Double precision SSE2 kernels
[gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_sse2_double.c
blob949600111a3c44e2d80230cee42668dceaf1ccb4
1 /*
2 * Note: this file was generated by the Gromacs sse2_double kernel generator.
4 * This source code is part of
6 * G R O M A C S
8 * Copyright (c) 2001-2012, The GROMACS Development Team
10 * Gromacs is a library for molecular simulation and trajectory analysis,
11 * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12 * a full list of developers and information, check out http://www.gromacs.org
14 * This program is free software; you can redistribute it and/or modify it under
15 * the terms of the GNU Lesser General Public License as published by the Free
16 * Software Foundation; either version 2 of the License, or (at your option) any
17 * later version.
19 * To help fund GROMACS development, we humbly ask that you cite
20 * the papers people have written on it - you can find them on the website.
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
26 #include <math.h>
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
37 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse2_double
38 * Electrostatics interaction: CubicSplineTable
39 * VdW interaction: LennardJones
40 * Geometry: Water3-Particle
41 * Calculate force/pot: PotentialAndForce
43 void
44 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse2_double
45 (t_nblist * gmx_restrict nlist,
46 rvec * gmx_restrict xx,
47 rvec * gmx_restrict ff,
48 t_forcerec * gmx_restrict fr,
49 t_mdatoms * gmx_restrict mdatoms,
50 nb_kernel_data_t * gmx_restrict kernel_data,
51 t_nrnb * gmx_restrict nrnb)
53 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54 * just 0 for non-waters.
55 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56 * jnr indices corresponding to data put in the four positions in the SIMD register.
58 int i_shift_offset,i_coord_offset,outeriter,inneriter;
59 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60 int jnrA,jnrB;
61 int j_coord_offsetA,j_coord_offsetB;
62 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
63 real rcutoff_scalar;
64 real *shiftvec,*fshift,*x,*f;
65 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66 int vdwioffset0;
67 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68 int vdwioffset1;
69 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70 int vdwioffset2;
71 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72 int vdwjidx0A,vdwjidx0B;
73 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int nvdwtype;
80 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81 int *vdwtype;
82 real *vdwparam;
83 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
84 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
85 __m128i vfitab;
86 __m128i ifour = _mm_set1_epi32(4);
87 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
88 real *vftab;
89 __m128d dummy_mask,cutoff_mask;
90 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
91 __m128d one = _mm_set1_pd(1.0);
92 __m128d two = _mm_set1_pd(2.0);
93 x = xx[0];
94 f = ff[0];
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = _mm_set1_pd(fr->epsfac);
105 charge = mdatoms->chargeA;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
110 vftab = kernel_data->table_elec->data;
111 vftabscale = _mm_set1_pd(kernel_data->table_elec->scale);
113 /* Setup water-specific parameters */
114 inr = nlist->iinr[0];
115 iq0 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
116 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
117 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
118 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
120 /* Avoid stupid compiler warnings */
121 jnrA = jnrB = 0;
122 j_coord_offsetA = 0;
123 j_coord_offsetB = 0;
125 outeriter = 0;
126 inneriter = 0;
128 /* Start outer loop over neighborlists */
129 for(iidx=0; iidx<nri; iidx++)
131 /* Load shift vector for this list */
132 i_shift_offset = DIM*shiftidx[iidx];
134 /* Load limits for loop over neighbors */
135 j_index_start = jindex[iidx];
136 j_index_end = jindex[iidx+1];
138 /* Get outer coordinate index */
139 inr = iinr[iidx];
140 i_coord_offset = DIM*inr;
142 /* Load i particle coords and add shift vector */
143 gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
144 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
146 fix0 = _mm_setzero_pd();
147 fiy0 = _mm_setzero_pd();
148 fiz0 = _mm_setzero_pd();
149 fix1 = _mm_setzero_pd();
150 fiy1 = _mm_setzero_pd();
151 fiz1 = _mm_setzero_pd();
152 fix2 = _mm_setzero_pd();
153 fiy2 = _mm_setzero_pd();
154 fiz2 = _mm_setzero_pd();
156 /* Reset potential sums */
157 velecsum = _mm_setzero_pd();
158 vvdwsum = _mm_setzero_pd();
160 /* Start inner kernel loop */
161 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
164 /* Get j neighbor index, and coordinate index */
165 jnrA = jjnr[jidx];
166 jnrB = jjnr[jidx+1];
167 j_coord_offsetA = DIM*jnrA;
168 j_coord_offsetB = DIM*jnrB;
170 /* load j atom coordinates */
171 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172 &jx0,&jy0,&jz0);
174 /* Calculate displacement vector */
175 dx00 = _mm_sub_pd(ix0,jx0);
176 dy00 = _mm_sub_pd(iy0,jy0);
177 dz00 = _mm_sub_pd(iz0,jz0);
178 dx10 = _mm_sub_pd(ix1,jx0);
179 dy10 = _mm_sub_pd(iy1,jy0);
180 dz10 = _mm_sub_pd(iz1,jz0);
181 dx20 = _mm_sub_pd(ix2,jx0);
182 dy20 = _mm_sub_pd(iy2,jy0);
183 dz20 = _mm_sub_pd(iz2,jz0);
185 /* Calculate squared distance and things based on it */
186 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
187 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
188 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
190 rinv00 = gmx_mm_invsqrt_pd(rsq00);
191 rinv10 = gmx_mm_invsqrt_pd(rsq10);
192 rinv20 = gmx_mm_invsqrt_pd(rsq20);
194 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
196 /* Load parameters for j particles */
197 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
198 vdwjidx0A = 2*vdwtype[jnrA+0];
199 vdwjidx0B = 2*vdwtype[jnrB+0];
201 fjx0 = _mm_setzero_pd();
202 fjy0 = _mm_setzero_pd();
203 fjz0 = _mm_setzero_pd();
205 /**************************
206 * CALCULATE INTERACTIONS *
207 **************************/
209 r00 = _mm_mul_pd(rsq00,rinv00);
211 /* Compute parameters for interactions between i and j atoms */
212 qq00 = _mm_mul_pd(iq0,jq0);
213 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
214 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
216 /* Calculate table index by multiplying r with table scale and truncate to integer */
217 rt = _mm_mul_pd(r00,vftabscale);
218 vfitab = _mm_cvttpd_epi32(rt);
219 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
220 vfitab = _mm_slli_epi32(vfitab,2);
222 /* CUBIC SPLINE TABLE ELECTROSTATICS */
223 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
224 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
225 GMX_MM_TRANSPOSE2_PD(Y,F);
226 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
227 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
228 GMX_MM_TRANSPOSE2_PD(G,H);
229 Heps = _mm_mul_pd(vfeps,H);
230 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
231 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
232 velec = _mm_mul_pd(qq00,VV);
233 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
234 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
236 /* LENNARD-JONES DISPERSION/REPULSION */
238 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
239 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
240 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
241 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
242 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
244 /* Update potential sum for this i atom from the interaction with this j atom. */
245 velecsum = _mm_add_pd(velecsum,velec);
246 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
248 fscal = _mm_add_pd(felec,fvdw);
250 /* Calculate temporary vectorial force */
251 tx = _mm_mul_pd(fscal,dx00);
252 ty = _mm_mul_pd(fscal,dy00);
253 tz = _mm_mul_pd(fscal,dz00);
255 /* Update vectorial force */
256 fix0 = _mm_add_pd(fix0,tx);
257 fiy0 = _mm_add_pd(fiy0,ty);
258 fiz0 = _mm_add_pd(fiz0,tz);
260 fjx0 = _mm_add_pd(fjx0,tx);
261 fjy0 = _mm_add_pd(fjy0,ty);
262 fjz0 = _mm_add_pd(fjz0,tz);
264 /**************************
265 * CALCULATE INTERACTIONS *
266 **************************/
268 r10 = _mm_mul_pd(rsq10,rinv10);
270 /* Compute parameters for interactions between i and j atoms */
271 qq10 = _mm_mul_pd(iq1,jq0);
273 /* Calculate table index by multiplying r with table scale and truncate to integer */
274 rt = _mm_mul_pd(r10,vftabscale);
275 vfitab = _mm_cvttpd_epi32(rt);
276 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
277 vfitab = _mm_slli_epi32(vfitab,2);
279 /* CUBIC SPLINE TABLE ELECTROSTATICS */
280 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
281 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
282 GMX_MM_TRANSPOSE2_PD(Y,F);
283 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
284 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
285 GMX_MM_TRANSPOSE2_PD(G,H);
286 Heps = _mm_mul_pd(vfeps,H);
287 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
288 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
289 velec = _mm_mul_pd(qq10,VV);
290 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
291 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
293 /* Update potential sum for this i atom from the interaction with this j atom. */
294 velecsum = _mm_add_pd(velecsum,velec);
296 fscal = felec;
298 /* Calculate temporary vectorial force */
299 tx = _mm_mul_pd(fscal,dx10);
300 ty = _mm_mul_pd(fscal,dy10);
301 tz = _mm_mul_pd(fscal,dz10);
303 /* Update vectorial force */
304 fix1 = _mm_add_pd(fix1,tx);
305 fiy1 = _mm_add_pd(fiy1,ty);
306 fiz1 = _mm_add_pd(fiz1,tz);
308 fjx0 = _mm_add_pd(fjx0,tx);
309 fjy0 = _mm_add_pd(fjy0,ty);
310 fjz0 = _mm_add_pd(fjz0,tz);
312 /**************************
313 * CALCULATE INTERACTIONS *
314 **************************/
316 r20 = _mm_mul_pd(rsq20,rinv20);
318 /* Compute parameters for interactions between i and j atoms */
319 qq20 = _mm_mul_pd(iq2,jq0);
321 /* Calculate table index by multiplying r with table scale and truncate to integer */
322 rt = _mm_mul_pd(r20,vftabscale);
323 vfitab = _mm_cvttpd_epi32(rt);
324 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
325 vfitab = _mm_slli_epi32(vfitab,2);
327 /* CUBIC SPLINE TABLE ELECTROSTATICS */
328 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
329 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
330 GMX_MM_TRANSPOSE2_PD(Y,F);
331 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
332 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
333 GMX_MM_TRANSPOSE2_PD(G,H);
334 Heps = _mm_mul_pd(vfeps,H);
335 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
336 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
337 velec = _mm_mul_pd(qq20,VV);
338 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
339 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
341 /* Update potential sum for this i atom from the interaction with this j atom. */
342 velecsum = _mm_add_pd(velecsum,velec);
344 fscal = felec;
346 /* Calculate temporary vectorial force */
347 tx = _mm_mul_pd(fscal,dx20);
348 ty = _mm_mul_pd(fscal,dy20);
349 tz = _mm_mul_pd(fscal,dz20);
351 /* Update vectorial force */
352 fix2 = _mm_add_pd(fix2,tx);
353 fiy2 = _mm_add_pd(fiy2,ty);
354 fiz2 = _mm_add_pd(fiz2,tz);
356 fjx0 = _mm_add_pd(fjx0,tx);
357 fjy0 = _mm_add_pd(fjy0,ty);
358 fjz0 = _mm_add_pd(fjz0,tz);
360 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
362 /* Inner loop uses 145 flops */
365 if(jidx<j_index_end)
368 jnrA = jjnr[jidx];
369 j_coord_offsetA = DIM*jnrA;
371 /* load j atom coordinates */
372 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
373 &jx0,&jy0,&jz0);
375 /* Calculate displacement vector */
376 dx00 = _mm_sub_pd(ix0,jx0);
377 dy00 = _mm_sub_pd(iy0,jy0);
378 dz00 = _mm_sub_pd(iz0,jz0);
379 dx10 = _mm_sub_pd(ix1,jx0);
380 dy10 = _mm_sub_pd(iy1,jy0);
381 dz10 = _mm_sub_pd(iz1,jz0);
382 dx20 = _mm_sub_pd(ix2,jx0);
383 dy20 = _mm_sub_pd(iy2,jy0);
384 dz20 = _mm_sub_pd(iz2,jz0);
386 /* Calculate squared distance and things based on it */
387 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
388 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
389 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
391 rinv00 = gmx_mm_invsqrt_pd(rsq00);
392 rinv10 = gmx_mm_invsqrt_pd(rsq10);
393 rinv20 = gmx_mm_invsqrt_pd(rsq20);
395 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
397 /* Load parameters for j particles */
398 jq0 = _mm_load_sd(charge+jnrA+0);
399 vdwjidx0A = 2*vdwtype[jnrA+0];
401 fjx0 = _mm_setzero_pd();
402 fjy0 = _mm_setzero_pd();
403 fjz0 = _mm_setzero_pd();
405 /**************************
406 * CALCULATE INTERACTIONS *
407 **************************/
409 r00 = _mm_mul_pd(rsq00,rinv00);
411 /* Compute parameters for interactions between i and j atoms */
412 qq00 = _mm_mul_pd(iq0,jq0);
413 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
415 /* Calculate table index by multiplying r with table scale and truncate to integer */
416 rt = _mm_mul_pd(r00,vftabscale);
417 vfitab = _mm_cvttpd_epi32(rt);
418 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
419 vfitab = _mm_slli_epi32(vfitab,2);
421 /* CUBIC SPLINE TABLE ELECTROSTATICS */
422 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
423 F = _mm_setzero_pd();
424 GMX_MM_TRANSPOSE2_PD(Y,F);
425 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
426 H = _mm_setzero_pd();
427 GMX_MM_TRANSPOSE2_PD(G,H);
428 Heps = _mm_mul_pd(vfeps,H);
429 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
430 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
431 velec = _mm_mul_pd(qq00,VV);
432 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
433 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
435 /* LENNARD-JONES DISPERSION/REPULSION */
437 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
438 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
439 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
440 vvdw = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
441 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
443 /* Update potential sum for this i atom from the interaction with this j atom. */
444 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
445 velecsum = _mm_add_pd(velecsum,velec);
446 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
447 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
449 fscal = _mm_add_pd(felec,fvdw);
451 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
453 /* Calculate temporary vectorial force */
454 tx = _mm_mul_pd(fscal,dx00);
455 ty = _mm_mul_pd(fscal,dy00);
456 tz = _mm_mul_pd(fscal,dz00);
458 /* Update vectorial force */
459 fix0 = _mm_add_pd(fix0,tx);
460 fiy0 = _mm_add_pd(fiy0,ty);
461 fiz0 = _mm_add_pd(fiz0,tz);
463 fjx0 = _mm_add_pd(fjx0,tx);
464 fjy0 = _mm_add_pd(fjy0,ty);
465 fjz0 = _mm_add_pd(fjz0,tz);
467 /**************************
468 * CALCULATE INTERACTIONS *
469 **************************/
471 r10 = _mm_mul_pd(rsq10,rinv10);
473 /* Compute parameters for interactions between i and j atoms */
474 qq10 = _mm_mul_pd(iq1,jq0);
476 /* Calculate table index by multiplying r with table scale and truncate to integer */
477 rt = _mm_mul_pd(r10,vftabscale);
478 vfitab = _mm_cvttpd_epi32(rt);
479 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
480 vfitab = _mm_slli_epi32(vfitab,2);
482 /* CUBIC SPLINE TABLE ELECTROSTATICS */
483 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
484 F = _mm_setzero_pd();
485 GMX_MM_TRANSPOSE2_PD(Y,F);
486 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
487 H = _mm_setzero_pd();
488 GMX_MM_TRANSPOSE2_PD(G,H);
489 Heps = _mm_mul_pd(vfeps,H);
490 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
491 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
492 velec = _mm_mul_pd(qq10,VV);
493 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
494 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
496 /* Update potential sum for this i atom from the interaction with this j atom. */
497 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
498 velecsum = _mm_add_pd(velecsum,velec);
500 fscal = felec;
502 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
504 /* Calculate temporary vectorial force */
505 tx = _mm_mul_pd(fscal,dx10);
506 ty = _mm_mul_pd(fscal,dy10);
507 tz = _mm_mul_pd(fscal,dz10);
509 /* Update vectorial force */
510 fix1 = _mm_add_pd(fix1,tx);
511 fiy1 = _mm_add_pd(fiy1,ty);
512 fiz1 = _mm_add_pd(fiz1,tz);
514 fjx0 = _mm_add_pd(fjx0,tx);
515 fjy0 = _mm_add_pd(fjy0,ty);
516 fjz0 = _mm_add_pd(fjz0,tz);
518 /**************************
519 * CALCULATE INTERACTIONS *
520 **************************/
522 r20 = _mm_mul_pd(rsq20,rinv20);
524 /* Compute parameters for interactions between i and j atoms */
525 qq20 = _mm_mul_pd(iq2,jq0);
527 /* Calculate table index by multiplying r with table scale and truncate to integer */
528 rt = _mm_mul_pd(r20,vftabscale);
529 vfitab = _mm_cvttpd_epi32(rt);
530 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
531 vfitab = _mm_slli_epi32(vfitab,2);
533 /* CUBIC SPLINE TABLE ELECTROSTATICS */
534 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
535 F = _mm_setzero_pd();
536 GMX_MM_TRANSPOSE2_PD(Y,F);
537 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
538 H = _mm_setzero_pd();
539 GMX_MM_TRANSPOSE2_PD(G,H);
540 Heps = _mm_mul_pd(vfeps,H);
541 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
542 VV = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
543 velec = _mm_mul_pd(qq20,VV);
544 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
545 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
547 /* Update potential sum for this i atom from the interaction with this j atom. */
548 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
549 velecsum = _mm_add_pd(velecsum,velec);
551 fscal = felec;
553 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
555 /* Calculate temporary vectorial force */
556 tx = _mm_mul_pd(fscal,dx20);
557 ty = _mm_mul_pd(fscal,dy20);
558 tz = _mm_mul_pd(fscal,dz20);
560 /* Update vectorial force */
561 fix2 = _mm_add_pd(fix2,tx);
562 fiy2 = _mm_add_pd(fiy2,ty);
563 fiz2 = _mm_add_pd(fiz2,tz);
565 fjx0 = _mm_add_pd(fjx0,tx);
566 fjy0 = _mm_add_pd(fjy0,ty);
567 fjz0 = _mm_add_pd(fjz0,tz);
569 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
571 /* Inner loop uses 145 flops */
574 /* End of innermost loop */
576 gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
577 f+i_coord_offset,fshift+i_shift_offset);
579 ggid = gid[iidx];
580 /* Update potential energies */
581 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
582 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
584 /* Increment number of inner iterations */
585 inneriter += j_index_end - j_index_start;
587 /* Outer loop uses 20 flops */
590 /* Increment number of outer iterations */
591 outeriter += nri;
593 /* Update outer/inner flops */
595 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
598 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse2_double
599 * Electrostatics interaction: CubicSplineTable
600 * VdW interaction: LennardJones
601 * Geometry: Water3-Particle
602 * Calculate force/pot: Force
604 void
605 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse2_double
606 (t_nblist * gmx_restrict nlist,
607 rvec * gmx_restrict xx,
608 rvec * gmx_restrict ff,
609 t_forcerec * gmx_restrict fr,
610 t_mdatoms * gmx_restrict mdatoms,
611 nb_kernel_data_t * gmx_restrict kernel_data,
612 t_nrnb * gmx_restrict nrnb)
614 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
615 * just 0 for non-waters.
616 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
617 * jnr indices corresponding to data put in the four positions in the SIMD register.
619 int i_shift_offset,i_coord_offset,outeriter,inneriter;
620 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
621 int jnrA,jnrB;
622 int j_coord_offsetA,j_coord_offsetB;
623 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
624 real rcutoff_scalar;
625 real *shiftvec,*fshift,*x,*f;
626 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
627 int vdwioffset0;
628 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
629 int vdwioffset1;
630 __m128d ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
631 int vdwioffset2;
632 __m128d ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
633 int vdwjidx0A,vdwjidx0B;
634 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
635 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
636 __m128d dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
637 __m128d dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
638 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
639 real *charge;
640 int nvdwtype;
641 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
642 int *vdwtype;
643 real *vdwparam;
644 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
645 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
646 __m128i vfitab;
647 __m128i ifour = _mm_set1_epi32(4);
648 __m128d rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
649 real *vftab;
650 __m128d dummy_mask,cutoff_mask;
651 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
652 __m128d one = _mm_set1_pd(1.0);
653 __m128d two = _mm_set1_pd(2.0);
654 x = xx[0];
655 f = ff[0];
657 nri = nlist->nri;
658 iinr = nlist->iinr;
659 jindex = nlist->jindex;
660 jjnr = nlist->jjnr;
661 shiftidx = nlist->shift;
662 gid = nlist->gid;
663 shiftvec = fr->shift_vec[0];
664 fshift = fr->fshift[0];
665 facel = _mm_set1_pd(fr->epsfac);
666 charge = mdatoms->chargeA;
667 nvdwtype = fr->ntype;
668 vdwparam = fr->nbfp;
669 vdwtype = mdatoms->typeA;
671 vftab = kernel_data->table_elec->data;
672 vftabscale = _mm_set1_pd(kernel_data->table_elec->scale);
674 /* Setup water-specific parameters */
675 inr = nlist->iinr[0];
676 iq0 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
677 iq1 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
678 iq2 = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
679 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
681 /* Avoid stupid compiler warnings */
682 jnrA = jnrB = 0;
683 j_coord_offsetA = 0;
684 j_coord_offsetB = 0;
686 outeriter = 0;
687 inneriter = 0;
689 /* Start outer loop over neighborlists */
690 for(iidx=0; iidx<nri; iidx++)
692 /* Load shift vector for this list */
693 i_shift_offset = DIM*shiftidx[iidx];
695 /* Load limits for loop over neighbors */
696 j_index_start = jindex[iidx];
697 j_index_end = jindex[iidx+1];
699 /* Get outer coordinate index */
700 inr = iinr[iidx];
701 i_coord_offset = DIM*inr;
703 /* Load i particle coords and add shift vector */
704 gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
705 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
707 fix0 = _mm_setzero_pd();
708 fiy0 = _mm_setzero_pd();
709 fiz0 = _mm_setzero_pd();
710 fix1 = _mm_setzero_pd();
711 fiy1 = _mm_setzero_pd();
712 fiz1 = _mm_setzero_pd();
713 fix2 = _mm_setzero_pd();
714 fiy2 = _mm_setzero_pd();
715 fiz2 = _mm_setzero_pd();
717 /* Start inner kernel loop */
718 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
721 /* Get j neighbor index, and coordinate index */
722 jnrA = jjnr[jidx];
723 jnrB = jjnr[jidx+1];
724 j_coord_offsetA = DIM*jnrA;
725 j_coord_offsetB = DIM*jnrB;
727 /* load j atom coordinates */
728 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
729 &jx0,&jy0,&jz0);
731 /* Calculate displacement vector */
732 dx00 = _mm_sub_pd(ix0,jx0);
733 dy00 = _mm_sub_pd(iy0,jy0);
734 dz00 = _mm_sub_pd(iz0,jz0);
735 dx10 = _mm_sub_pd(ix1,jx0);
736 dy10 = _mm_sub_pd(iy1,jy0);
737 dz10 = _mm_sub_pd(iz1,jz0);
738 dx20 = _mm_sub_pd(ix2,jx0);
739 dy20 = _mm_sub_pd(iy2,jy0);
740 dz20 = _mm_sub_pd(iz2,jz0);
742 /* Calculate squared distance and things based on it */
743 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
744 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
745 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
747 rinv00 = gmx_mm_invsqrt_pd(rsq00);
748 rinv10 = gmx_mm_invsqrt_pd(rsq10);
749 rinv20 = gmx_mm_invsqrt_pd(rsq20);
751 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
753 /* Load parameters for j particles */
754 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
755 vdwjidx0A = 2*vdwtype[jnrA+0];
756 vdwjidx0B = 2*vdwtype[jnrB+0];
758 fjx0 = _mm_setzero_pd();
759 fjy0 = _mm_setzero_pd();
760 fjz0 = _mm_setzero_pd();
762 /**************************
763 * CALCULATE INTERACTIONS *
764 **************************/
766 r00 = _mm_mul_pd(rsq00,rinv00);
768 /* Compute parameters for interactions between i and j atoms */
769 qq00 = _mm_mul_pd(iq0,jq0);
770 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
771 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
773 /* Calculate table index by multiplying r with table scale and truncate to integer */
774 rt = _mm_mul_pd(r00,vftabscale);
775 vfitab = _mm_cvttpd_epi32(rt);
776 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
777 vfitab = _mm_slli_epi32(vfitab,2);
779 /* CUBIC SPLINE TABLE ELECTROSTATICS */
780 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
781 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
782 GMX_MM_TRANSPOSE2_PD(Y,F);
783 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
784 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
785 GMX_MM_TRANSPOSE2_PD(G,H);
786 Heps = _mm_mul_pd(vfeps,H);
787 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
788 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
789 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
791 /* LENNARD-JONES DISPERSION/REPULSION */
793 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
794 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
796 fscal = _mm_add_pd(felec,fvdw);
798 /* Calculate temporary vectorial force */
799 tx = _mm_mul_pd(fscal,dx00);
800 ty = _mm_mul_pd(fscal,dy00);
801 tz = _mm_mul_pd(fscal,dz00);
803 /* Update vectorial force */
804 fix0 = _mm_add_pd(fix0,tx);
805 fiy0 = _mm_add_pd(fiy0,ty);
806 fiz0 = _mm_add_pd(fiz0,tz);
808 fjx0 = _mm_add_pd(fjx0,tx);
809 fjy0 = _mm_add_pd(fjy0,ty);
810 fjz0 = _mm_add_pd(fjz0,tz);
812 /**************************
813 * CALCULATE INTERACTIONS *
814 **************************/
816 r10 = _mm_mul_pd(rsq10,rinv10);
818 /* Compute parameters for interactions between i and j atoms */
819 qq10 = _mm_mul_pd(iq1,jq0);
821 /* Calculate table index by multiplying r with table scale and truncate to integer */
822 rt = _mm_mul_pd(r10,vftabscale);
823 vfitab = _mm_cvttpd_epi32(rt);
824 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
825 vfitab = _mm_slli_epi32(vfitab,2);
827 /* CUBIC SPLINE TABLE ELECTROSTATICS */
828 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
829 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
830 GMX_MM_TRANSPOSE2_PD(Y,F);
831 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
832 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
833 GMX_MM_TRANSPOSE2_PD(G,H);
834 Heps = _mm_mul_pd(vfeps,H);
835 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
836 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
837 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
839 fscal = felec;
841 /* Calculate temporary vectorial force */
842 tx = _mm_mul_pd(fscal,dx10);
843 ty = _mm_mul_pd(fscal,dy10);
844 tz = _mm_mul_pd(fscal,dz10);
846 /* Update vectorial force */
847 fix1 = _mm_add_pd(fix1,tx);
848 fiy1 = _mm_add_pd(fiy1,ty);
849 fiz1 = _mm_add_pd(fiz1,tz);
851 fjx0 = _mm_add_pd(fjx0,tx);
852 fjy0 = _mm_add_pd(fjy0,ty);
853 fjz0 = _mm_add_pd(fjz0,tz);
855 /**************************
856 * CALCULATE INTERACTIONS *
857 **************************/
859 r20 = _mm_mul_pd(rsq20,rinv20);
861 /* Compute parameters for interactions between i and j atoms */
862 qq20 = _mm_mul_pd(iq2,jq0);
864 /* Calculate table index by multiplying r with table scale and truncate to integer */
865 rt = _mm_mul_pd(r20,vftabscale);
866 vfitab = _mm_cvttpd_epi32(rt);
867 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
868 vfitab = _mm_slli_epi32(vfitab,2);
870 /* CUBIC SPLINE TABLE ELECTROSTATICS */
871 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
872 F = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
873 GMX_MM_TRANSPOSE2_PD(Y,F);
874 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
875 H = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
876 GMX_MM_TRANSPOSE2_PD(G,H);
877 Heps = _mm_mul_pd(vfeps,H);
878 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
879 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
880 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
882 fscal = felec;
884 /* Calculate temporary vectorial force */
885 tx = _mm_mul_pd(fscal,dx20);
886 ty = _mm_mul_pd(fscal,dy20);
887 tz = _mm_mul_pd(fscal,dz20);
889 /* Update vectorial force */
890 fix2 = _mm_add_pd(fix2,tx);
891 fiy2 = _mm_add_pd(fiy2,ty);
892 fiz2 = _mm_add_pd(fiz2,tz);
894 fjx0 = _mm_add_pd(fjx0,tx);
895 fjy0 = _mm_add_pd(fjy0,ty);
896 fjz0 = _mm_add_pd(fjz0,tz);
898 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
900 /* Inner loop uses 128 flops */
903 if(jidx<j_index_end)
906 jnrA = jjnr[jidx];
907 j_coord_offsetA = DIM*jnrA;
909 /* load j atom coordinates */
910 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
911 &jx0,&jy0,&jz0);
913 /* Calculate displacement vector */
914 dx00 = _mm_sub_pd(ix0,jx0);
915 dy00 = _mm_sub_pd(iy0,jy0);
916 dz00 = _mm_sub_pd(iz0,jz0);
917 dx10 = _mm_sub_pd(ix1,jx0);
918 dy10 = _mm_sub_pd(iy1,jy0);
919 dz10 = _mm_sub_pd(iz1,jz0);
920 dx20 = _mm_sub_pd(ix2,jx0);
921 dy20 = _mm_sub_pd(iy2,jy0);
922 dz20 = _mm_sub_pd(iz2,jz0);
924 /* Calculate squared distance and things based on it */
925 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
926 rsq10 = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
927 rsq20 = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
929 rinv00 = gmx_mm_invsqrt_pd(rsq00);
930 rinv10 = gmx_mm_invsqrt_pd(rsq10);
931 rinv20 = gmx_mm_invsqrt_pd(rsq20);
933 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
935 /* Load parameters for j particles */
936 jq0 = _mm_load_sd(charge+jnrA+0);
937 vdwjidx0A = 2*vdwtype[jnrA+0];
939 fjx0 = _mm_setzero_pd();
940 fjy0 = _mm_setzero_pd();
941 fjz0 = _mm_setzero_pd();
943 /**************************
944 * CALCULATE INTERACTIONS *
945 **************************/
947 r00 = _mm_mul_pd(rsq00,rinv00);
949 /* Compute parameters for interactions between i and j atoms */
950 qq00 = _mm_mul_pd(iq0,jq0);
951 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
953 /* Calculate table index by multiplying r with table scale and truncate to integer */
954 rt = _mm_mul_pd(r00,vftabscale);
955 vfitab = _mm_cvttpd_epi32(rt);
956 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
957 vfitab = _mm_slli_epi32(vfitab,2);
959 /* CUBIC SPLINE TABLE ELECTROSTATICS */
960 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
961 F = _mm_setzero_pd();
962 GMX_MM_TRANSPOSE2_PD(Y,F);
963 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
964 H = _mm_setzero_pd();
965 GMX_MM_TRANSPOSE2_PD(G,H);
966 Heps = _mm_mul_pd(vfeps,H);
967 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
968 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
969 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
971 /* LENNARD-JONES DISPERSION/REPULSION */
973 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
974 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
976 fscal = _mm_add_pd(felec,fvdw);
978 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
980 /* Calculate temporary vectorial force */
981 tx = _mm_mul_pd(fscal,dx00);
982 ty = _mm_mul_pd(fscal,dy00);
983 tz = _mm_mul_pd(fscal,dz00);
985 /* Update vectorial force */
986 fix0 = _mm_add_pd(fix0,tx);
987 fiy0 = _mm_add_pd(fiy0,ty);
988 fiz0 = _mm_add_pd(fiz0,tz);
990 fjx0 = _mm_add_pd(fjx0,tx);
991 fjy0 = _mm_add_pd(fjy0,ty);
992 fjz0 = _mm_add_pd(fjz0,tz);
994 /**************************
995 * CALCULATE INTERACTIONS *
996 **************************/
998 r10 = _mm_mul_pd(rsq10,rinv10);
1000 /* Compute parameters for interactions between i and j atoms */
1001 qq10 = _mm_mul_pd(iq1,jq0);
1003 /* Calculate table index by multiplying r with table scale and truncate to integer */
1004 rt = _mm_mul_pd(r10,vftabscale);
1005 vfitab = _mm_cvttpd_epi32(rt);
1006 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1007 vfitab = _mm_slli_epi32(vfitab,2);
1009 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1010 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1011 F = _mm_setzero_pd();
1012 GMX_MM_TRANSPOSE2_PD(Y,F);
1013 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1014 H = _mm_setzero_pd();
1015 GMX_MM_TRANSPOSE2_PD(G,H);
1016 Heps = _mm_mul_pd(vfeps,H);
1017 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1018 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1019 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1021 fscal = felec;
1023 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1025 /* Calculate temporary vectorial force */
1026 tx = _mm_mul_pd(fscal,dx10);
1027 ty = _mm_mul_pd(fscal,dy10);
1028 tz = _mm_mul_pd(fscal,dz10);
1030 /* Update vectorial force */
1031 fix1 = _mm_add_pd(fix1,tx);
1032 fiy1 = _mm_add_pd(fiy1,ty);
1033 fiz1 = _mm_add_pd(fiz1,tz);
1035 fjx0 = _mm_add_pd(fjx0,tx);
1036 fjy0 = _mm_add_pd(fjy0,ty);
1037 fjz0 = _mm_add_pd(fjz0,tz);
1039 /**************************
1040 * CALCULATE INTERACTIONS *
1041 **************************/
1043 r20 = _mm_mul_pd(rsq20,rinv20);
1045 /* Compute parameters for interactions between i and j atoms */
1046 qq20 = _mm_mul_pd(iq2,jq0);
1048 /* Calculate table index by multiplying r with table scale and truncate to integer */
1049 rt = _mm_mul_pd(r20,vftabscale);
1050 vfitab = _mm_cvttpd_epi32(rt);
1051 vfeps = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1052 vfitab = _mm_slli_epi32(vfitab,2);
1054 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1055 Y = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1056 F = _mm_setzero_pd();
1057 GMX_MM_TRANSPOSE2_PD(Y,F);
1058 G = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1059 H = _mm_setzero_pd();
1060 GMX_MM_TRANSPOSE2_PD(G,H);
1061 Heps = _mm_mul_pd(vfeps,H);
1062 Fp = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1063 FF = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1064 felec = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1066 fscal = felec;
1068 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1070 /* Calculate temporary vectorial force */
1071 tx = _mm_mul_pd(fscal,dx20);
1072 ty = _mm_mul_pd(fscal,dy20);
1073 tz = _mm_mul_pd(fscal,dz20);
1075 /* Update vectorial force */
1076 fix2 = _mm_add_pd(fix2,tx);
1077 fiy2 = _mm_add_pd(fiy2,ty);
1078 fiz2 = _mm_add_pd(fiz2,tz);
1080 fjx0 = _mm_add_pd(fjx0,tx);
1081 fjy0 = _mm_add_pd(fjy0,ty);
1082 fjz0 = _mm_add_pd(fjz0,tz);
1084 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1086 /* Inner loop uses 128 flops */
1089 /* End of innermost loop */
1091 gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1092 f+i_coord_offset,fshift+i_shift_offset);
1094 /* Increment number of inner iterations */
1095 inneriter += j_index_end - j_index_start;
1097 /* Outer loop uses 18 flops */
1100 /* Increment number of outer iterations */
1101 outeriter += nri;
1103 /* Update outer/inner flops */
1105 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*128);