2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013, by the GROMACS development team, led by
5 * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6 * others, as listed in the AUTHORS file in the top-level source
7 * directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
35 #ifndef _gmx_simd_math_double_h_
36 #define _gmx_simd_math_double_h_
40 static gmx_inline gmx_mm_pr
41 gmx_invsqrt_pr(gmx_mm_pr x
)
43 const gmx_mm_pr half
= gmx_set1_pr(0.5);
44 const gmx_mm_pr three
= gmx_set1_pr(3.0);
46 /* Lookup instruction only exists in single precision, convert back and forth... */
47 gmx_mm_pr lu
= gmx_rsqrt_pr(x
);
49 lu
= gmx_mul_pr(gmx_mul_pr(half
, lu
), gmx_nmsub_pr(gmx_mul_pr(lu
, lu
), x
, three
));
50 return gmx_mul_pr(gmx_mul_pr(half
, lu
), gmx_nmsub_pr(gmx_mul_pr(lu
, lu
), x
, three
));
55 static gmx_inline gmx_mm_pr
56 gmx_inv_pr(gmx_mm_pr x
)
58 const gmx_mm_pr two
= gmx_set1_pr(2.0);
60 /* Lookup instruction only exists in single precision, convert back and forth... */
61 gmx_mm_pr lu
= gmx_rcp_pr(x
);
63 /* Perform two N-R steps for double precision */
64 lu
= gmx_mul_pr(lu
, gmx_nmsub_pr(lu
, x
, two
));
65 return gmx_mul_pr(lu
, gmx_nmsub_pr(lu
, x
, two
));
69 /* Calculate the force correction due to PME analytically.
71 * This routine is meant to enable analytical evaluation of the
72 * direct-space PME electrostatic force to avoid tables.
74 * The direct-space potential should be Erfc(beta*r)/r, but there
75 * are some problems evaluating that:
77 * First, the error function is difficult (read: expensive) to
78 * approxmiate accurately for intermediate to large arguments, and
79 * this happens already in ranges of beta*r that occur in simulations.
80 * Second, we now try to avoid calculating potentials in Gromacs but
81 * use forces directly.
83 * We can simply things slight by noting that the PME part is really
84 * a correction to the normal Coulomb force since Erfc(z)=1-Erf(z), i.e.
86 * V= 1/r - Erf(beta*r)/r
88 * The first term we already have from the inverse square root, so
89 * that we can leave out of this routine.
91 * For pme tolerances of 1e-3 to 1e-8 and cutoffs of 0.5nm to 1.8nm,
92 * the argument beta*r will be in the range 0.15 to ~4. Use your
93 * favorite plotting program to realize how well-behaved Erf(z)/z is
96 * We approximate f(z)=erf(z)/z with a rational minimax polynomial.
97 * However, it turns out it is more efficient to approximate f(z)/z and
98 * then only use even powers. This is another minor optimization, since
99 * we actually WANT f(z)/z, because it is going to be multiplied by
100 * the vector between the two atoms to get the vectorial force. The
101 * fastest flops are the ones we can avoid calculating!
103 * So, here's how it should be used:
106 * 2. Multiply by beta^2, so you get z^2=beta^2*r^2.
107 * 3. Evaluate this routine with z^2 as the argument.
108 * 4. The return value is the expression:
112 * ------------ - --------
115 * 5. Multiply the entire expression by beta^3. This will get you
117 * beta^3*2*exp(-z^2) beta^3*erf(z)
118 * ------------------ - ---------------
121 * or, switching back to r (z=r*beta):
123 * 2*beta*exp(-r^2*beta^2) erf(r*beta)
124 * ----------------------- - -----------
128 * With a bit of math exercise you should be able to confirm that
129 * this is exactly D[Erf[beta*r]/r,r] divided by r another time.
131 * 6. Add the result to 1/r^3, multiply by the product of the charges,
132 * and you have your force (divided by r). A final multiplication
133 * with the vector connecting the two particles and you have your
134 * vectorial force to add to the particles.
138 gmx_pmecorrF_pr(gmx_mm_pr z2
)
140 const gmx_mm_pr FN10
= gmx_set1_pr(-8.0072854618360083154e-14);
141 const gmx_mm_pr FN9
= gmx_set1_pr(1.1859116242260148027e-11);
142 const gmx_mm_pr FN8
= gmx_set1_pr(-8.1490406329798423616e-10);
143 const gmx_mm_pr FN7
= gmx_set1_pr(3.4404793543907847655e-8);
144 const gmx_mm_pr FN6
= gmx_set1_pr(-9.9471420832602741006e-7);
145 const gmx_mm_pr FN5
= gmx_set1_pr(0.000020740315999115847456);
146 const gmx_mm_pr FN4
= gmx_set1_pr(-0.00031991745139313364005);
147 const gmx_mm_pr FN3
= gmx_set1_pr(0.0035074449373659008203);
148 const gmx_mm_pr FN2
= gmx_set1_pr(-0.031750380176100813405);
149 const gmx_mm_pr FN1
= gmx_set1_pr(0.13884101728898463426);
150 const gmx_mm_pr FN0
= gmx_set1_pr(-0.75225277815249618847);
152 const gmx_mm_pr FD5
= gmx_set1_pr(0.000016009278224355026701);
153 const gmx_mm_pr FD4
= gmx_set1_pr(0.00051055686934806966046);
154 const gmx_mm_pr FD3
= gmx_set1_pr(0.0081803507497974289008);
155 const gmx_mm_pr FD2
= gmx_set1_pr(0.077181146026670287235);
156 const gmx_mm_pr FD1
= gmx_set1_pr(0.41543303143712535988);
157 const gmx_mm_pr FD0
= gmx_set1_pr(1.0);
160 gmx_mm_pr polyFN0
, polyFN1
, polyFD0
, polyFD1
;
162 z4
= gmx_mul_pr(z2
, z2
);
164 polyFD1
= gmx_madd_pr(FD5
, z4
, FD3
);
165 polyFD1
= gmx_madd_pr(polyFD1
, z4
, FD1
);
166 polyFD1
= gmx_mul_pr(polyFD1
, z2
);
167 polyFD0
= gmx_madd_pr(FD4
, z4
, FD2
);
168 polyFD0
= gmx_madd_pr(polyFD0
, z4
, FD0
);
169 polyFD0
= gmx_add_pr(polyFD0
, polyFD1
);
171 polyFD0
= gmx_inv_pr(polyFD0
);
173 polyFN0
= gmx_madd_pr(FN10
, z4
, FN8
);
174 polyFN0
= gmx_madd_pr(polyFN0
, z4
, FN6
);
175 polyFN0
= gmx_madd_pr(polyFN0
, z4
, FN4
);
176 polyFN0
= gmx_madd_pr(polyFN0
, z4
, FN2
);
177 polyFN0
= gmx_madd_pr(polyFN0
, z4
, FN0
);
178 polyFN1
= gmx_madd_pr(FN9
, z4
, FN7
);
179 polyFN1
= gmx_madd_pr(polyFN1
, z4
, FN5
);
180 polyFN1
= gmx_madd_pr(polyFN1
, z4
, FN3
);
181 polyFN1
= gmx_madd_pr(polyFN1
, z4
, FN1
);
182 polyFN0
= gmx_madd_pr(polyFN1
, z2
, polyFN0
);
184 return gmx_mul_pr(polyFN0
, polyFD0
);
188 /* Calculate the potential correction due to PME analytically.
190 * This routine calculates Erf(z)/z, although you should provide z^2
191 * as the input argument.
193 * Here's how it should be used:
196 * 2. Multiply by beta^2, so you get z^2=beta^2*r^2.
197 * 3. Evaluate this routine with z^2 as the argument.
198 * 4. The return value is the expression:
205 * 5. Multiply the entire expression by beta and switching back to r (z=r*beta):
211 * 6. Subtract the result from 1/r, multiply by the product of the charges,
212 * and you have your potential.
216 gmx_pmecorrV_pr(gmx_mm_pr z2
)
218 const gmx_mm_pr VN9
= gmx_set1_pr(-9.3723776169321855475e-13);
219 const gmx_mm_pr VN8
= gmx_set1_pr(1.2280156762674215741e-10);
220 const gmx_mm_pr VN7
= gmx_set1_pr(-7.3562157912251309487e-9);
221 const gmx_mm_pr VN6
= gmx_set1_pr(2.6215886208032517509e-7);
222 const gmx_mm_pr VN5
= gmx_set1_pr(-4.9532491651265819499e-6);
223 const gmx_mm_pr VN4
= gmx_set1_pr(0.00025907400778966060389);
224 const gmx_mm_pr VN3
= gmx_set1_pr(0.0010585044856156469792);
225 const gmx_mm_pr VN2
= gmx_set1_pr(0.045247661136833092885);
226 const gmx_mm_pr VN1
= gmx_set1_pr(0.11643931522926034421);
227 const gmx_mm_pr VN0
= gmx_set1_pr(1.1283791671726767970);
229 const gmx_mm_pr VD5
= gmx_set1_pr(0.000021784709867336150342);
230 const gmx_mm_pr VD4
= gmx_set1_pr(0.00064293662010911388448);
231 const gmx_mm_pr VD3
= gmx_set1_pr(0.0096311444822588683504);
232 const gmx_mm_pr VD2
= gmx_set1_pr(0.085608012351550627051);
233 const gmx_mm_pr VD1
= gmx_set1_pr(0.43652499166614811084);
234 const gmx_mm_pr VD0
= gmx_set1_pr(1.0);
237 gmx_mm_pr polyVN0
, polyVN1
, polyVD0
, polyVD1
;
239 z4
= gmx_mul_pr(z2
, z2
);
241 polyVD1
= gmx_madd_pr(VD5
, z4
, VD3
);
242 polyVD0
= gmx_madd_pr(VD4
, z4
, VD2
);
243 polyVD1
= gmx_madd_pr(polyVD1
, z4
, VD1
);
244 polyVD0
= gmx_madd_pr(polyVD0
, z4
, VD0
);
245 polyVD0
= gmx_madd_pr(polyVD1
, z2
, polyVD0
);
247 polyVD0
= gmx_inv_pr(polyVD0
);
249 polyVN1
= gmx_madd_pr(VN9
, z4
, VN7
);
250 polyVN0
= gmx_madd_pr(VN8
, z4
, VN6
);
251 polyVN1
= gmx_madd_pr(polyVN1
, z4
, VN5
);
252 polyVN0
= gmx_madd_pr(polyVN0
, z4
, VN4
);
253 polyVN1
= gmx_madd_pr(polyVN1
, z4
, VN3
);
254 polyVN0
= gmx_madd_pr(polyVN0
, z4
, VN2
);
255 polyVN1
= gmx_madd_pr(polyVN1
, z4
, VN1
);
256 polyVN0
= gmx_madd_pr(polyVN0
, z4
, VN0
);
257 polyVN0
= gmx_madd_pr(polyVN1
, z2
, polyVN0
);
259 return gmx_mul_pr(polyVN0
, polyVD0
);
263 #endif /*_gmx_simd_math_double_h_ */