Removed include simple.h from nb_kernel_avx_128_fma_XX
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecCoul_VdwNone_GeomP1P1_avx_128_fma_single.c
blobc85524e8215e41dfd33fa595d76f9987fb2866c1
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/math/vec.h"
46 #include "gromacs/legacyheaders/nrnb.h"
48 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
49 #include "kernelutil_x86_avx_128_fma_single.h"
52 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_avx_128_fma_single
53 * Electrostatics interaction: Coulomb
54 * VdW interaction: None
55 * Geometry: Particle-Particle
56 * Calculate force/pot: PotentialAndForce
58 void
59 nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_avx_128_fma_single
60 (t_nblist * gmx_restrict nlist,
61 rvec * gmx_restrict xx,
62 rvec * gmx_restrict ff,
63 t_forcerec * gmx_restrict fr,
64 t_mdatoms * gmx_restrict mdatoms,
65 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66 t_nrnb * gmx_restrict nrnb)
68 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69 * just 0 for non-waters.
70 * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
71 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 int i_shift_offset,i_coord_offset,outeriter,inneriter;
74 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75 int jnrA,jnrB,jnrC,jnrD;
76 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
77 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
79 real rcutoff_scalar;
80 real *shiftvec,*fshift,*x,*f;
81 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82 real scratch[4*DIM];
83 __m128 fscal,rcutoff,rcutoff2,jidxall;
84 int vdwioffset0;
85 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
90 real *charge;
91 __m128 dummy_mask,cutoff_mask;
92 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
93 __m128 one = _mm_set1_ps(1.0);
94 __m128 two = _mm_set1_ps(2.0);
95 x = xx[0];
96 f = ff[0];
98 nri = nlist->nri;
99 iinr = nlist->iinr;
100 jindex = nlist->jindex;
101 jjnr = nlist->jjnr;
102 shiftidx = nlist->shift;
103 gid = nlist->gid;
104 shiftvec = fr->shift_vec[0];
105 fshift = fr->fshift[0];
106 facel = _mm_set1_ps(fr->epsfac);
107 charge = mdatoms->chargeA;
109 /* Avoid stupid compiler warnings */
110 jnrA = jnrB = jnrC = jnrD = 0;
111 j_coord_offsetA = 0;
112 j_coord_offsetB = 0;
113 j_coord_offsetC = 0;
114 j_coord_offsetD = 0;
116 outeriter = 0;
117 inneriter = 0;
119 for(iidx=0;iidx<4*DIM;iidx++)
121 scratch[iidx] = 0.0;
124 /* Start outer loop over neighborlists */
125 for(iidx=0; iidx<nri; iidx++)
127 /* Load shift vector for this list */
128 i_shift_offset = DIM*shiftidx[iidx];
130 /* Load limits for loop over neighbors */
131 j_index_start = jindex[iidx];
132 j_index_end = jindex[iidx+1];
134 /* Get outer coordinate index */
135 inr = iinr[iidx];
136 i_coord_offset = DIM*inr;
138 /* Load i particle coords and add shift vector */
139 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141 fix0 = _mm_setzero_ps();
142 fiy0 = _mm_setzero_ps();
143 fiz0 = _mm_setzero_ps();
145 /* Load parameters for i particles */
146 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
148 /* Reset potential sums */
149 velecsum = _mm_setzero_ps();
151 /* Start inner kernel loop */
152 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
155 /* Get j neighbor index, and coordinate index */
156 jnrA = jjnr[jidx];
157 jnrB = jjnr[jidx+1];
158 jnrC = jjnr[jidx+2];
159 jnrD = jjnr[jidx+3];
160 j_coord_offsetA = DIM*jnrA;
161 j_coord_offsetB = DIM*jnrB;
162 j_coord_offsetC = DIM*jnrC;
163 j_coord_offsetD = DIM*jnrD;
165 /* load j atom coordinates */
166 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
167 x+j_coord_offsetC,x+j_coord_offsetD,
168 &jx0,&jy0,&jz0);
170 /* Calculate displacement vector */
171 dx00 = _mm_sub_ps(ix0,jx0);
172 dy00 = _mm_sub_ps(iy0,jy0);
173 dz00 = _mm_sub_ps(iz0,jz0);
175 /* Calculate squared distance and things based on it */
176 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
178 rinv00 = gmx_mm_invsqrt_ps(rsq00);
180 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
182 /* Load parameters for j particles */
183 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
184 charge+jnrC+0,charge+jnrD+0);
186 /**************************
187 * CALCULATE INTERACTIONS *
188 **************************/
190 /* Compute parameters for interactions between i and j atoms */
191 qq00 = _mm_mul_ps(iq0,jq0);
193 /* COULOMB ELECTROSTATICS */
194 velec = _mm_mul_ps(qq00,rinv00);
195 felec = _mm_mul_ps(velec,rinvsq00);
197 /* Update potential sum for this i atom from the interaction with this j atom. */
198 velecsum = _mm_add_ps(velecsum,velec);
200 fscal = felec;
202 /* Update vectorial force */
203 fix0 = _mm_macc_ps(dx00,fscal,fix0);
204 fiy0 = _mm_macc_ps(dy00,fscal,fiy0);
205 fiz0 = _mm_macc_ps(dz00,fscal,fiz0);
207 fjptrA = f+j_coord_offsetA;
208 fjptrB = f+j_coord_offsetB;
209 fjptrC = f+j_coord_offsetC;
210 fjptrD = f+j_coord_offsetD;
211 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
212 _mm_mul_ps(dx00,fscal),
213 _mm_mul_ps(dy00,fscal),
214 _mm_mul_ps(dz00,fscal));
216 /* Inner loop uses 31 flops */
219 if(jidx<j_index_end)
222 /* Get j neighbor index, and coordinate index */
223 jnrlistA = jjnr[jidx];
224 jnrlistB = jjnr[jidx+1];
225 jnrlistC = jjnr[jidx+2];
226 jnrlistD = jjnr[jidx+3];
227 /* Sign of each element will be negative for non-real atoms.
228 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
229 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
231 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
232 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
233 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
234 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
235 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
236 j_coord_offsetA = DIM*jnrA;
237 j_coord_offsetB = DIM*jnrB;
238 j_coord_offsetC = DIM*jnrC;
239 j_coord_offsetD = DIM*jnrD;
241 /* load j atom coordinates */
242 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
243 x+j_coord_offsetC,x+j_coord_offsetD,
244 &jx0,&jy0,&jz0);
246 /* Calculate displacement vector */
247 dx00 = _mm_sub_ps(ix0,jx0);
248 dy00 = _mm_sub_ps(iy0,jy0);
249 dz00 = _mm_sub_ps(iz0,jz0);
251 /* Calculate squared distance and things based on it */
252 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
254 rinv00 = gmx_mm_invsqrt_ps(rsq00);
256 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
258 /* Load parameters for j particles */
259 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
260 charge+jnrC+0,charge+jnrD+0);
262 /**************************
263 * CALCULATE INTERACTIONS *
264 **************************/
266 /* Compute parameters for interactions between i and j atoms */
267 qq00 = _mm_mul_ps(iq0,jq0);
269 /* COULOMB ELECTROSTATICS */
270 velec = _mm_mul_ps(qq00,rinv00);
271 felec = _mm_mul_ps(velec,rinvsq00);
273 /* Update potential sum for this i atom from the interaction with this j atom. */
274 velec = _mm_andnot_ps(dummy_mask,velec);
275 velecsum = _mm_add_ps(velecsum,velec);
277 fscal = felec;
279 fscal = _mm_andnot_ps(dummy_mask,fscal);
281 /* Update vectorial force */
282 fix0 = _mm_macc_ps(dx00,fscal,fix0);
283 fiy0 = _mm_macc_ps(dy00,fscal,fiy0);
284 fiz0 = _mm_macc_ps(dz00,fscal,fiz0);
286 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
287 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
288 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
289 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
290 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
291 _mm_mul_ps(dx00,fscal),
292 _mm_mul_ps(dy00,fscal),
293 _mm_mul_ps(dz00,fscal));
295 /* Inner loop uses 31 flops */
298 /* End of innermost loop */
300 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
301 f+i_coord_offset,fshift+i_shift_offset);
303 ggid = gid[iidx];
304 /* Update potential energies */
305 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
307 /* Increment number of inner iterations */
308 inneriter += j_index_end - j_index_start;
310 /* Outer loop uses 8 flops */
313 /* Increment number of outer iterations */
314 outeriter += nri;
316 /* Update outer/inner flops */
318 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*31);
321 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_avx_128_fma_single
322 * Electrostatics interaction: Coulomb
323 * VdW interaction: None
324 * Geometry: Particle-Particle
325 * Calculate force/pot: Force
327 void
328 nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_avx_128_fma_single
329 (t_nblist * gmx_restrict nlist,
330 rvec * gmx_restrict xx,
331 rvec * gmx_restrict ff,
332 t_forcerec * gmx_restrict fr,
333 t_mdatoms * gmx_restrict mdatoms,
334 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
335 t_nrnb * gmx_restrict nrnb)
337 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
338 * just 0 for non-waters.
339 * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
340 * jnr indices corresponding to data put in the four positions in the SIMD register.
342 int i_shift_offset,i_coord_offset,outeriter,inneriter;
343 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
344 int jnrA,jnrB,jnrC,jnrD;
345 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
346 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
347 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
348 real rcutoff_scalar;
349 real *shiftvec,*fshift,*x,*f;
350 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
351 real scratch[4*DIM];
352 __m128 fscal,rcutoff,rcutoff2,jidxall;
353 int vdwioffset0;
354 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
355 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
356 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
357 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
358 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
359 real *charge;
360 __m128 dummy_mask,cutoff_mask;
361 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
362 __m128 one = _mm_set1_ps(1.0);
363 __m128 two = _mm_set1_ps(2.0);
364 x = xx[0];
365 f = ff[0];
367 nri = nlist->nri;
368 iinr = nlist->iinr;
369 jindex = nlist->jindex;
370 jjnr = nlist->jjnr;
371 shiftidx = nlist->shift;
372 gid = nlist->gid;
373 shiftvec = fr->shift_vec[0];
374 fshift = fr->fshift[0];
375 facel = _mm_set1_ps(fr->epsfac);
376 charge = mdatoms->chargeA;
378 /* Avoid stupid compiler warnings */
379 jnrA = jnrB = jnrC = jnrD = 0;
380 j_coord_offsetA = 0;
381 j_coord_offsetB = 0;
382 j_coord_offsetC = 0;
383 j_coord_offsetD = 0;
385 outeriter = 0;
386 inneriter = 0;
388 for(iidx=0;iidx<4*DIM;iidx++)
390 scratch[iidx] = 0.0;
393 /* Start outer loop over neighborlists */
394 for(iidx=0; iidx<nri; iidx++)
396 /* Load shift vector for this list */
397 i_shift_offset = DIM*shiftidx[iidx];
399 /* Load limits for loop over neighbors */
400 j_index_start = jindex[iidx];
401 j_index_end = jindex[iidx+1];
403 /* Get outer coordinate index */
404 inr = iinr[iidx];
405 i_coord_offset = DIM*inr;
407 /* Load i particle coords and add shift vector */
408 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
410 fix0 = _mm_setzero_ps();
411 fiy0 = _mm_setzero_ps();
412 fiz0 = _mm_setzero_ps();
414 /* Load parameters for i particles */
415 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
417 /* Start inner kernel loop */
418 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
421 /* Get j neighbor index, and coordinate index */
422 jnrA = jjnr[jidx];
423 jnrB = jjnr[jidx+1];
424 jnrC = jjnr[jidx+2];
425 jnrD = jjnr[jidx+3];
426 j_coord_offsetA = DIM*jnrA;
427 j_coord_offsetB = DIM*jnrB;
428 j_coord_offsetC = DIM*jnrC;
429 j_coord_offsetD = DIM*jnrD;
431 /* load j atom coordinates */
432 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
433 x+j_coord_offsetC,x+j_coord_offsetD,
434 &jx0,&jy0,&jz0);
436 /* Calculate displacement vector */
437 dx00 = _mm_sub_ps(ix0,jx0);
438 dy00 = _mm_sub_ps(iy0,jy0);
439 dz00 = _mm_sub_ps(iz0,jz0);
441 /* Calculate squared distance and things based on it */
442 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
444 rinv00 = gmx_mm_invsqrt_ps(rsq00);
446 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
448 /* Load parameters for j particles */
449 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
450 charge+jnrC+0,charge+jnrD+0);
452 /**************************
453 * CALCULATE INTERACTIONS *
454 **************************/
456 /* Compute parameters for interactions between i and j atoms */
457 qq00 = _mm_mul_ps(iq0,jq0);
459 /* COULOMB ELECTROSTATICS */
460 velec = _mm_mul_ps(qq00,rinv00);
461 felec = _mm_mul_ps(velec,rinvsq00);
463 fscal = felec;
465 /* Update vectorial force */
466 fix0 = _mm_macc_ps(dx00,fscal,fix0);
467 fiy0 = _mm_macc_ps(dy00,fscal,fiy0);
468 fiz0 = _mm_macc_ps(dz00,fscal,fiz0);
470 fjptrA = f+j_coord_offsetA;
471 fjptrB = f+j_coord_offsetB;
472 fjptrC = f+j_coord_offsetC;
473 fjptrD = f+j_coord_offsetD;
474 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
475 _mm_mul_ps(dx00,fscal),
476 _mm_mul_ps(dy00,fscal),
477 _mm_mul_ps(dz00,fscal));
479 /* Inner loop uses 30 flops */
482 if(jidx<j_index_end)
485 /* Get j neighbor index, and coordinate index */
486 jnrlistA = jjnr[jidx];
487 jnrlistB = jjnr[jidx+1];
488 jnrlistC = jjnr[jidx+2];
489 jnrlistD = jjnr[jidx+3];
490 /* Sign of each element will be negative for non-real atoms.
491 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
492 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
494 dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
495 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
496 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
497 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
498 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
499 j_coord_offsetA = DIM*jnrA;
500 j_coord_offsetB = DIM*jnrB;
501 j_coord_offsetC = DIM*jnrC;
502 j_coord_offsetD = DIM*jnrD;
504 /* load j atom coordinates */
505 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
506 x+j_coord_offsetC,x+j_coord_offsetD,
507 &jx0,&jy0,&jz0);
509 /* Calculate displacement vector */
510 dx00 = _mm_sub_ps(ix0,jx0);
511 dy00 = _mm_sub_ps(iy0,jy0);
512 dz00 = _mm_sub_ps(iz0,jz0);
514 /* Calculate squared distance and things based on it */
515 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
517 rinv00 = gmx_mm_invsqrt_ps(rsq00);
519 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
521 /* Load parameters for j particles */
522 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
523 charge+jnrC+0,charge+jnrD+0);
525 /**************************
526 * CALCULATE INTERACTIONS *
527 **************************/
529 /* Compute parameters for interactions between i and j atoms */
530 qq00 = _mm_mul_ps(iq0,jq0);
532 /* COULOMB ELECTROSTATICS */
533 velec = _mm_mul_ps(qq00,rinv00);
534 felec = _mm_mul_ps(velec,rinvsq00);
536 fscal = felec;
538 fscal = _mm_andnot_ps(dummy_mask,fscal);
540 /* Update vectorial force */
541 fix0 = _mm_macc_ps(dx00,fscal,fix0);
542 fiy0 = _mm_macc_ps(dy00,fscal,fiy0);
543 fiz0 = _mm_macc_ps(dz00,fscal,fiz0);
545 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
546 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
547 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
548 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
549 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
550 _mm_mul_ps(dx00,fscal),
551 _mm_mul_ps(dy00,fscal),
552 _mm_mul_ps(dz00,fscal));
554 /* Inner loop uses 30 flops */
557 /* End of innermost loop */
559 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
560 f+i_coord_offset,fshift+i_shift_offset);
562 /* Increment number of inner iterations */
563 inneriter += j_index_end - j_index_start;
565 /* Outer loop uses 7 flops */
568 /* Increment number of outer iterations */
569 outeriter += nri;
571 /* Update outer/inner flops */
573 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*30);