2 = _mm_add_pd(fiz2,tz);
932 fjx0 = _mm_add_pd(fjx0,tx);
933 fjy0 = _mm_add_pd(fjy0,ty);
934 fjz0 = _mm_add_pd(fjz0,tz);
936 /**************************
937 * CALCULATE INTERACTIONS *
938 **************************/
940 r30 = _mm_mul_pd(rsq30,rinv30);
942 /* Compute parameters for interactions between i and j atoms */
943 qq30 = _mm_mul_pd(iq3,jq0);
945 /* EWALD ELECTROSTATICS */
947 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
948 ewrt = _mm_mul_pd(r30,ewtabscale);
949 ewitab = _mm_cvttpd_epi32(ewrt);
950 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
951 gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
952 &ewtabF,&ewtabFn);
953 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
954 felec = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
956 fscal = felec;
958 /* Calculate temporary vectorial force */
959 tx = _mm_mul_pd(fscal,dx30);
960 ty = _mm_mul_pd(fscal,dy30);
961 tz = _mm_mul_pd(fscal,dz30);
963 /* Update vectorial force */
964 fix3 = _mm_add_pd(fix3,tx);
965 fiy3 = _mm_add_pd(fiy3,ty);
966 fiz3 = _mm_add_pd(fiz3,tz);
968 fjx0 = _mm_add_pd(fjx0,tx);
969 fjy0 = _mm_add_pd(fjy0,ty);
970 fjz0 = _mm_add_pd(fjz0,tz);
972 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
974 /* Inner loop uses 138 flops */
977 if(jidx<j_index_end)
980 jnrA = jjnr[jidx];
981 j_coord_offsetA = DIM*jnrA;
983 /* load j atom coordinates */
984 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
985 &jx0,&jy0,&jz0);
987 /* Calculate displacement vector */
988 dx00 = _mm_sub_pd(ix0,jx0);
989 dy00 = _mm_sub_pd(iy0,jy0);
990 dz00 = _mm_sub_pd(iz0,jz0);
991 dx10 = _mm_sub_pd(ix1,jx0);
992 dy10 = _mm_sub_pd(iy1,jy0);
993 dz10 = _mm_sub_pd(iz1,jz0);
994 dx20 = _mm_sub_pd(ix2,jx0);
995 dy20 = _mm_sub_pd(iy2,jy0);
996 dz20 = _mm_sub_pd(iz2,jz0);
997 dx30 = _mm_sub_pd(ix3,jx0);
998 dy30 = _mm_sub_pd(iy3,jy0);
999 dz30 = _mm_sub_pd(iz3,jz0);
1001 /* Calculate squared distance and things based on it */
1002 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1003 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1004 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1005 rsq30 = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1007 rinv10 = gmx_mm_invsqrt_pd(rsq10);
1008 rinv20 = gmx_mm_invsqrt_pd(rsq20);
1009 rinv30 = gmx_mm_invsqrt_pd(rsq30);
1011 rinvsq00 = gmx_mm_inv_pd(rsq00);
1012 rinvsq10 = _mm_mul_pd(rinv10,rinv10);
1013 rinvsq20 = _mm_mul_pd(rinv20,rinv20);
1014 rinvsq30 = _mm_mul_pd(rinv30,rinv30);
1016 /* Load parameters for j particles */
1017 jq0 = _mm_load_sd(charge+jnrA+0);
1018 vdwjidx0A = 2*vdwtype[jnrA+0];
1020 fjx0 = _mm_setzero_pd();
1021 fjy0 = _mm_setzero_pd();
1022 fjz0 = _mm_setzero_pd();
1024 /**************************
1025 * CALCULATE INTERACTIONS *
1026 **************************/
1028 /* Compute parameters for interactions between i and j atoms */
1029 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1031 /* LENNARD-JONES DISPERSION/REPULSION */
1033 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1034 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1036 fscal = fvdw;
1038 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1040 /* Calculate temporary vectorial force */
1041 tx = _mm_mul_pd(fscal,dx00);
1042 ty = _mm_mul_pd(fscal,dy00);
1043 tz = _mm_mul_pd(fscal,dz00);
1045 /* Update vectorial force */
1046 fix0 = _mm_add_pd(fix0,tx);
1047 fiy0 = _mm_add_pd(fiy0,ty);
1048 fiz0 = _mm_add_pd(fiz0,tz);
1050 fjx0 = _mm_add_pd(fjx0,tx);
1051 fjy0 = _mm_add_pd(fjy0,ty);
1052 fjz0 = _mm_add_pd(fjz0,tz);
1054 /**************************
1055 * CALCULATE INTERACTIONS *
1056 **************************/
1058 r10 = _mm_mul_pd(rsq10,rinv10);
1060 /* Compute parameters for interactions between i and j atoms */
1061 qq10 = _mm_mul_pd(iq1,jq0);
1063 /* EWALD ELECTROSTATICS */
1065 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1066 ewrt = _mm_mul_pd(r10,ewtabscale);
1067 ewitab = _mm_cvttpd_epi32(ewrt);
1068 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1069 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1070 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1071 felec = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1073 fscal = felec;
1075 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1077 /* Calculate temporary vectorial force */
1078 tx = _mm_mul_pd(fscal,dx10);
1079 ty = _mm_mul_pd(fscal,dy10);
1080 tz = _mm_mul_pd(fscal,dz10);
1082 /* Update vectorial force */
1083 fix1 = _mm_add_pd(fix1,tx);
1084 fiy1 = _mm_add_pd(fiy1,ty);
1085 fiz1 = _mm_add_pd(fiz1,tz);
1087 fjx0 = _mm_add_pd(fjx0,tx);
1088 fjy0 = _mm_add_pd(fjy0,ty);
1089 fjz0 = _mm_add_pd(fjz0,tz);
1091 /**************************
1092 * CALCULATE INTERACTIONS *
1093 **************************/
1095 r20 = _mm_mul_pd(rsq20,rinv20);
1097 /* Compute parameters for interactions between i and j atoms */
1098 qq20 = _mm_mul_pd(iq2,jq0);
1100 /* EWALD ELECTROSTATICS */
1102 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1103 ewrt = _mm_mul_pd(r20,ewtabscale);
1104 ewitab = _mm_cvttpd_epi32(ewrt);
1105 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1106 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1107 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1108 felec = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1110 fscal = felec;
1112 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1114 /* Calculate temporary vectorial force */
1115 tx = _mm_mul_pd(fscal,dx20);
1116 ty = _mm_mul_pd(fscal,dy20);
1117 tz = _mm_mul_pd(fscal,dz20);
1119 /* Update vectorial force */
1120 fix2 = _mm_add_pd(fix2,tx);
1121 fiy2 = _mm_add_pd(fiy2,ty);
1122 fiz2 = _mm_add_pd(fiz2,tz);
1124 fjx0 = _mm_add_pd(fjx0,tx);
1125 fjy0 = _mm_add_pd(fjy0,ty);
1126 fjz0 = _mm_add_pd(fjz0,tz);
1128 /**************************
1129 * CALCULATE INTERACTIONS *
1130 **************************/
1132 r30 = _mm_mul_pd(rsq30,rinv30);
1134 /* Compute parameters for interactions between i and j atoms */
1135 qq30 = _mm_mul_pd(iq3,jq0);
1137 /* EWALD ELECTROSTATICS */
1139 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1140 ewrt = _mm_mul_pd(r30,ewtabscale);
1141 ewitab = _mm_cvttpd_epi32(ewrt);
1142 eweps = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1143 gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1144 felec = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1145 felec = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1147 fscal = felec;
1149 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1151 /* Calculate temporary vectorial force */
1152 tx = _mm_mul_pd(fscal,dx30);
1153 ty = _mm_mul_pd(fscal,dy30);
1154 tz = _mm_mul_pd(fscal,dz30);
1156 /* Update vectorial force */
1157 fix3 = _mm_add_pd(fix3,tx);
1158 fiy3 = _mm_add_pd(fiy3,ty);
1159 fiz3 = _mm_add_pd(fiz3,tz);
1161 fjx0 = _mm_add_pd(fjx0,tx);
1162 fjy0 = _mm_add_pd(fjy0,ty);
1163 fjz0 = _mm_add_pd(fjz0,tz);
1165 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1167 /* Inner loop uses 138 flops */
1170 /* End of innermost loop */
1172 gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1173 f+i_coord_offset,fshift+i_shift_offset);
1175 /* Increment number of inner iterations */
1176 inneriter += j_index_end - j_index_start;
1178 /* Outer loop uses 24 flops */
1181 /* Increment number of outer iterations */
1182 outeriter += nri;
1184 /* Update outer/inner flops */
1186 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*138);