Removed include simple.h from nb_kernel_avx_128_fma_XX
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRF_VdwLJ_GeomP1P1_avx_128_fma_double.c
blobb7e9854915758bdbe5580a0c852190b3a259805c
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/math/vec.h"
46 #include "gromacs/legacyheaders/nrnb.h"
48 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
49 #include "kernelutil_x86_avx_128_fma_double.h"
52 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_avx_128_fma_double
53 * Electrostatics interaction: ReactionField
54 * VdW interaction: LennardJones
55 * Geometry: Particle-Particle
56 * Calculate force/pot: PotentialAndForce
58 void
59 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_avx_128_fma_double
60 (t_nblist * gmx_restrict nlist,
61 rvec * gmx_restrict xx,
62 rvec * gmx_restrict ff,
63 t_forcerec * gmx_restrict fr,
64 t_mdatoms * gmx_restrict mdatoms,
65 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66 t_nrnb * gmx_restrict nrnb)
68 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69 * just 0 for non-waters.
70 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
71 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 int i_shift_offset,i_coord_offset,outeriter,inneriter;
74 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75 int jnrA,jnrB;
76 int j_coord_offsetA,j_coord_offsetB;
77 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
78 real rcutoff_scalar;
79 real *shiftvec,*fshift,*x,*f;
80 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81 int vdwioffset0;
82 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83 int vdwjidx0A,vdwjidx0B;
84 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
93 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
94 __m128d dummy_mask,cutoff_mask;
95 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
96 __m128d one = _mm_set1_pd(1.0);
97 __m128d two = _mm_set1_pd(2.0);
98 x = xx[0];
99 f = ff[0];
101 nri = nlist->nri;
102 iinr = nlist->iinr;
103 jindex = nlist->jindex;
104 jjnr = nlist->jjnr;
105 shiftidx = nlist->shift;
106 gid = nlist->gid;
107 shiftvec = fr->shift_vec[0];
108 fshift = fr->fshift[0];
109 facel = _mm_set1_pd(fr->epsfac);
110 charge = mdatoms->chargeA;
111 krf = _mm_set1_pd(fr->ic->k_rf);
112 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
113 crf = _mm_set1_pd(fr->ic->c_rf);
114 nvdwtype = fr->ntype;
115 vdwparam = fr->nbfp;
116 vdwtype = mdatoms->typeA;
118 /* Avoid stupid compiler warnings */
119 jnrA = jnrB = 0;
120 j_coord_offsetA = 0;
121 j_coord_offsetB = 0;
123 outeriter = 0;
124 inneriter = 0;
126 /* Start outer loop over neighborlists */
127 for(iidx=0; iidx<nri; iidx++)
129 /* Load shift vector for this list */
130 i_shift_offset = DIM*shiftidx[iidx];
132 /* Load limits for loop over neighbors */
133 j_index_start = jindex[iidx];
134 j_index_end = jindex[iidx+1];
136 /* Get outer coordinate index */
137 inr = iinr[iidx];
138 i_coord_offset = DIM*inr;
140 /* Load i particle coords and add shift vector */
141 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
143 fix0 = _mm_setzero_pd();
144 fiy0 = _mm_setzero_pd();
145 fiz0 = _mm_setzero_pd();
147 /* Load parameters for i particles */
148 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
149 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
151 /* Reset potential sums */
152 velecsum = _mm_setzero_pd();
153 vvdwsum = _mm_setzero_pd();
155 /* Start inner kernel loop */
156 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
159 /* Get j neighbor index, and coordinate index */
160 jnrA = jjnr[jidx];
161 jnrB = jjnr[jidx+1];
162 j_coord_offsetA = DIM*jnrA;
163 j_coord_offsetB = DIM*jnrB;
165 /* load j atom coordinates */
166 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
167 &jx0,&jy0,&jz0);
169 /* Calculate displacement vector */
170 dx00 = _mm_sub_pd(ix0,jx0);
171 dy00 = _mm_sub_pd(iy0,jy0);
172 dz00 = _mm_sub_pd(iz0,jz0);
174 /* Calculate squared distance and things based on it */
175 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
177 rinv00 = gmx_mm_invsqrt_pd(rsq00);
179 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
181 /* Load parameters for j particles */
182 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
183 vdwjidx0A = 2*vdwtype[jnrA+0];
184 vdwjidx0B = 2*vdwtype[jnrB+0];
186 /**************************
187 * CALCULATE INTERACTIONS *
188 **************************/
190 /* Compute parameters for interactions between i and j atoms */
191 qq00 = _mm_mul_pd(iq0,jq0);
192 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
193 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
195 /* REACTION-FIELD ELECTROSTATICS */
196 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
197 felec = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
199 /* LENNARD-JONES DISPERSION/REPULSION */
201 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
202 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
203 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
204 vvdw = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
205 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
207 /* Update potential sum for this i atom from the interaction with this j atom. */
208 velecsum = _mm_add_pd(velecsum,velec);
209 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
211 fscal = _mm_add_pd(felec,fvdw);
213 /* Update vectorial force */
214 fix0 = _mm_macc_pd(dx00,fscal,fix0);
215 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
216 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
218 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
219 _mm_mul_pd(dx00,fscal),
220 _mm_mul_pd(dy00,fscal),
221 _mm_mul_pd(dz00,fscal));
223 /* Inner loop uses 47 flops */
226 if(jidx<j_index_end)
229 jnrA = jjnr[jidx];
230 j_coord_offsetA = DIM*jnrA;
232 /* load j atom coordinates */
233 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
234 &jx0,&jy0,&jz0);
236 /* Calculate displacement vector */
237 dx00 = _mm_sub_pd(ix0,jx0);
238 dy00 = _mm_sub_pd(iy0,jy0);
239 dz00 = _mm_sub_pd(iz0,jz0);
241 /* Calculate squared distance and things based on it */
242 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
244 rinv00 = gmx_mm_invsqrt_pd(rsq00);
246 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
248 /* Load parameters for j particles */
249 jq0 = _mm_load_sd(charge+jnrA+0);
250 vdwjidx0A = 2*vdwtype[jnrA+0];
252 /**************************
253 * CALCULATE INTERACTIONS *
254 **************************/
256 /* Compute parameters for interactions between i and j atoms */
257 qq00 = _mm_mul_pd(iq0,jq0);
258 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
260 /* REACTION-FIELD ELECTROSTATICS */
261 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
262 felec = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
264 /* LENNARD-JONES DISPERSION/REPULSION */
266 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
267 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
268 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
269 vvdw = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
270 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
272 /* Update potential sum for this i atom from the interaction with this j atom. */
273 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
274 velecsum = _mm_add_pd(velecsum,velec);
275 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
276 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
278 fscal = _mm_add_pd(felec,fvdw);
280 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
282 /* Update vectorial force */
283 fix0 = _mm_macc_pd(dx00,fscal,fix0);
284 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
285 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
287 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
288 _mm_mul_pd(dx00,fscal),
289 _mm_mul_pd(dy00,fscal),
290 _mm_mul_pd(dz00,fscal));
292 /* Inner loop uses 47 flops */
295 /* End of innermost loop */
297 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
298 f+i_coord_offset,fshift+i_shift_offset);
300 ggid = gid[iidx];
301 /* Update potential energies */
302 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
303 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
305 /* Increment number of inner iterations */
306 inneriter += j_index_end - j_index_start;
308 /* Outer loop uses 9 flops */
311 /* Increment number of outer iterations */
312 outeriter += nri;
314 /* Update outer/inner flops */
316 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*47);
319 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_avx_128_fma_double
320 * Electrostatics interaction: ReactionField
321 * VdW interaction: LennardJones
322 * Geometry: Particle-Particle
323 * Calculate force/pot: Force
325 void
326 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_avx_128_fma_double
327 (t_nblist * gmx_restrict nlist,
328 rvec * gmx_restrict xx,
329 rvec * gmx_restrict ff,
330 t_forcerec * gmx_restrict fr,
331 t_mdatoms * gmx_restrict mdatoms,
332 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
333 t_nrnb * gmx_restrict nrnb)
335 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
336 * just 0 for non-waters.
337 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
338 * jnr indices corresponding to data put in the four positions in the SIMD register.
340 int i_shift_offset,i_coord_offset,outeriter,inneriter;
341 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
342 int jnrA,jnrB;
343 int j_coord_offsetA,j_coord_offsetB;
344 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
345 real rcutoff_scalar;
346 real *shiftvec,*fshift,*x,*f;
347 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
348 int vdwioffset0;
349 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
350 int vdwjidx0A,vdwjidx0B;
351 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
352 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
353 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
354 real *charge;
355 int nvdwtype;
356 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
357 int *vdwtype;
358 real *vdwparam;
359 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
360 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
361 __m128d dummy_mask,cutoff_mask;
362 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
363 __m128d one = _mm_set1_pd(1.0);
364 __m128d two = _mm_set1_pd(2.0);
365 x = xx[0];
366 f = ff[0];
368 nri = nlist->nri;
369 iinr = nlist->iinr;
370 jindex = nlist->jindex;
371 jjnr = nlist->jjnr;
372 shiftidx = nlist->shift;
373 gid = nlist->gid;
374 shiftvec = fr->shift_vec[0];
375 fshift = fr->fshift[0];
376 facel = _mm_set1_pd(fr->epsfac);
377 charge = mdatoms->chargeA;
378 krf = _mm_set1_pd(fr->ic->k_rf);
379 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
380 crf = _mm_set1_pd(fr->ic->c_rf);
381 nvdwtype = fr->ntype;
382 vdwparam = fr->nbfp;
383 vdwtype = mdatoms->typeA;
385 /* Avoid stupid compiler warnings */
386 jnrA = jnrB = 0;
387 j_coord_offsetA = 0;
388 j_coord_offsetB = 0;
390 outeriter = 0;
391 inneriter = 0;
393 /* Start outer loop over neighborlists */
394 for(iidx=0; iidx<nri; iidx++)
396 /* Load shift vector for this list */
397 i_shift_offset = DIM*shiftidx[iidx];
399 /* Load limits for loop over neighbors */
400 j_index_start = jindex[iidx];
401 j_index_end = jindex[iidx+1];
403 /* Get outer coordinate index */
404 inr = iinr[iidx];
405 i_coord_offset = DIM*inr;
407 /* Load i particle coords and add shift vector */
408 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
410 fix0 = _mm_setzero_pd();
411 fiy0 = _mm_setzero_pd();
412 fiz0 = _mm_setzero_pd();
414 /* Load parameters for i particles */
415 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
416 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
418 /* Start inner kernel loop */
419 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
422 /* Get j neighbor index, and coordinate index */
423 jnrA = jjnr[jidx];
424 jnrB = jjnr[jidx+1];
425 j_coord_offsetA = DIM*jnrA;
426 j_coord_offsetB = DIM*jnrB;
428 /* load j atom coordinates */
429 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
430 &jx0,&jy0,&jz0);
432 /* Calculate displacement vector */
433 dx00 = _mm_sub_pd(ix0,jx0);
434 dy00 = _mm_sub_pd(iy0,jy0);
435 dz00 = _mm_sub_pd(iz0,jz0);
437 /* Calculate squared distance and things based on it */
438 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
440 rinv00 = gmx_mm_invsqrt_pd(rsq00);
442 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
444 /* Load parameters for j particles */
445 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
446 vdwjidx0A = 2*vdwtype[jnrA+0];
447 vdwjidx0B = 2*vdwtype[jnrB+0];
449 /**************************
450 * CALCULATE INTERACTIONS *
451 **************************/
453 /* Compute parameters for interactions between i and j atoms */
454 qq00 = _mm_mul_pd(iq0,jq0);
455 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
456 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
458 /* REACTION-FIELD ELECTROSTATICS */
459 felec = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
461 /* LENNARD-JONES DISPERSION/REPULSION */
463 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
464 fvdw = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
466 fscal = _mm_add_pd(felec,fvdw);
468 /* Update vectorial force */
469 fix0 = _mm_macc_pd(dx00,fscal,fix0);
470 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
471 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
473 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
474 _mm_mul_pd(dx00,fscal),
475 _mm_mul_pd(dy00,fscal),
476 _mm_mul_pd(dz00,fscal));
478 /* Inner loop uses 37 flops */
481 if(jidx<j_index_end)
484 jnrA = jjnr[jidx];
485 j_coord_offsetA = DIM*jnrA;
487 /* load j atom coordinates */
488 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
489 &jx0,&jy0,&jz0);
491 /* Calculate displacement vector */
492 dx00 = _mm_sub_pd(ix0,jx0);
493 dy00 = _mm_sub_pd(iy0,jy0);
494 dz00 = _mm_sub_pd(iz0,jz0);
496 /* Calculate squared distance and things based on it */
497 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
499 rinv00 = gmx_mm_invsqrt_pd(rsq00);
501 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
503 /* Load parameters for j particles */
504 jq0 = _mm_load_sd(charge+jnrA+0);
505 vdwjidx0A = 2*vdwtype[jnrA+0];
507 /**************************
508 * CALCULATE INTERACTIONS *
509 **************************/
511 /* Compute parameters for interactions between i and j atoms */
512 qq00 = _mm_mul_pd(iq0,jq0);
513 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
515 /* REACTION-FIELD ELECTROSTATICS */
516 felec = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
518 /* LENNARD-JONES DISPERSION/REPULSION */
520 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
521 fvdw = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
523 fscal = _mm_add_pd(felec,fvdw);
525 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
527 /* Update vectorial force */
528 fix0 = _mm_macc_pd(dx00,fscal,fix0);
529 fiy0 = _mm_macc_pd(dy00,fscal,fiy0);
530 fiz0 = _mm_macc_pd(dz00,fscal,fiz0);
532 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
533 _mm_mul_pd(dx00,fscal),
534 _mm_mul_pd(dy00,fscal),
535 _mm_mul_pd(dz00,fscal));
537 /* Inner loop uses 37 flops */
540 /* End of innermost loop */
542 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
543 f+i_coord_offset,fshift+i_shift_offset);
545 /* Increment number of inner iterations */
546 inneriter += j_index_end - j_index_start;
548 /* Outer loop uses 7 flops */
551 /* Increment number of outer iterations */
552 outeriter += nri;
554 /* Update outer/inner flops */
556 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);