Update instructions in containers.rst
[gromacs.git] / src / gromacs / ewald / ewald.cpp
blob6e089c2b99c511867ac4f7fa33c608667d4e5c00
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2017,2018 by the GROMACS development team.
7 * Copyright (c) 2019,2020, by the GROMACS development team, led by
8 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
9 * and including many others, as listed in the AUTHORS file in the
10 * top-level source directory and at http://www.gromacs.org.
12 * GROMACS is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public License
14 * as published by the Free Software Foundation; either version 2.1
15 * of the License, or (at your option) any later version.
17 * GROMACS is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with GROMACS; if not, see
24 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
25 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 * If you want to redistribute modifications to GROMACS, please
28 * consider that scientific software is very special. Version
29 * control is crucial - bugs must be traceable. We will be happy to
30 * consider code for inclusion in the official distribution, but
31 * derived work must not be called official GROMACS. Details are found
32 * in the README & COPYING files - if they are missing, get the
33 * official version at http://www.gromacs.org.
35 * To help us fund GROMACS development, we humbly ask that you cite
36 * the research papers on the package. Check out http://www.gromacs.org.
38 /*! \internal \file
40 * \brief This file contains function definitions necessary for
41 * computing energies and forces for the plain-Ewald long-ranged part,
42 * and the correction for overall system charge for all Ewald-family
43 * methods.
45 * \author David van der Spoel <david.vanderspoel@icm.uu.se>
46 * \author Mark Abraham <mark.j.abraham@gmail.com>
47 * \ingroup module_ewald
49 #include "gmxpre.h"
51 #include "ewald.h"
53 #include <cmath>
54 #include <cstdio>
55 #include <cstdlib>
57 #include <algorithm>
59 #include "gromacs/ewald/ewald_utils.h"
60 #include "gromacs/math/functions.h"
61 #include "gromacs/math/gmxcomplex.h"
62 #include "gromacs/math/units.h"
63 #include "gromacs/math/utilities.h"
64 #include "gromacs/math/vec.h"
65 #include "gromacs/math/vectypes.h"
66 #include "gromacs/mdtypes/commrec.h"
67 #include "gromacs/mdtypes/forcerec.h"
68 #include "gromacs/mdtypes/inputrec.h"
69 #include "gromacs/mdtypes/interaction_const.h"
70 #include "gromacs/mdtypes/md_enums.h"
71 #include "gromacs/utility/fatalerror.h"
72 #include "gromacs/utility/smalloc.h"
74 struct gmx_ewald_tab_t
76 int nx, ny, nz, kmax;
77 cvec** eir;
78 t_complex *tab_xy, *tab_qxyz;
81 void init_ewald_tab(struct gmx_ewald_tab_t** et, const t_inputrec* ir, FILE* fp)
83 snew(*et, 1);
84 if (fp)
86 fprintf(fp, "Will do ordinary reciprocal space Ewald sum.\n");
89 (*et)->nx = ir->nkx + 1;
90 (*et)->ny = ir->nky + 1;
91 (*et)->nz = ir->nkz + 1;
92 (*et)->kmax = std::max((*et)->nx, std::max((*et)->ny, (*et)->nz));
93 (*et)->eir = nullptr;
94 (*et)->tab_xy = nullptr;
95 (*et)->tab_qxyz = nullptr;
98 //! Calculates wave vectors.
99 static void calc_lll(const rvec box, rvec lll)
101 lll[XX] = 2.0 * M_PI / box[XX];
102 lll[YY] = 2.0 * M_PI / box[YY];
103 lll[ZZ] = 2.0 * M_PI / box[ZZ];
106 //! Make tables for the structure factor parts
107 static void tabulateStructureFactors(int natom, const rvec x[], int kmax, cvec** eir, const rvec lll)
109 int i, j, m;
111 if (kmax < 1)
113 printf("Go away! kmax = %d\n", kmax);
114 exit(1);
117 for (i = 0; (i < natom); i++)
119 for (m = 0; (m < 3); m++)
121 eir[0][i][m].re = 1;
122 eir[0][i][m].im = 0;
125 for (m = 0; (m < 3); m++)
127 eir[1][i][m].re = std::cos(x[i][m] * lll[m]);
128 eir[1][i][m].im = std::sin(x[i][m] * lll[m]);
130 for (j = 2; (j < kmax); j++)
132 for (m = 0; (m < 3); m++)
134 eir[j][i][m] = cmul(eir[j - 1][i][m], eir[1][i][m]);
140 real do_ewald(const t_inputrec* ir,
141 const rvec x[],
142 rvec f[],
143 const real chargeA[],
144 const real chargeB[],
145 const matrix box,
146 const t_commrec* cr,
147 int natoms,
148 matrix lrvir,
149 real ewaldcoeff,
150 real lambda,
151 real* dvdlambda,
152 gmx_ewald_tab_t* et)
154 real factor = -1.0 / (4 * ewaldcoeff * ewaldcoeff);
155 const real* charge;
156 real energy_AB[2], energy;
157 rvec lll;
158 int lowiy, lowiz, ix, iy, iz, n, q;
159 real tmp, cs, ss, ak, akv, mx, my, mz, m2, scale;
160 gmx_bool bFreeEnergy;
162 if (cr != nullptr)
164 if (PAR(cr))
166 gmx_fatal(FARGS, "No parallel Ewald. Use PME instead.\n");
170 /* Scale box with Ewald wall factor */
171 matrix scaledBox;
172 EwaldBoxZScaler boxScaler(*ir);
173 boxScaler.scaleBox(box, scaledBox);
175 rvec boxDiag;
176 for (int i = 0; (i < DIM); i++)
178 boxDiag[i] = scaledBox[i][i];
181 /* 1/(Vol*e0) */
182 real scaleRecip = 4.0 * M_PI / (boxDiag[XX] * boxDiag[YY] * boxDiag[ZZ]) * ONE_4PI_EPS0 / ir->epsilon_r;
184 if (!et->eir) /* allocate if we need to */
186 snew(et->eir, et->kmax);
187 for (n = 0; n < et->kmax; n++)
189 snew(et->eir[n], natoms);
191 snew(et->tab_xy, natoms);
192 snew(et->tab_qxyz, natoms);
195 bFreeEnergy = (ir->efep != efepNO);
197 clear_mat(lrvir);
199 calc_lll(boxDiag, lll);
200 tabulateStructureFactors(natoms, x, et->kmax, et->eir, lll);
202 for (q = 0; q < (bFreeEnergy ? 2 : 1); q++)
204 if (!bFreeEnergy)
206 charge = chargeA;
207 scale = 1.0;
209 else if (q == 0)
211 charge = chargeA;
212 scale = 1.0 - lambda;
214 else
216 charge = chargeB;
217 scale = lambda;
219 lowiy = 0;
220 lowiz = 1;
221 energy_AB[q] = 0;
222 for (ix = 0; ix < et->nx; ix++)
224 mx = ix * lll[XX];
225 for (iy = lowiy; iy < et->ny; iy++)
227 my = iy * lll[YY];
228 if (iy >= 0)
230 for (n = 0; n < natoms; n++)
232 et->tab_xy[n] = cmul(et->eir[ix][n][XX], et->eir[iy][n][YY]);
235 else
237 for (n = 0; n < natoms; n++)
239 et->tab_xy[n] = cmul(et->eir[ix][n][XX], conjugate(et->eir[-iy][n][YY]));
242 for (iz = lowiz; iz < et->nz; iz++)
244 mz = iz * lll[ZZ];
245 m2 = mx * mx + my * my + mz * mz;
246 ak = std::exp(m2 * factor) / m2;
247 akv = 2.0 * ak * (1.0 / m2 - factor);
248 if (iz >= 0)
250 for (n = 0; n < natoms; n++)
252 et->tab_qxyz[n] = rcmul(charge[n], cmul(et->tab_xy[n], et->eir[iz][n][ZZ]));
255 else
257 for (n = 0; n < natoms; n++)
259 et->tab_qxyz[n] = rcmul(
260 charge[n], cmul(et->tab_xy[n], conjugate(et->eir[-iz][n][ZZ])));
264 cs = ss = 0;
265 for (n = 0; n < natoms; n++)
267 cs += et->tab_qxyz[n].re;
268 ss += et->tab_qxyz[n].im;
270 energy_AB[q] += ak * (cs * cs + ss * ss);
271 tmp = scale * akv * (cs * cs + ss * ss);
272 lrvir[XX][XX] -= tmp * mx * mx;
273 lrvir[XX][YY] -= tmp * mx * my;
274 lrvir[XX][ZZ] -= tmp * mx * mz;
275 lrvir[YY][YY] -= tmp * my * my;
276 lrvir[YY][ZZ] -= tmp * my * mz;
277 lrvir[ZZ][ZZ] -= tmp * mz * mz;
278 for (n = 0; n < natoms; n++)
280 /*tmp=scale*ak*(cs*tab_qxyz[n].im-ss*tab_qxyz[n].re);*/
281 tmp = scale * ak * (cs * et->tab_qxyz[n].im - ss * et->tab_qxyz[n].re);
282 f[n][XX] += tmp * mx * 2 * scaleRecip;
283 f[n][YY] += tmp * my * 2 * scaleRecip;
284 f[n][ZZ] += tmp * mz * 2 * scaleRecip;
285 #if 0
286 f[n][XX] += tmp*mx;
287 f[n][YY] += tmp*my;
288 f[n][ZZ] += tmp*mz;
289 #endif
291 lowiz = 1 - et->nz;
293 lowiy = 1 - et->ny;
298 if (!bFreeEnergy)
300 energy = energy_AB[0];
302 else
304 energy = (1.0 - lambda) * energy_AB[0] + lambda * energy_AB[1];
305 *dvdlambda += scaleRecip * (energy_AB[1] - energy_AB[0]);
308 lrvir[XX][XX] = -0.5 * scaleRecip * (lrvir[XX][XX] + energy);
309 lrvir[XX][YY] = -0.5 * scaleRecip * (lrvir[XX][YY]);
310 lrvir[XX][ZZ] = -0.5 * scaleRecip * (lrvir[XX][ZZ]);
311 lrvir[YY][YY] = -0.5 * scaleRecip * (lrvir[YY][YY] + energy);
312 lrvir[YY][ZZ] = -0.5 * scaleRecip * (lrvir[YY][ZZ]);
313 lrvir[ZZ][ZZ] = -0.5 * scaleRecip * (lrvir[ZZ][ZZ] + energy);
315 lrvir[YY][XX] = lrvir[XX][YY];
316 lrvir[ZZ][XX] = lrvir[XX][ZZ];
317 lrvir[ZZ][YY] = lrvir[YY][ZZ];
319 energy *= scaleRecip;
321 return energy;
324 real ewald_charge_correction(const t_commrec* cr,
325 const t_forcerec* fr,
326 const real lambda,
327 const matrix box,
328 real* dvdlambda,
329 tensor vir)
332 real vol, fac, qs2A, qs2B, vc, enercorr;
333 int d;
335 if (MASTER(cr))
337 /* Apply charge correction */
338 vol = box[XX][XX] * box[YY][YY] * box[ZZ][ZZ];
340 fac = M_PI * ONE_4PI_EPS0
341 / (fr->ic->epsilon_r * 2.0 * vol * vol * gmx::square(fr->ic->ewaldcoeff_q));
343 qs2A = fr->qsum[0] * fr->qsum[0];
344 qs2B = fr->qsum[1] * fr->qsum[1];
346 vc = (qs2A * (1 - lambda) + qs2B * lambda) * fac;
348 enercorr = -vol * vc;
350 *dvdlambda += -vol * (qs2B - qs2A) * fac;
352 for (d = 0; d < DIM; d++)
354 vir[d][d] += vc;
357 if (debug)
359 fprintf(debug, "Total charge correction: Vcharge=%g\n", enercorr);
362 else
364 enercorr = 0;
367 return enercorr;