2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017,2018,2019, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
39 * \brief This file defines integrators for energy minimization
41 * \author Berk Hess <hess@kth.se>
42 * \author Erik Lindahl <erik@kth.se>
43 * \ingroup module_mdrun
56 #include "gromacs/commandline/filenm.h"
57 #include "gromacs/domdec/collect.h"
58 #include "gromacs/domdec/dlbtiming.h"
59 #include "gromacs/domdec/domdec.h"
60 #include "gromacs/domdec/domdec_struct.h"
61 #include "gromacs/domdec/mdsetup.h"
62 #include "gromacs/domdec/partition.h"
63 #include "gromacs/ewald/pme.h"
64 #include "gromacs/fileio/confio.h"
65 #include "gromacs/fileio/mtxio.h"
66 #include "gromacs/gmxlib/network.h"
67 #include "gromacs/gmxlib/nrnb.h"
68 #include "gromacs/imd/imd.h"
69 #include "gromacs/linearalgebra/sparsematrix.h"
70 #include "gromacs/listed_forces/manage_threading.h"
71 #include "gromacs/math/functions.h"
72 #include "gromacs/math/vec.h"
73 #include "gromacs/mdlib/constr.h"
74 #include "gromacs/mdlib/dispersioncorrection.h"
75 #include "gromacs/mdlib/ebin.h"
76 #include "gromacs/mdlib/enerdata_utils.h"
77 #include "gromacs/mdlib/energyoutput.h"
78 #include "gromacs/mdlib/force.h"
79 #include "gromacs/mdlib/forcerec.h"
80 #include "gromacs/mdlib/gmx_omp_nthreads.h"
81 #include "gromacs/mdlib/md_support.h"
82 #include "gromacs/mdlib/mdatoms.h"
83 #include "gromacs/mdlib/stat.h"
84 #include "gromacs/mdlib/tgroup.h"
85 #include "gromacs/mdlib/trajectory_writing.h"
86 #include "gromacs/mdlib/update.h"
87 #include "gromacs/mdlib/vsite.h"
88 #include "gromacs/mdrunutility/handlerestart.h"
89 #include "gromacs/mdrunutility/printtime.h"
90 #include "gromacs/mdtypes/commrec.h"
91 #include "gromacs/mdtypes/inputrec.h"
92 #include "gromacs/mdtypes/md_enums.h"
93 #include "gromacs/mdtypes/mdrunoptions.h"
94 #include "gromacs/mdtypes/state.h"
95 #include "gromacs/pbcutil/mshift.h"
96 #include "gromacs/pbcutil/pbc.h"
97 #include "gromacs/timing/wallcycle.h"
98 #include "gromacs/timing/walltime_accounting.h"
99 #include "gromacs/topology/mtop_util.h"
100 #include "gromacs/topology/topology.h"
101 #include "gromacs/utility/cstringutil.h"
102 #include "gromacs/utility/exceptions.h"
103 #include "gromacs/utility/fatalerror.h"
104 #include "gromacs/utility/logger.h"
105 #include "gromacs/utility/smalloc.h"
107 #include "legacysimulator.h"
110 using gmx::MdrunScheduleWorkload
;
112 //! Utility structure for manipulating states during EM
114 //! Copy of the global state
117 PaddedHostVector
<gmx::RVec
> f
;
120 //! Norm of the force
128 //! Print the EM starting conditions
129 static void print_em_start(FILE *fplog
,
131 gmx_walltime_accounting_t walltime_accounting
,
132 gmx_wallcycle_t wcycle
,
135 walltime_accounting_start_time(walltime_accounting
);
136 wallcycle_start(wcycle
, ewcRUN
);
137 print_start(fplog
, cr
, walltime_accounting
, name
);
140 //! Stop counting time for EM
141 static void em_time_end(gmx_walltime_accounting_t walltime_accounting
,
142 gmx_wallcycle_t wcycle
)
144 wallcycle_stop(wcycle
, ewcRUN
);
146 walltime_accounting_end_time(walltime_accounting
);
149 //! Printing a log file and console header
150 static void sp_header(FILE *out
, const char *minimizer
, real ftol
, int nsteps
)
153 fprintf(out
, "%s:\n", minimizer
);
154 fprintf(out
, " Tolerance (Fmax) = %12.5e\n", ftol
);
155 fprintf(out
, " Number of steps = %12d\n", nsteps
);
158 //! Print warning message
159 static void warn_step(FILE *fp
,
165 constexpr bool realIsDouble
= GMX_DOUBLE
;
168 if (!std::isfinite(fmax
))
171 "\nEnergy minimization has stopped because the force "
172 "on at least one atom is not finite. This usually means "
173 "atoms are overlapping. Modify the input coordinates to "
174 "remove atom overlap or use soft-core potentials with "
175 "the free energy code to avoid infinite forces.\n%s",
177 "You could also be lucky that switching to double precision "
178 "is sufficient to obtain finite forces.\n" :
184 "\nEnergy minimization reached the maximum number "
185 "of steps before the forces reached the requested "
186 "precision Fmax < %g.\n", ftol
);
191 "\nEnergy minimization has stopped, but the forces have "
192 "not converged to the requested precision Fmax < %g (which "
193 "may not be possible for your system). It stopped "
194 "because the algorithm tried to make a new step whose size "
195 "was too small, or there was no change in the energy since "
196 "last step. Either way, we regard the minimization as "
197 "converged to within the available machine precision, "
198 "given your starting configuration and EM parameters.\n%s%s",
201 "\nDouble precision normally gives you higher accuracy, but "
202 "this is often not needed for preparing to run molecular "
206 "You might need to increase your constraint accuracy, or turn\n"
207 "off constraints altogether (set constraints = none in mdp file)\n" :
211 fputs(wrap_lines(buffer
, 78, 0, FALSE
), stderr
);
212 fputs(wrap_lines(buffer
, 78, 0, FALSE
), fp
);
215 //! Print message about convergence of the EM
216 static void print_converged(FILE *fp
, const char *alg
, real ftol
,
217 int64_t count
, gmx_bool bDone
, int64_t nsteps
,
218 const em_state_t
*ems
, double sqrtNumAtoms
)
220 char buf
[STEPSTRSIZE
];
224 fprintf(fp
, "\n%s converged to Fmax < %g in %s steps\n",
225 alg
, ftol
, gmx_step_str(count
, buf
));
227 else if (count
< nsteps
)
229 fprintf(fp
, "\n%s converged to machine precision in %s steps,\n"
230 "but did not reach the requested Fmax < %g.\n",
231 alg
, gmx_step_str(count
, buf
), ftol
);
235 fprintf(fp
, "\n%s did not converge to Fmax < %g in %s steps.\n",
236 alg
, ftol
, gmx_step_str(count
, buf
));
240 fprintf(fp
, "Potential Energy = %21.14e\n", ems
->epot
);
241 fprintf(fp
, "Maximum force = %21.14e on atom %d\n", ems
->fmax
, ems
->a_fmax
+ 1);
242 fprintf(fp
, "Norm of force = %21.14e\n", ems
->fnorm
/sqrtNumAtoms
);
244 fprintf(fp
, "Potential Energy = %14.7e\n", ems
->epot
);
245 fprintf(fp
, "Maximum force = %14.7e on atom %d\n", ems
->fmax
, ems
->a_fmax
+ 1);
246 fprintf(fp
, "Norm of force = %14.7e\n", ems
->fnorm
/sqrtNumAtoms
);
250 //! Compute the norm and max of the force array in parallel
251 static void get_f_norm_max(const t_commrec
*cr
,
252 t_grpopts
*opts
, t_mdatoms
*mdatoms
, const rvec
*f
,
253 real
*fnorm
, real
*fmax
, int *a_fmax
)
257 int la_max
, a_max
, start
, end
, i
, m
, gf
;
259 /* This routine finds the largest force and returns it.
260 * On parallel machines the global max is taken.
266 end
= mdatoms
->homenr
;
267 if (mdatoms
->cFREEZE
)
269 for (i
= start
; i
< end
; i
++)
271 gf
= mdatoms
->cFREEZE
[i
];
273 for (m
= 0; m
< DIM
; m
++)
275 if (!opts
->nFreeze
[gf
][m
])
277 fam
+= gmx::square(f
[i
][m
]);
290 for (i
= start
; i
< end
; i
++)
302 if (la_max
>= 0 && DOMAINDECOMP(cr
))
304 a_max
= cr
->dd
->globalAtomIndices
[la_max
];
312 snew(sum
, 2*cr
->nnodes
+1);
313 sum
[2*cr
->nodeid
] = fmax2
;
314 sum
[2*cr
->nodeid
+1] = a_max
;
315 sum
[2*cr
->nnodes
] = fnorm2
;
316 gmx_sumd(2*cr
->nnodes
+1, sum
, cr
);
317 fnorm2
= sum
[2*cr
->nnodes
];
318 /* Determine the global maximum */
319 for (i
= 0; i
< cr
->nnodes
; i
++)
321 if (sum
[2*i
] > fmax2
)
324 a_max
= gmx::roundToInt(sum
[2*i
+1]);
332 *fnorm
= sqrt(fnorm2
);
344 //! Compute the norm of the force
345 static void get_state_f_norm_max(const t_commrec
*cr
,
346 t_grpopts
*opts
, t_mdatoms
*mdatoms
,
349 get_f_norm_max(cr
, opts
, mdatoms
, ems
->f
.rvec_array(),
350 &ems
->fnorm
, &ems
->fmax
, &ems
->a_fmax
);
353 //! Initialize the energy minimization
354 static void init_em(FILE *fplog
,
355 const gmx::MDLogger
&mdlog
,
359 gmx::ImdSession
*imdSession
,
361 t_state
*state_global
, gmx_mtop_t
*top_global
,
362 em_state_t
*ems
, gmx_localtop_t
*top
,
365 t_graph
**graph
, gmx::MDAtoms
*mdAtoms
, gmx_global_stat_t
*gstat
,
366 gmx_vsite_t
*vsite
, gmx::Constraints
*constr
, gmx_shellfc_t
**shellfc
)
372 fprintf(fplog
, "Initiating %s\n", title
);
377 state_global
->ngtc
= 0;
379 initialize_lambdas(fplog
, *ir
, MASTER(cr
), &(state_global
->fep_state
), state_global
->lambda
, nullptr);
383 GMX_ASSERT(shellfc
!= nullptr, "With NM we always support shells");
385 *shellfc
= init_shell_flexcon(stdout
,
387 constr
? constr
->numFlexibleConstraints() : 0,
393 GMX_ASSERT(EI_ENERGY_MINIMIZATION(ir
->eI
), "This else currently only handles energy minimizers, consider if your algorithm needs shell/flexible-constraint support");
395 /* With energy minimization, shells and flexible constraints are
396 * automatically minimized when treated like normal DOFS.
398 if (shellfc
!= nullptr)
404 auto mdatoms
= mdAtoms
->mdatoms();
405 if (DOMAINDECOMP(cr
))
407 top
->useInDomainDecomp_
= true;
408 dd_init_local_top(*top_global
, top
);
410 dd_init_local_state(cr
->dd
, state_global
, &ems
->s
);
412 /* Distribute the charge groups over the nodes from the master node */
413 dd_partition_system(fplog
, mdlog
, ir
->init_step
, cr
, TRUE
, 1,
414 state_global
, *top_global
, ir
, imdSession
, pull_work
,
415 &ems
->s
, &ems
->f
, mdAtoms
, top
,
417 nrnb
, nullptr, FALSE
);
418 dd_store_state(cr
->dd
, &ems
->s
);
424 state_change_natoms(state_global
, state_global
->natoms
);
425 /* Just copy the state */
426 ems
->s
= *state_global
;
427 state_change_natoms(&ems
->s
, ems
->s
.natoms
);
428 ems
->f
.resizeWithPadding(ems
->s
.natoms
);
430 mdAlgorithmsSetupAtomData(cr
, ir
, *top_global
, top
, fr
,
432 constr
, vsite
, shellfc
? *shellfc
: nullptr);
436 set_vsite_top(vsite
, top
, mdatoms
);
440 update_mdatoms(mdAtoms
->mdatoms(), ems
->s
.lambda
[efptMASS
]);
444 // TODO how should this cross-module support dependency be managed?
445 if (ir
->eConstrAlg
== econtSHAKE
&&
446 gmx_mtop_ftype_count(top_global
, F_CONSTR
) > 0)
448 gmx_fatal(FARGS
, "Can not do energy minimization with %s, use %s\n",
449 econstr_names
[econtSHAKE
], econstr_names
[econtLINCS
]);
452 if (!ir
->bContinuation
)
454 /* Constrain the starting coordinates */
456 constr
->apply(TRUE
, TRUE
,
458 ems
->s
.x
.rvec_array(),
459 ems
->s
.x
.rvec_array(),
462 ems
->s
.lambda
[efptFEP
], &dvdl_constr
,
463 nullptr, nullptr, gmx::ConstraintVariable::Positions
);
469 *gstat
= global_stat_init(ir
);
476 calc_shifts(ems
->s
.box
, fr
->shift_vec
);
479 //! Finalize the minimization
480 static void finish_em(const t_commrec
*cr
, gmx_mdoutf_t outf
,
481 gmx_walltime_accounting_t walltime_accounting
,
482 gmx_wallcycle_t wcycle
)
484 if (!thisRankHasDuty(cr
, DUTY_PME
))
486 /* Tell the PME only node to finish */
487 gmx_pme_send_finish(cr
);
492 em_time_end(walltime_accounting
, wcycle
);
495 //! Swap two different EM states during minimization
496 static void swap_em_state(em_state_t
**ems1
, em_state_t
**ems2
)
505 //! Save the EM trajectory
506 static void write_em_traj(FILE *fplog
, const t_commrec
*cr
,
508 gmx_bool bX
, gmx_bool bF
, const char *confout
,
509 gmx_mtop_t
*top_global
,
510 t_inputrec
*ir
, int64_t step
,
512 t_state
*state_global
,
513 ObservablesHistory
*observablesHistory
)
519 mdof_flags
|= MDOF_X
;
523 mdof_flags
|= MDOF_F
;
526 /* If we want IMD output, set appropriate MDOF flag */
529 mdof_flags
|= MDOF_IMD
;
532 mdoutf_write_to_trajectory_files(fplog
, cr
, outf
, mdof_flags
,
533 top_global
->natoms
, step
, static_cast<double>(step
),
534 &state
->s
, state_global
, observablesHistory
,
537 if (confout
!= nullptr)
539 if (DOMAINDECOMP(cr
))
541 /* If bX=true, x was collected to state_global in the call above */
544 auto globalXRef
= MASTER(cr
) ? state_global
->x
: gmx::ArrayRef
<gmx::RVec
>();
545 dd_collect_vec(cr
->dd
, &state
->s
, state
->s
.x
, globalXRef
);
550 /* Copy the local state pointer */
551 state_global
= &state
->s
;
556 if (ir
->ePBC
!= epbcNONE
&& !ir
->bPeriodicMols
&& DOMAINDECOMP(cr
))
558 /* Make molecules whole only for confout writing */
559 do_pbc_mtop(ir
->ePBC
, state
->s
.box
, top_global
,
560 state_global
->x
.rvec_array());
563 write_sto_conf_mtop(confout
,
564 *top_global
->name
, top_global
,
565 state_global
->x
.rvec_array(), nullptr, ir
->ePBC
, state
->s
.box
);
570 //! \brief Do one minimization step
572 // \returns true when the step succeeded, false when a constraint error occurred
573 static bool do_em_step(const t_commrec
*cr
,
574 t_inputrec
*ir
, t_mdatoms
*md
,
575 em_state_t
*ems1
, real a
, const PaddedHostVector
<gmx::RVec
> *force
,
577 gmx::Constraints
*constr
,
584 int nthreads gmx_unused
;
586 bool validStep
= true;
591 if (DOMAINDECOMP(cr
) && s1
->ddp_count
!= cr
->dd
->ddp_count
)
593 gmx_incons("state mismatch in do_em_step");
596 s2
->flags
= s1
->flags
;
598 if (s2
->natoms
!= s1
->natoms
)
600 state_change_natoms(s2
, s1
->natoms
);
601 ems2
->f
.resizeWithPadding(s2
->natoms
);
603 if (DOMAINDECOMP(cr
) && s2
->cg_gl
.size() != s1
->cg_gl
.size())
605 s2
->cg_gl
.resize(s1
->cg_gl
.size());
608 copy_mat(s1
->box
, s2
->box
);
609 /* Copy free energy state */
610 s2
->lambda
= s1
->lambda
;
611 copy_mat(s1
->box
, s2
->box
);
616 nthreads
= gmx_omp_nthreads_get(emntUpdate
);
617 #pragma omp parallel num_threads(nthreads)
619 const rvec
*x1
= s1
->x
.rvec_array();
620 rvec
*x2
= s2
->x
.rvec_array();
621 const rvec
*f
= force
->rvec_array();
624 #pragma omp for schedule(static) nowait
625 for (int i
= start
; i
< end
; i
++)
633 for (int m
= 0; m
< DIM
; m
++)
635 if (ir
->opts
.nFreeze
[gf
][m
])
641 x2
[i
][m
] = x1
[i
][m
] + a
*f
[i
][m
];
645 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
;
648 if (s2
->flags
& (1<<estCGP
))
650 /* Copy the CG p vector */
651 const rvec
*p1
= s1
->cg_p
.rvec_array();
652 rvec
*p2
= s2
->cg_p
.rvec_array();
653 #pragma omp for schedule(static) nowait
654 for (int i
= start
; i
< end
; i
++)
656 // Trivial OpenMP block that does not throw
657 copy_rvec(p1
[i
], p2
[i
]);
661 if (DOMAINDECOMP(cr
))
663 s2
->ddp_count
= s1
->ddp_count
;
665 /* OpenMP does not supported unsigned loop variables */
666 #pragma omp for schedule(static) nowait
667 for (gmx::index i
= 0; i
< gmx::ssize(s2
->cg_gl
); i
++)
669 s2
->cg_gl
[i
] = s1
->cg_gl
[i
];
671 s2
->ddp_count_cg_gl
= s1
->ddp_count_cg_gl
;
679 constr
->apply(TRUE
, TRUE
,
681 s1
->x
.rvec_array(), s2
->x
.rvec_array(),
683 s2
->lambda
[efptBONDED
], &dvdl_constr
,
684 nullptr, nullptr, gmx::ConstraintVariable::Positions
);
688 /* This global reduction will affect performance at high
689 * parallelization, but we can not really avoid it.
690 * But usually EM is not run at high parallelization.
692 int reductionBuffer
= static_cast<int>(!validStep
);
693 gmx_sumi(1, &reductionBuffer
, cr
);
694 validStep
= (reductionBuffer
== 0);
697 // We should move this check to the different minimizers
698 if (!validStep
&& ir
->eI
!= eiSteep
)
700 gmx_fatal(FARGS
, "The coordinates could not be constrained. Minimizer '%s' can not handle constraint failures, use minimizer '%s' before using '%s'.",
701 EI(ir
->eI
), EI(eiSteep
), EI(ir
->eI
));
708 //! Prepare EM for using domain decomposition parallellization
709 static void em_dd_partition_system(FILE *fplog
,
710 const gmx::MDLogger
&mdlog
,
711 int step
, const t_commrec
*cr
,
712 gmx_mtop_t
*top_global
, t_inputrec
*ir
,
713 gmx::ImdSession
*imdSession
,
715 em_state_t
*ems
, gmx_localtop_t
*top
,
716 gmx::MDAtoms
*mdAtoms
, t_forcerec
*fr
,
717 gmx_vsite_t
*vsite
, gmx::Constraints
*constr
,
718 t_nrnb
*nrnb
, gmx_wallcycle_t wcycle
)
720 /* Repartition the domain decomposition */
721 dd_partition_system(fplog
, mdlog
, step
, cr
, FALSE
, 1,
722 nullptr, *top_global
, ir
, imdSession
, pull_work
,
724 mdAtoms
, top
, fr
, vsite
, constr
,
725 nrnb
, wcycle
, FALSE
);
726 dd_store_state(cr
->dd
, &ems
->s
);
732 /*! \brief Class to handle the work of setting and doing an energy evaluation.
734 * This class is a mere aggregate of parameters to pass to evaluate an
735 * energy, so that future changes to names and types of them consume
736 * less time when refactoring other code.
738 * Aggregate initialization is used, for which the chief risk is that
739 * if a member is added at the end and not all initializer lists are
740 * updated, then the member will be value initialized, which will
741 * typically mean initialization to zero.
743 * Use a braced initializer list to construct one of these. */
744 class EnergyEvaluator
747 /*! \brief Evaluates an energy on the state in \c ems.
749 * \todo In practice, the same objects mu_tot, vir, and pres
750 * are always passed to this function, so we would rather have
751 * them as data members. However, their C-array types are
752 * unsuited for aggregate initialization. When the types
753 * improve, the call signature of this method can be reduced.
755 void run(em_state_t
*ems
, rvec mu_tot
,
756 tensor vir
, tensor pres
,
757 int64_t count
, gmx_bool bFirst
);
758 //! Handles logging (deprecated).
761 const gmx::MDLogger
&mdlog
;
762 //! Handles communication.
764 //! Coordinates multi-simulations.
765 const gmx_multisim_t
*ms
;
766 //! Holds the simulation topology.
767 gmx_mtop_t
*top_global
;
768 //! Holds the domain topology.
770 //! User input options.
771 t_inputrec
*inputrec
;
772 //! The Interactive Molecular Dynamics session.
773 gmx::ImdSession
*imdSession
;
774 //! The pull work object.
776 //! Manages flop accounting.
778 //! Manages wall cycle accounting.
779 gmx_wallcycle_t wcycle
;
780 //! Coordinates global reduction.
781 gmx_global_stat_t gstat
;
782 //! Handles virtual sites.
784 //! Handles constraints.
785 gmx::Constraints
*constr
;
786 //! Handles strange things.
788 //! Molecular graph for SHAKE.
790 //! Per-atom data for this domain.
791 gmx::MDAtoms
*mdAtoms
;
792 //! Handles how to calculate the forces.
794 //! Schedule of force-calculation work each step for this task.
795 MdrunScheduleWorkload
*runScheduleWork
;
796 //! Stores the computed energies.
797 gmx_enerdata_t
*enerd
;
801 EnergyEvaluator::run(em_state_t
*ems
, rvec mu_tot
,
802 tensor vir
, tensor pres
,
803 int64_t count
, gmx_bool bFirst
)
807 tensor force_vir
, shake_vir
, ekin
;
811 /* Set the time to the initial time, the time does not change during EM */
812 t
= inputrec
->init_t
;
815 (DOMAINDECOMP(cr
) && ems
->s
.ddp_count
< cr
->dd
->ddp_count
))
817 /* This is the first state or an old state used before the last ns */
823 if (inputrec
->nstlist
> 0)
831 construct_vsites(vsite
, ems
->s
.x
.rvec_array(), 1, nullptr,
832 top
->idef
.iparams
, top
->idef
.il
,
833 fr
->ePBC
, fr
->bMolPBC
, cr
, ems
->s
.box
);
836 if (DOMAINDECOMP(cr
) && bNS
)
838 /* Repartition the domain decomposition */
839 em_dd_partition_system(fplog
, mdlog
, count
, cr
, top_global
, inputrec
, imdSession
,
841 ems
, top
, mdAtoms
, fr
, vsite
, constr
,
845 /* Calc force & energy on new trial position */
846 /* do_force always puts the charge groups in the box and shifts again
847 * We do not unshift, so molecules are always whole in congrad.c
849 do_force(fplog
, cr
, ms
, inputrec
, nullptr, nullptr, imdSession
,
851 count
, nrnb
, wcycle
, top
,
852 ems
->s
.box
, ems
->s
.x
.arrayRefWithPadding(), &ems
->s
.hist
,
853 ems
->f
.arrayRefWithPadding(), force_vir
, mdAtoms
->mdatoms(), enerd
, fcd
,
854 ems
->s
.lambda
, graph
, fr
, runScheduleWork
, vsite
, mu_tot
, t
, nullptr,
855 GMX_FORCE_STATECHANGED
| GMX_FORCE_ALLFORCES
|
856 GMX_FORCE_VIRIAL
| GMX_FORCE_ENERGY
|
857 (bNS
? GMX_FORCE_NS
: 0),
858 DDBalanceRegionHandler(cr
));
860 /* Clear the unused shake virial and pressure */
861 clear_mat(shake_vir
);
864 /* Communicate stuff when parallel */
865 if (PAR(cr
) && inputrec
->eI
!= eiNM
)
867 wallcycle_start(wcycle
, ewcMoveE
);
869 global_stat(gstat
, cr
, enerd
, force_vir
, shake_vir
, mu_tot
,
870 inputrec
, nullptr, nullptr, nullptr, 1, &terminate
,
876 wallcycle_stop(wcycle
, ewcMoveE
);
879 if (fr
->dispersionCorrection
)
881 /* Calculate long range corrections to pressure and energy */
882 const DispersionCorrection::Correction correction
=
883 fr
->dispersionCorrection
->calculate(ems
->s
.box
, ems
->s
.lambda
[efptVDW
]);
885 enerd
->term
[F_DISPCORR
] = correction
.energy
;
886 enerd
->term
[F_EPOT
] += correction
.energy
;
887 enerd
->term
[F_PRES
] += correction
.pressure
;
888 enerd
->term
[F_DVDL
] += correction
.dvdl
;
892 enerd
->term
[F_DISPCORR
] = 0;
895 ems
->epot
= enerd
->term
[F_EPOT
];
899 /* Project out the constraint components of the force */
901 rvec
*f_rvec
= ems
->f
.rvec_array();
902 constr
->apply(FALSE
, FALSE
,
904 ems
->s
.x
.rvec_array(), f_rvec
, f_rvec
,
906 ems
->s
.lambda
[efptBONDED
], &dvdl_constr
,
907 nullptr, &shake_vir
, gmx::ConstraintVariable::ForceDispl
);
908 enerd
->term
[F_DVDL_CONSTR
] += dvdl_constr
;
909 m_add(force_vir
, shake_vir
, vir
);
913 copy_mat(force_vir
, vir
);
917 enerd
->term
[F_PRES
] =
918 calc_pres(fr
->ePBC
, inputrec
->nwall
, ems
->s
.box
, ekin
, vir
, pres
);
920 sum_dhdl(enerd
, ems
->s
.lambda
, *inputrec
->fepvals
);
922 if (EI_ENERGY_MINIMIZATION(inputrec
->eI
))
924 get_state_f_norm_max(cr
, &(inputrec
->opts
), mdAtoms
->mdatoms(), ems
);
930 //! Parallel utility summing energies and forces
931 static double reorder_partsum(const t_commrec
*cr
, t_grpopts
*opts
,
932 gmx_mtop_t
*top_global
,
933 em_state_t
*s_min
, em_state_t
*s_b
)
937 fprintf(debug
, "Doing reorder_partsum\n");
940 const rvec
*fm
= s_min
->f
.rvec_array();
941 const rvec
*fb
= s_b
->f
.rvec_array();
943 /* Collect fm in a global vector fmg.
944 * This conflicts with the spirit of domain decomposition,
945 * but to fully optimize this a much more complicated algorithm is required.
947 const int natoms
= top_global
->natoms
;
951 gmx::ArrayRef
<const int> indicesMin
= s_min
->s
.cg_gl
;
953 for (int a
: indicesMin
)
955 copy_rvec(fm
[i
], fmg
[a
]);
958 gmx_sum(top_global
->natoms
*3, fmg
[0], cr
);
960 /* Now we will determine the part of the sum for the cgs in state s_b */
961 gmx::ArrayRef
<const int> indicesB
= s_b
->s
.cg_gl
;
966 gmx::ArrayRef
<unsigned char> grpnrFREEZE
= top_global
->groups
.groupNumbers
[SimulationAtomGroupType::Freeze
];
967 for (int a
: indicesB
)
969 if (!grpnrFREEZE
.empty())
973 for (int m
= 0; m
< DIM
; m
++)
975 if (!opts
->nFreeze
[gf
][m
])
977 partsum
+= (fb
[i
][m
] - fmg
[a
][m
])*fb
[i
][m
];
988 //! Print some stuff, like beta, whatever that means.
989 static real
pr_beta(const t_commrec
*cr
, t_grpopts
*opts
, t_mdatoms
*mdatoms
,
990 gmx_mtop_t
*top_global
,
991 em_state_t
*s_min
, em_state_t
*s_b
)
995 /* This is just the classical Polak-Ribiere calculation of beta;
996 * it looks a bit complicated since we take freeze groups into account,
997 * and might have to sum it in parallel runs.
1000 if (!DOMAINDECOMP(cr
) ||
1001 (s_min
->s
.ddp_count
== cr
->dd
->ddp_count
&&
1002 s_b
->s
.ddp_count
== cr
->dd
->ddp_count
))
1004 const rvec
*fm
= s_min
->f
.rvec_array();
1005 const rvec
*fb
= s_b
->f
.rvec_array();
1008 /* This part of code can be incorrect with DD,
1009 * since the atom ordering in s_b and s_min might differ.
1011 for (int i
= 0; i
< mdatoms
->homenr
; i
++)
1013 if (mdatoms
->cFREEZE
)
1015 gf
= mdatoms
->cFREEZE
[i
];
1017 for (int m
= 0; m
< DIM
; m
++)
1019 if (!opts
->nFreeze
[gf
][m
])
1021 sum
+= (fb
[i
][m
] - fm
[i
][m
])*fb
[i
][m
];
1028 /* We need to reorder cgs while summing */
1029 sum
= reorder_partsum(cr
, opts
, top_global
, s_min
, s_b
);
1033 gmx_sumd(1, &sum
, cr
);
1036 return sum
/gmx::square(s_min
->fnorm
);
1043 LegacySimulator::do_cg()
1045 const char *CG
= "Polak-Ribiere Conjugate Gradients";
1048 gmx_global_stat_t gstat
;
1050 double tmp
, minstep
;
1052 real a
, b
, c
, beta
= 0.0;
1055 gmx_bool converged
, foundlower
;
1057 gmx_bool do_log
= FALSE
, do_ene
= FALSE
, do_x
, do_f
;
1059 int number_steps
, neval
= 0, nstcg
= inputrec
->nstcgsteep
;
1060 int m
, step
, nminstep
;
1061 auto mdatoms
= mdAtoms
->mdatoms();
1063 GMX_LOG(mdlog
.info
).asParagraph().
1064 appendText("Note that activating conjugate gradient energy minimization via the "
1065 "integrator .mdp option and the command gmx mdrun may "
1066 "be available in a different form in a future version of GROMACS, "
1067 "e.g. gmx minimize and an .mdp option.");
1073 // In CG, the state is extended with a search direction
1074 state_global
->flags
|= (1<<estCGP
);
1076 // Ensure the extra per-atom state array gets allocated
1077 state_change_natoms(state_global
, state_global
->natoms
);
1079 // Initialize the search direction to zero
1080 for (RVec
&cg_p
: state_global
->cg_p
)
1086 /* Create 4 states on the stack and extract pointers that we will swap */
1087 em_state_t s0
{}, s1
{}, s2
{}, s3
{};
1088 em_state_t
*s_min
= &s0
;
1089 em_state_t
*s_a
= &s1
;
1090 em_state_t
*s_b
= &s2
;
1091 em_state_t
*s_c
= &s3
;
1093 /* Init em and store the local state in s_min */
1094 init_em(fplog
, mdlog
, CG
, cr
, inputrec
, imdSession
,
1096 state_global
, top_global
, s_min
, &top
,
1097 nrnb
, fr
, &graph
, mdAtoms
, &gstat
,
1098 vsite
, constr
, nullptr);
1099 gmx_mdoutf
*outf
= init_mdoutf(fplog
, nfile
, fnm
, mdrunOptions
, cr
, outputProvider
, mdModulesNotifier
, inputrec
, top_global
, nullptr, wcycle
,
1100 StartingBehavior::NewSimulation
);
1101 gmx::EnergyOutput
energyOutput(mdoutf_get_fp_ene(outf
), top_global
, inputrec
, pull_work
, nullptr, false, mdModulesNotifier
);
1103 /* Print to log file */
1104 print_em_start(fplog
, cr
, walltime_accounting
, wcycle
, CG
);
1106 /* Max number of steps */
1107 number_steps
= inputrec
->nsteps
;
1111 sp_header(stderr
, CG
, inputrec
->em_tol
, number_steps
);
1115 sp_header(fplog
, CG
, inputrec
->em_tol
, number_steps
);
1118 EnergyEvaluator energyEvaluator
{
1119 fplog
, mdlog
, cr
, ms
,
1121 inputrec
, imdSession
, pull_work
, nrnb
, wcycle
, gstat
,
1122 vsite
, constr
, fcd
, graph
,
1123 mdAtoms
, fr
, runScheduleWork
, enerd
1125 /* Call the force routine and some auxiliary (neighboursearching etc.) */
1126 /* do_force always puts the charge groups in the box and shifts again
1127 * We do not unshift, so molecules are always whole in congrad.c
1129 energyEvaluator
.run(s_min
, mu_tot
, vir
, pres
, -1, TRUE
);
1133 /* Copy stuff to the energy bin for easy printing etc. */
1134 matrix nullBox
= {};
1135 energyOutput
.addDataAtEnergyStep(false, false, static_cast<double>(step
),
1136 mdatoms
->tmass
, enerd
, nullptr, nullptr, nullptr, nullBox
,
1137 nullptr, nullptr, vir
, pres
, nullptr, mu_tot
, constr
);
1139 energyOutput
.printHeader(fplog
, step
, step
);
1140 energyOutput
.printStepToEnergyFile(mdoutf_get_fp_ene(outf
), TRUE
, FALSE
, FALSE
,
1145 /* Estimate/guess the initial stepsize */
1146 stepsize
= inputrec
->em_stepsize
/s_min
->fnorm
;
1150 double sqrtNumAtoms
= sqrt(static_cast<double>(state_global
->natoms
));
1151 fprintf(stderr
, " F-max = %12.5e on atom %d\n",
1152 s_min
->fmax
, s_min
->a_fmax
+1);
1153 fprintf(stderr
, " F-Norm = %12.5e\n",
1154 s_min
->fnorm
/sqrtNumAtoms
);
1155 fprintf(stderr
, "\n");
1156 /* and copy to the log file too... */
1157 fprintf(fplog
, " F-max = %12.5e on atom %d\n",
1158 s_min
->fmax
, s_min
->a_fmax
+1);
1159 fprintf(fplog
, " F-Norm = %12.5e\n",
1160 s_min
->fnorm
/sqrtNumAtoms
);
1161 fprintf(fplog
, "\n");
1163 /* Start the loop over CG steps.
1164 * Each successful step is counted, and we continue until
1165 * we either converge or reach the max number of steps.
1168 for (step
= 0; (number_steps
< 0 || step
<= number_steps
) && !converged
; step
++)
1171 /* start taking steps in a new direction
1172 * First time we enter the routine, beta=0, and the direction is
1173 * simply the negative gradient.
1176 /* Calculate the new direction in p, and the gradient in this direction, gpa */
1177 rvec
*pm
= s_min
->s
.cg_p
.rvec_array();
1178 const rvec
*sfm
= s_min
->f
.rvec_array();
1181 for (int i
= 0; i
< mdatoms
->homenr
; i
++)
1183 if (mdatoms
->cFREEZE
)
1185 gf
= mdatoms
->cFREEZE
[i
];
1187 for (m
= 0; m
< DIM
; m
++)
1189 if (!inputrec
->opts
.nFreeze
[gf
][m
])
1191 pm
[i
][m
] = sfm
[i
][m
] + beta
*pm
[i
][m
];
1192 gpa
-= pm
[i
][m
]*sfm
[i
][m
];
1193 /* f is negative gradient, thus the sign */
1202 /* Sum the gradient along the line across CPUs */
1205 gmx_sumd(1, &gpa
, cr
);
1208 /* Calculate the norm of the search vector */
1209 get_f_norm_max(cr
, &(inputrec
->opts
), mdatoms
, pm
, &pnorm
, nullptr, nullptr);
1211 /* Just in case stepsize reaches zero due to numerical precision... */
1214 stepsize
= inputrec
->em_stepsize
/pnorm
;
1218 * Double check the value of the derivative in the search direction.
1219 * If it is positive it must be due to the old information in the
1220 * CG formula, so just remove that and start over with beta=0.
1221 * This corresponds to a steepest descent step.
1226 step
--; /* Don't count this step since we are restarting */
1227 continue; /* Go back to the beginning of the big for-loop */
1230 /* Calculate minimum allowed stepsize, before the average (norm)
1231 * relative change in coordinate is smaller than precision
1234 auto s_min_x
= makeArrayRef(s_min
->s
.x
);
1235 for (int i
= 0; i
< mdatoms
->homenr
; i
++)
1237 for (m
= 0; m
< DIM
; m
++)
1239 tmp
= fabs(s_min_x
[i
][m
]);
1248 /* Add up from all CPUs */
1251 gmx_sumd(1, &minstep
, cr
);
1254 minstep
= GMX_REAL_EPS
/sqrt(minstep
/(3*top_global
->natoms
));
1256 if (stepsize
< minstep
)
1262 /* Write coordinates if necessary */
1263 do_x
= do_per_step(step
, inputrec
->nstxout
);
1264 do_f
= do_per_step(step
, inputrec
->nstfout
);
1266 write_em_traj(fplog
, cr
, outf
, do_x
, do_f
, nullptr,
1267 top_global
, inputrec
, step
,
1268 s_min
, state_global
, observablesHistory
);
1270 /* Take a step downhill.
1271 * In theory, we should minimize the function along this direction.
1272 * That is quite possible, but it turns out to take 5-10 function evaluations
1273 * for each line. However, we dont really need to find the exact minimum -
1274 * it is much better to start a new CG step in a modified direction as soon
1275 * as we are close to it. This will save a lot of energy evaluations.
1277 * In practice, we just try to take a single step.
1278 * If it worked (i.e. lowered the energy), we increase the stepsize but
1279 * the continue straight to the next CG step without trying to find any minimum.
1280 * If it didn't work (higher energy), there must be a minimum somewhere between
1281 * the old position and the new one.
1283 * Due to the finite numerical accuracy, it turns out that it is a good idea
1284 * to even accept a SMALL increase in energy, if the derivative is still downhill.
1285 * This leads to lower final energies in the tests I've done. / Erik
1287 s_a
->epot
= s_min
->epot
;
1289 c
= a
+ stepsize
; /* reference position along line is zero */
1291 if (DOMAINDECOMP(cr
) && s_min
->s
.ddp_count
< cr
->dd
->ddp_count
)
1293 em_dd_partition_system(fplog
, mdlog
, step
, cr
, top_global
, inputrec
, imdSession
,
1295 s_min
, &top
, mdAtoms
, fr
, vsite
, constr
,
1299 /* Take a trial step (new coords in s_c) */
1300 do_em_step(cr
, inputrec
, mdatoms
, s_min
, c
, &s_min
->s
.cg_p
, s_c
,
1304 /* Calculate energy for the trial step */
1305 energyEvaluator
.run(s_c
, mu_tot
, vir
, pres
, -1, FALSE
);
1307 /* Calc derivative along line */
1308 const rvec
*pc
= s_c
->s
.cg_p
.rvec_array();
1309 const rvec
*sfc
= s_c
->f
.rvec_array();
1311 for (int i
= 0; i
< mdatoms
->homenr
; i
++)
1313 for (m
= 0; m
< DIM
; m
++)
1315 gpc
-= pc
[i
][m
]*sfc
[i
][m
]; /* f is negative gradient, thus the sign */
1318 /* Sum the gradient along the line across CPUs */
1321 gmx_sumd(1, &gpc
, cr
);
1324 /* This is the max amount of increase in energy we tolerate */
1325 tmp
= std::sqrt(GMX_REAL_EPS
)*fabs(s_a
->epot
);
1327 /* Accept the step if the energy is lower, or if it is not significantly higher
1328 * and the line derivative is still negative.
1330 if (s_c
->epot
< s_a
->epot
|| (gpc
< 0 && s_c
->epot
< (s_a
->epot
+ tmp
)))
1333 /* Great, we found a better energy. Increase step for next iteration
1334 * if we are still going down, decrease it otherwise
1338 stepsize
*= 1.618034; /* The golden section */
1342 stepsize
*= 0.618034; /* 1/golden section */
1347 /* New energy is the same or higher. We will have to do some work
1348 * to find a smaller value in the interval. Take smaller step next time!
1351 stepsize
*= 0.618034;
1357 /* OK, if we didn't find a lower value we will have to locate one now - there must
1358 * be one in the interval [a=0,c].
1359 * The same thing is valid here, though: Don't spend dozens of iterations to find
1360 * the line minimum. We try to interpolate based on the derivative at the endpoints,
1361 * and only continue until we find a lower value. In most cases this means 1-2 iterations.
1363 * I also have a safeguard for potentially really pathological functions so we never
1364 * take more than 20 steps before we give up ...
1366 * If we already found a lower value we just skip this step and continue to the update.
1375 /* Select a new trial point.
1376 * If the derivatives at points a & c have different sign we interpolate to zero,
1377 * otherwise just do a bisection.
1379 if (gpa
< 0 && gpc
> 0)
1381 b
= a
+ gpa
*(a
-c
)/(gpc
-gpa
);
1388 /* safeguard if interpolation close to machine accuracy causes errors:
1389 * never go outside the interval
1391 if (b
<= a
|| b
>= c
)
1396 if (DOMAINDECOMP(cr
) && s_min
->s
.ddp_count
!= cr
->dd
->ddp_count
)
1398 /* Reload the old state */
1399 em_dd_partition_system(fplog
, mdlog
, -1, cr
, top_global
, inputrec
, imdSession
,
1401 s_min
, &top
, mdAtoms
, fr
, vsite
, constr
,
1405 /* Take a trial step to this new point - new coords in s_b */
1406 do_em_step(cr
, inputrec
, mdatoms
, s_min
, b
, &s_min
->s
.cg_p
, s_b
,
1410 /* Calculate energy for the trial step */
1411 energyEvaluator
.run(s_b
, mu_tot
, vir
, pres
, -1, FALSE
);
1413 /* p does not change within a step, but since the domain decomposition
1414 * might change, we have to use cg_p of s_b here.
1416 const rvec
*pb
= s_b
->s
.cg_p
.rvec_array();
1417 const rvec
*sfb
= s_b
->f
.rvec_array();
1419 for (int i
= 0; i
< mdatoms
->homenr
; i
++)
1421 for (m
= 0; m
< DIM
; m
++)
1423 gpb
-= pb
[i
][m
]*sfb
[i
][m
]; /* f is negative gradient, thus the sign */
1426 /* Sum the gradient along the line across CPUs */
1429 gmx_sumd(1, &gpb
, cr
);
1434 fprintf(debug
, "CGE: EpotA %f EpotB %f EpotC %f gpb %f\n",
1435 s_a
->epot
, s_b
->epot
, s_c
->epot
, gpb
);
1438 epot_repl
= s_b
->epot
;
1440 /* Keep one of the intervals based on the value of the derivative at the new point */
1443 /* Replace c endpoint with b */
1444 swap_em_state(&s_b
, &s_c
);
1450 /* Replace a endpoint with b */
1451 swap_em_state(&s_b
, &s_a
);
1457 * Stop search as soon as we find a value smaller than the endpoints.
1458 * Never run more than 20 steps, no matter what.
1462 while ((epot_repl
> s_a
->epot
|| epot_repl
> s_c
->epot
) &&
1465 if (std::fabs(epot_repl
- s_min
->epot
) < fabs(s_min
->epot
)*GMX_REAL_EPS
||
1468 /* OK. We couldn't find a significantly lower energy.
1469 * If beta==0 this was steepest descent, and then we give up.
1470 * If not, set beta=0 and restart with steepest descent before quitting.
1480 /* Reset memory before giving up */
1486 /* Select min energy state of A & C, put the best in B.
1488 if (s_c
->epot
< s_a
->epot
)
1492 fprintf(debug
, "CGE: C (%f) is lower than A (%f), moving C to B\n",
1493 s_c
->epot
, s_a
->epot
);
1495 swap_em_state(&s_b
, &s_c
);
1502 fprintf(debug
, "CGE: A (%f) is lower than C (%f), moving A to B\n",
1503 s_a
->epot
, s_c
->epot
);
1505 swap_em_state(&s_b
, &s_a
);
1514 fprintf(debug
, "CGE: Found a lower energy %f, moving C to B\n",
1517 swap_em_state(&s_b
, &s_c
);
1521 /* new search direction */
1522 /* beta = 0 means forget all memory and restart with steepest descents. */
1523 if (nstcg
&& ((step
% nstcg
) == 0))
1529 /* s_min->fnorm cannot be zero, because then we would have converged
1533 /* Polak-Ribiere update.
1534 * Change to fnorm2/fnorm2_old for Fletcher-Reeves
1536 beta
= pr_beta(cr
, &inputrec
->opts
, mdatoms
, top_global
, s_min
, s_b
);
1538 /* Limit beta to prevent oscillations */
1539 if (fabs(beta
) > 5.0)
1545 /* update positions */
1546 swap_em_state(&s_min
, &s_b
);
1549 /* Print it if necessary */
1552 if (mdrunOptions
.verbose
)
1554 double sqrtNumAtoms
= sqrt(static_cast<double>(state_global
->natoms
));
1555 fprintf(stderr
, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n",
1556 step
, s_min
->epot
, s_min
->fnorm
/sqrtNumAtoms
,
1557 s_min
->fmax
, s_min
->a_fmax
+1);
1560 /* Store the new (lower) energies */
1561 matrix nullBox
= {};
1562 energyOutput
.addDataAtEnergyStep(false, false, static_cast<double>(step
),
1563 mdatoms
->tmass
, enerd
, nullptr, nullptr, nullptr, nullBox
,
1564 nullptr, nullptr, vir
, pres
, nullptr, mu_tot
, constr
);
1566 do_log
= do_per_step(step
, inputrec
->nstlog
);
1567 do_ene
= do_per_step(step
, inputrec
->nstenergy
);
1569 imdSession
->fillEnergyRecord(step
, TRUE
);
1573 energyOutput
.printHeader(fplog
, step
, step
);
1575 energyOutput
.printStepToEnergyFile(mdoutf_get_fp_ene(outf
), do_ene
, FALSE
, FALSE
,
1576 do_log
? fplog
: nullptr, step
, step
,
1580 /* Send energies and positions to the IMD client if bIMD is TRUE. */
1581 if (MASTER(cr
) && imdSession
->run(step
, TRUE
, state_global
->box
, state_global
->x
.rvec_array(), 0))
1583 imdSession
->sendPositionsAndEnergies();
1586 /* Stop when the maximum force lies below tolerance.
1587 * If we have reached machine precision, converged is already set to true.
1589 converged
= converged
|| (s_min
->fmax
< inputrec
->em_tol
);
1591 } /* End of the loop */
1595 step
--; /* we never took that last step in this case */
1598 if (s_min
->fmax
> inputrec
->em_tol
)
1602 warn_step(fplog
, inputrec
->em_tol
, s_min
->fmax
,
1603 step
-1 == number_steps
, FALSE
);
1610 /* If we printed energy and/or logfile last step (which was the last step)
1611 * we don't have to do it again, but otherwise print the final values.
1615 /* Write final value to log since we didn't do anything the last step */
1616 energyOutput
.printHeader(fplog
, step
, step
);
1618 if (!do_ene
|| !do_log
)
1620 /* Write final energy file entries */
1621 energyOutput
.printStepToEnergyFile(mdoutf_get_fp_ene(outf
), !do_ene
, FALSE
, FALSE
,
1622 !do_log
? fplog
: nullptr, step
, step
,
1627 /* Print some stuff... */
1630 fprintf(stderr
, "\nwriting lowest energy coordinates.\n");
1634 * For accurate normal mode calculation it is imperative that we
1635 * store the last conformation into the full precision binary trajectory.
1637 * However, we should only do it if we did NOT already write this step
1638 * above (which we did if do_x or do_f was true).
1640 /* Note that with 0 < nstfout != nstxout we can end up with two frames
1641 * in the trajectory with the same step number.
1643 do_x
= !do_per_step(step
, inputrec
->nstxout
);
1644 do_f
= (inputrec
->nstfout
> 0 && !do_per_step(step
, inputrec
->nstfout
));
1646 write_em_traj(fplog
, cr
, outf
, do_x
, do_f
, ftp2fn(efSTO
, nfile
, fnm
),
1647 top_global
, inputrec
, step
,
1648 s_min
, state_global
, observablesHistory
);
1653 double sqrtNumAtoms
= sqrt(static_cast<double>(state_global
->natoms
));
1654 print_converged(stderr
, CG
, inputrec
->em_tol
, step
, converged
, number_steps
,
1655 s_min
, sqrtNumAtoms
);
1656 print_converged(fplog
, CG
, inputrec
->em_tol
, step
, converged
, number_steps
,
1657 s_min
, sqrtNumAtoms
);
1659 fprintf(fplog
, "\nPerformed %d energy evaluations in total.\n", neval
);
1662 finish_em(cr
, outf
, walltime_accounting
, wcycle
);
1664 /* To print the actual number of steps we needed somewhere */
1665 walltime_accounting_set_nsteps_done(walltime_accounting
, step
);
1670 LegacySimulator::do_lbfgs()
1672 static const char *LBFGS
= "Low-Memory BFGS Minimizer";
1675 gmx_global_stat_t gstat
;
1677 int ncorr
, nmaxcorr
, point
, cp
, neval
, nminstep
;
1678 double stepsize
, step_taken
, gpa
, gpb
, gpc
, tmp
, minstep
;
1679 real
*rho
, *alpha
, *p
, *s
, **dx
, **dg
;
1680 real a
, b
, c
, maxdelta
, delta
;
1682 real dgdx
, dgdg
, sq
, yr
, beta
;
1685 gmx_bool do_log
, do_ene
, do_x
, do_f
, foundlower
, *frozen
;
1687 int start
, end
, number_steps
;
1688 int i
, k
, m
, n
, gf
, step
;
1690 auto mdatoms
= mdAtoms
->mdatoms();
1692 GMX_LOG(mdlog
.info
).asParagraph().
1693 appendText("Note that activating L-BFGS energy minimization via the "
1694 "integrator .mdp option and the command gmx mdrun may "
1695 "be available in a different form in a future version of GROMACS, "
1696 "e.g. gmx minimize and an .mdp option.");
1700 gmx_fatal(FARGS
, "L-BFGS minimization only supports a single rank");
1703 if (nullptr != constr
)
1705 gmx_fatal(FARGS
, "The combination of constraints and L-BFGS minimization is not implemented. Either do not use constraints, or use another minimizer (e.g. steepest descent).");
1708 n
= 3*state_global
->natoms
;
1709 nmaxcorr
= inputrec
->nbfgscorr
;
1714 snew(rho
, nmaxcorr
);
1715 snew(alpha
, nmaxcorr
);
1718 for (i
= 0; i
< nmaxcorr
; i
++)
1724 for (i
= 0; i
< nmaxcorr
; i
++)
1733 init_em(fplog
, mdlog
, LBFGS
, cr
, inputrec
, imdSession
,
1735 state_global
, top_global
, &ems
, &top
,
1736 nrnb
, fr
, &graph
, mdAtoms
, &gstat
,
1737 vsite
, constr
, nullptr);
1738 gmx_mdoutf
*outf
= init_mdoutf(fplog
, nfile
, fnm
, mdrunOptions
, cr
, outputProvider
, mdModulesNotifier
, inputrec
, top_global
, nullptr, wcycle
,
1739 StartingBehavior::NewSimulation
);
1740 gmx::EnergyOutput
energyOutput(mdoutf_get_fp_ene(outf
), top_global
, inputrec
, pull_work
, nullptr, false, mdModulesNotifier
);
1743 end
= mdatoms
->homenr
;
1745 /* We need 4 working states */
1746 em_state_t s0
{}, s1
{}, s2
{}, s3
{};
1747 em_state_t
*sa
= &s0
;
1748 em_state_t
*sb
= &s1
;
1749 em_state_t
*sc
= &s2
;
1750 em_state_t
*last
= &s3
;
1751 /* Initialize by copying the state from ems (we could skip x and f here) */
1756 /* Print to log file */
1757 print_em_start(fplog
, cr
, walltime_accounting
, wcycle
, LBFGS
);
1759 do_log
= do_ene
= do_x
= do_f
= TRUE
;
1761 /* Max number of steps */
1762 number_steps
= inputrec
->nsteps
;
1764 /* Create a 3*natoms index to tell whether each degree of freedom is frozen */
1766 for (i
= start
; i
< end
; i
++)
1768 if (mdatoms
->cFREEZE
)
1770 gf
= mdatoms
->cFREEZE
[i
];
1772 for (m
= 0; m
< DIM
; m
++)
1774 frozen
[3*i
+m
] = (inputrec
->opts
.nFreeze
[gf
][m
] != 0);
1779 sp_header(stderr
, LBFGS
, inputrec
->em_tol
, number_steps
);
1783 sp_header(fplog
, LBFGS
, inputrec
->em_tol
, number_steps
);
1788 construct_vsites(vsite
, state_global
->x
.rvec_array(), 1, nullptr,
1789 top
.idef
.iparams
, top
.idef
.il
,
1790 fr
->ePBC
, fr
->bMolPBC
, cr
, state_global
->box
);
1793 /* Call the force routine and some auxiliary (neighboursearching etc.) */
1794 /* do_force always puts the charge groups in the box and shifts again
1795 * We do not unshift, so molecules are always whole
1798 EnergyEvaluator energyEvaluator
{
1799 fplog
, mdlog
, cr
, ms
,
1801 inputrec
, imdSession
, pull_work
, nrnb
, wcycle
, gstat
,
1802 vsite
, constr
, fcd
, graph
,
1803 mdAtoms
, fr
, runScheduleWork
, enerd
1805 energyEvaluator
.run(&ems
, mu_tot
, vir
, pres
, -1, TRUE
);
1809 /* Copy stuff to the energy bin for easy printing etc. */
1810 matrix nullBox
= {};
1811 energyOutput
.addDataAtEnergyStep(false, false, static_cast<double>(step
),
1812 mdatoms
->tmass
, enerd
, nullptr, nullptr, nullptr, nullBox
,
1813 nullptr, nullptr, vir
, pres
, nullptr, mu_tot
, constr
);
1815 energyOutput
.printHeader(fplog
, step
, step
);
1816 energyOutput
.printStepToEnergyFile(mdoutf_get_fp_ene(outf
), TRUE
, FALSE
, FALSE
,
1821 /* Set the initial step.
1822 * since it will be multiplied by the non-normalized search direction
1823 * vector (force vector the first time), we scale it by the
1824 * norm of the force.
1829 double sqrtNumAtoms
= sqrt(static_cast<double>(state_global
->natoms
));
1830 fprintf(stderr
, "Using %d BFGS correction steps.\n\n", nmaxcorr
);
1831 fprintf(stderr
, " F-max = %12.5e on atom %d\n", ems
.fmax
, ems
.a_fmax
+ 1);
1832 fprintf(stderr
, " F-Norm = %12.5e\n", ems
.fnorm
/sqrtNumAtoms
);
1833 fprintf(stderr
, "\n");
1834 /* and copy to the log file too... */
1835 fprintf(fplog
, "Using %d BFGS correction steps.\n\n", nmaxcorr
);
1836 fprintf(fplog
, " F-max = %12.5e on atom %d\n", ems
.fmax
, ems
.a_fmax
+ 1);
1837 fprintf(fplog
, " F-Norm = %12.5e\n", ems
.fnorm
/sqrtNumAtoms
);
1838 fprintf(fplog
, "\n");
1841 // Point is an index to the memory of search directions, where 0 is the first one.
1844 // Set initial search direction to the force (-gradient), or 0 for frozen particles.
1845 real
*fInit
= static_cast<real
*>(ems
.f
.rvec_array()[0]);
1846 for (i
= 0; i
< n
; i
++)
1850 dx
[point
][i
] = fInit
[i
]; /* Initial search direction */
1858 // Stepsize will be modified during the search, and actually it is not critical
1859 // (the main efficiency in the algorithm comes from changing directions), but
1860 // we still need an initial value, so estimate it as the inverse of the norm
1861 // so we take small steps where the potential fluctuates a lot.
1862 stepsize
= 1.0/ems
.fnorm
;
1864 /* Start the loop over BFGS steps.
1865 * Each successful step is counted, and we continue until
1866 * we either converge or reach the max number of steps.
1871 /* Set the gradient from the force */
1873 for (step
= 0; (number_steps
< 0 || step
<= number_steps
) && !converged
; step
++)
1876 /* Write coordinates if necessary */
1877 do_x
= do_per_step(step
, inputrec
->nstxout
);
1878 do_f
= do_per_step(step
, inputrec
->nstfout
);
1883 mdof_flags
|= MDOF_X
;
1888 mdof_flags
|= MDOF_F
;
1893 mdof_flags
|= MDOF_IMD
;
1896 mdoutf_write_to_trajectory_files(fplog
, cr
, outf
, mdof_flags
,
1897 top_global
->natoms
, step
, static_cast<real
>(step
), &ems
.s
,
1898 state_global
, observablesHistory
, ems
.f
);
1900 /* Do the linesearching in the direction dx[point][0..(n-1)] */
1902 /* make s a pointer to current search direction - point=0 first time we get here */
1905 real
*xx
= static_cast<real
*>(ems
.s
.x
.rvec_array()[0]);
1906 real
*ff
= static_cast<real
*>(ems
.f
.rvec_array()[0]);
1908 // calculate line gradient in position A
1909 for (gpa
= 0, i
= 0; i
< n
; i
++)
1914 /* Calculate minimum allowed stepsize along the line, before the average (norm)
1915 * relative change in coordinate is smaller than precision
1917 for (minstep
= 0, i
= 0; i
< n
; i
++)
1927 minstep
= GMX_REAL_EPS
/sqrt(minstep
/n
);
1929 if (stepsize
< minstep
)
1935 // Before taking any steps along the line, store the old position
1937 real
*lastx
= static_cast<real
*>(last
->s
.x
.data()[0]);
1938 real
*lastf
= static_cast<real
*>(last
->f
.data()[0]);
1943 /* Take a step downhill.
1944 * In theory, we should find the actual minimum of the function in this
1945 * direction, somewhere along the line.
1946 * That is quite possible, but it turns out to take 5-10 function evaluations
1947 * for each line. However, we dont really need to find the exact minimum -
1948 * it is much better to start a new BFGS step in a modified direction as soon
1949 * as we are close to it. This will save a lot of energy evaluations.
1951 * In practice, we just try to take a single step.
1952 * If it worked (i.e. lowered the energy), we increase the stepsize but
1953 * continue straight to the next BFGS step without trying to find any minimum,
1954 * i.e. we change the search direction too. If the line was smooth, it is
1955 * likely we are in a smooth region, and then it makes sense to take longer
1956 * steps in the modified search direction too.
1958 * If it didn't work (higher energy), there must be a minimum somewhere between
1959 * the old position and the new one. Then we need to start by finding a lower
1960 * value before we change search direction. Since the energy was apparently
1961 * quite rough, we need to decrease the step size.
1963 * Due to the finite numerical accuracy, it turns out that it is a good idea
1964 * to accept a SMALL increase in energy, if the derivative is still downhill.
1965 * This leads to lower final energies in the tests I've done. / Erik
1968 // State "A" is the first position along the line.
1969 // reference position along line is initially zero
1972 // Check stepsize first. We do not allow displacements
1973 // larger than emstep.
1977 // Pick a new position C by adding stepsize to A.
1980 // Calculate what the largest change in any individual coordinate
1981 // would be (translation along line * gradient along line)
1983 for (i
= 0; i
< n
; i
++)
1986 if (delta
> maxdelta
)
1991 // If any displacement is larger than the stepsize limit, reduce the step
1992 if (maxdelta
> inputrec
->em_stepsize
)
1997 while (maxdelta
> inputrec
->em_stepsize
);
1999 // Take a trial step and move the coordinate array xc[] to position C
2000 real
*xc
= static_cast<real
*>(sc
->s
.x
.rvec_array()[0]);
2001 for (i
= 0; i
< n
; i
++)
2003 xc
[i
] = lastx
[i
] + c
*s
[i
];
2007 // Calculate energy for the trial step in position C
2008 energyEvaluator
.run(sc
, mu_tot
, vir
, pres
, step
, FALSE
);
2010 // Calc line gradient in position C
2011 real
*fc
= static_cast<real
*>(sc
->f
.rvec_array()[0]);
2012 for (gpc
= 0, i
= 0; i
< n
; i
++)
2014 gpc
-= s
[i
]*fc
[i
]; /* f is negative gradient, thus the sign */
2016 /* Sum the gradient along the line across CPUs */
2019 gmx_sumd(1, &gpc
, cr
);
2022 // This is the max amount of increase in energy we tolerate.
2023 // By allowing VERY small changes (close to numerical precision) we
2024 // frequently find even better (lower) final energies.
2025 tmp
= std::sqrt(GMX_REAL_EPS
)*fabs(sa
->epot
);
2027 // Accept the step if the energy is lower in the new position C (compared to A),
2028 // or if it is not significantly higher and the line derivative is still negative.
2029 foundlower
= sc
->epot
< sa
->epot
|| (gpc
< 0 && sc
->epot
< (sa
->epot
+ tmp
));
2030 // If true, great, we found a better energy. We no longer try to alter the
2031 // stepsize, but simply accept this new better position. The we select a new
2032 // search direction instead, which will be much more efficient than continuing
2033 // to take smaller steps along a line. Set fnorm based on the new C position,
2034 // which will be used to update the stepsize to 1/fnorm further down.
2036 // If false, the energy is NOT lower in point C, i.e. it will be the same
2037 // or higher than in point A. In this case it is pointless to move to point C,
2038 // so we will have to do more iterations along the same line to find a smaller
2039 // value in the interval [A=0.0,C].
2040 // Here, A is still 0.0, but that will change when we do a search in the interval
2041 // [0.0,C] below. That search we will do by interpolation or bisection rather
2042 // than with the stepsize, so no need to modify it. For the next search direction
2043 // it will be reset to 1/fnorm anyway.
2047 // OK, if we didn't find a lower value we will have to locate one now - there must
2048 // be one in the interval [a,c].
2049 // The same thing is valid here, though: Don't spend dozens of iterations to find
2050 // the line minimum. We try to interpolate based on the derivative at the endpoints,
2051 // and only continue until we find a lower value. In most cases this means 1-2 iterations.
2052 // I also have a safeguard for potentially really pathological functions so we never
2053 // take more than 20 steps before we give up.
2054 // If we already found a lower value we just skip this step and continue to the update.
2059 // Select a new trial point B in the interval [A,C].
2060 // If the derivatives at points a & c have different sign we interpolate to zero,
2061 // otherwise just do a bisection since there might be multiple minima/maxima
2062 // inside the interval.
2063 if (gpa
< 0 && gpc
> 0)
2065 b
= a
+ gpa
*(a
-c
)/(gpc
-gpa
);
2072 /* safeguard if interpolation close to machine accuracy causes errors:
2073 * never go outside the interval
2075 if (b
<= a
|| b
>= c
)
2080 // Take a trial step to point B
2081 real
*xb
= static_cast<real
*>(sb
->s
.x
.rvec_array()[0]);
2082 for (i
= 0; i
< n
; i
++)
2084 xb
[i
] = lastx
[i
] + b
*s
[i
];
2088 // Calculate energy for the trial step in point B
2089 energyEvaluator
.run(sb
, mu_tot
, vir
, pres
, step
, FALSE
);
2092 // Calculate gradient in point B
2093 real
*fb
= static_cast<real
*>(sb
->f
.rvec_array()[0]);
2094 for (gpb
= 0, i
= 0; i
< n
; i
++)
2096 gpb
-= s
[i
]*fb
[i
]; /* f is negative gradient, thus the sign */
2099 /* Sum the gradient along the line across CPUs */
2102 gmx_sumd(1, &gpb
, cr
);
2105 // Keep one of the intervals [A,B] or [B,C] based on the value of the derivative
2106 // at the new point B, and rename the endpoints of this new interval A and C.
2109 /* Replace c endpoint with b */
2111 /* copy state b to c */
2116 /* Replace a endpoint with b */
2118 /* copy state b to a */
2123 * Stop search as soon as we find a value smaller than the endpoints,
2124 * or if the tolerance is below machine precision.
2125 * Never run more than 20 steps, no matter what.
2129 while ((sb
->epot
> sa
->epot
|| sb
->epot
> sc
->epot
) && (nminstep
< 20));
2131 if (std::fabs(sb
->epot
- Epot0
) < GMX_REAL_EPS
|| nminstep
>= 20)
2133 /* OK. We couldn't find a significantly lower energy.
2134 * If ncorr==0 this was steepest descent, and then we give up.
2135 * If not, reset memory to restart as steepest descent before quitting.
2147 /* Search in gradient direction */
2148 for (i
= 0; i
< n
; i
++)
2150 dx
[point
][i
] = ff
[i
];
2152 /* Reset stepsize */
2153 stepsize
= 1.0/fnorm
;
2158 /* Select min energy state of A & C, put the best in xx/ff/Epot
2160 if (sc
->epot
< sa
->epot
)
2182 /* Update the memory information, and calculate a new
2183 * approximation of the inverse hessian
2186 /* Have new data in Epot, xx, ff */
2187 if (ncorr
< nmaxcorr
)
2192 for (i
= 0; i
< n
; i
++)
2194 dg
[point
][i
] = lastf
[i
]-ff
[i
];
2195 dx
[point
][i
] *= step_taken
;
2200 for (i
= 0; i
< n
; i
++)
2202 dgdg
+= dg
[point
][i
]*dg
[point
][i
];
2203 dgdx
+= dg
[point
][i
]*dx
[point
][i
];
2208 rho
[point
] = 1.0/dgdx
;
2211 if (point
>= nmaxcorr
)
2217 for (i
= 0; i
< n
; i
++)
2224 /* Recursive update. First go back over the memory points */
2225 for (k
= 0; k
< ncorr
; k
++)
2234 for (i
= 0; i
< n
; i
++)
2236 sq
+= dx
[cp
][i
]*p
[i
];
2239 alpha
[cp
] = rho
[cp
]*sq
;
2241 for (i
= 0; i
< n
; i
++)
2243 p
[i
] -= alpha
[cp
]*dg
[cp
][i
];
2247 for (i
= 0; i
< n
; i
++)
2252 /* And then go forward again */
2253 for (k
= 0; k
< ncorr
; k
++)
2256 for (i
= 0; i
< n
; i
++)
2258 yr
+= p
[i
]*dg
[cp
][i
];
2262 beta
= alpha
[cp
]-beta
;
2264 for (i
= 0; i
< n
; i
++)
2266 p
[i
] += beta
*dx
[cp
][i
];
2276 for (i
= 0; i
< n
; i
++)
2280 dx
[point
][i
] = p
[i
];
2288 /* Print it if necessary */
2291 if (mdrunOptions
.verbose
)
2293 double sqrtNumAtoms
= sqrt(static_cast<double>(state_global
->natoms
));
2294 fprintf(stderr
, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n",
2295 step
, ems
.epot
, ems
.fnorm
/sqrtNumAtoms
, ems
.fmax
, ems
.a_fmax
+ 1);
2298 /* Store the new (lower) energies */
2299 matrix nullBox
= {};
2300 energyOutput
.addDataAtEnergyStep(false, false, static_cast<double>(step
),
2301 mdatoms
->tmass
, enerd
, nullptr, nullptr, nullptr, nullBox
,
2302 nullptr, nullptr, vir
, pres
, nullptr, mu_tot
, constr
);
2304 do_log
= do_per_step(step
, inputrec
->nstlog
);
2305 do_ene
= do_per_step(step
, inputrec
->nstenergy
);
2307 imdSession
->fillEnergyRecord(step
, TRUE
);
2311 energyOutput
.printHeader(fplog
, step
, step
);
2313 energyOutput
.printStepToEnergyFile(mdoutf_get_fp_ene(outf
), do_ene
, FALSE
, FALSE
,
2314 do_log
? fplog
: nullptr, step
, step
,
2318 /* Send x and E to IMD client, if bIMD is TRUE. */
2319 if (imdSession
->run(step
, TRUE
, state_global
->box
, state_global
->x
.rvec_array(), 0) && MASTER(cr
))
2321 imdSession
->sendPositionsAndEnergies();
2324 // Reset stepsize in we are doing more iterations
2327 /* Stop when the maximum force lies below tolerance.
2328 * If we have reached machine precision, converged is already set to true.
2330 converged
= converged
|| (ems
.fmax
< inputrec
->em_tol
);
2332 } /* End of the loop */
2336 step
--; /* we never took that last step in this case */
2339 if (ems
.fmax
> inputrec
->em_tol
)
2343 warn_step(fplog
, inputrec
->em_tol
, ems
.fmax
,
2344 step
-1 == number_steps
, FALSE
);
2349 /* If we printed energy and/or logfile last step (which was the last step)
2350 * we don't have to do it again, but otherwise print the final values.
2352 if (!do_log
) /* Write final value to log since we didn't do anythin last step */
2354 energyOutput
.printHeader(fplog
, step
, step
);
2356 if (!do_ene
|| !do_log
) /* Write final energy file entries */
2358 energyOutput
.printStepToEnergyFile(mdoutf_get_fp_ene(outf
), !do_ene
, FALSE
, FALSE
,
2359 !do_log
? fplog
: nullptr, step
, step
,
2363 /* Print some stuff... */
2366 fprintf(stderr
, "\nwriting lowest energy coordinates.\n");
2370 * For accurate normal mode calculation it is imperative that we
2371 * store the last conformation into the full precision binary trajectory.
2373 * However, we should only do it if we did NOT already write this step
2374 * above (which we did if do_x or do_f was true).
2376 do_x
= !do_per_step(step
, inputrec
->nstxout
);
2377 do_f
= !do_per_step(step
, inputrec
->nstfout
);
2378 write_em_traj(fplog
, cr
, outf
, do_x
, do_f
, ftp2fn(efSTO
, nfile
, fnm
),
2379 top_global
, inputrec
, step
,
2380 &ems
, state_global
, observablesHistory
);
2384 double sqrtNumAtoms
= sqrt(static_cast<double>(state_global
->natoms
));
2385 print_converged(stderr
, LBFGS
, inputrec
->em_tol
, step
, converged
,
2386 number_steps
, &ems
, sqrtNumAtoms
);
2387 print_converged(fplog
, LBFGS
, inputrec
->em_tol
, step
, converged
,
2388 number_steps
, &ems
, sqrtNumAtoms
);
2390 fprintf(fplog
, "\nPerformed %d energy evaluations in total.\n", neval
);
2393 finish_em(cr
, outf
, walltime_accounting
, wcycle
);
2395 /* To print the actual number of steps we needed somewhere */
2396 walltime_accounting_set_nsteps_done(walltime_accounting
, step
);
2400 LegacySimulator::do_steep()
2402 const char *SD
= "Steepest Descents";
2404 gmx_global_stat_t gstat
;
2408 gmx_bool bDone
, bAbort
, do_x
, do_f
;
2413 int steps_accepted
= 0;
2414 auto mdatoms
= mdAtoms
->mdatoms();
2416 GMX_LOG(mdlog
.info
).asParagraph().
2417 appendText("Note that activating steepest-descent energy minimization via the "
2418 "integrator .mdp option and the command gmx mdrun may "
2419 "be available in a different form in a future version of GROMACS, "
2420 "e.g. gmx minimize and an .mdp option.");
2422 /* Create 2 states on the stack and extract pointers that we will swap */
2423 em_state_t s0
{}, s1
{};
2424 em_state_t
*s_min
= &s0
;
2425 em_state_t
*s_try
= &s1
;
2427 /* Init em and store the local state in s_try */
2428 init_em(fplog
, mdlog
, SD
, cr
, inputrec
, imdSession
,
2430 state_global
, top_global
, s_try
, &top
,
2431 nrnb
, fr
, &graph
, mdAtoms
, &gstat
,
2432 vsite
, constr
, nullptr);
2433 gmx_mdoutf
*outf
= init_mdoutf(fplog
, nfile
, fnm
, mdrunOptions
, cr
, outputProvider
, mdModulesNotifier
, inputrec
, top_global
, nullptr, wcycle
,
2434 StartingBehavior::NewSimulation
);
2435 gmx::EnergyOutput
energyOutput(mdoutf_get_fp_ene(outf
), top_global
, inputrec
, pull_work
, nullptr, false, mdModulesNotifier
);
2437 /* Print to log file */
2438 print_em_start(fplog
, cr
, walltime_accounting
, wcycle
, SD
);
2440 /* Set variables for stepsize (in nm). This is the largest
2441 * step that we are going to make in any direction.
2443 ustep
= inputrec
->em_stepsize
;
2446 /* Max number of steps */
2447 nsteps
= inputrec
->nsteps
;
2451 /* Print to the screen */
2452 sp_header(stderr
, SD
, inputrec
->em_tol
, nsteps
);
2456 sp_header(fplog
, SD
, inputrec
->em_tol
, nsteps
);
2458 EnergyEvaluator energyEvaluator
{
2459 fplog
, mdlog
, cr
, ms
,
2461 inputrec
, imdSession
, pull_work
, nrnb
, wcycle
, gstat
,
2462 vsite
, constr
, fcd
, graph
,
2463 mdAtoms
, fr
, runScheduleWork
, enerd
2466 /**** HERE STARTS THE LOOP ****
2467 * count is the counter for the number of steps
2468 * bDone will be TRUE when the minimization has converged
2469 * bAbort will be TRUE when nsteps steps have been performed or when
2470 * the stepsize becomes smaller than is reasonable for machine precision
2475 while (!bDone
&& !bAbort
)
2477 bAbort
= (nsteps
>= 0) && (count
== nsteps
);
2479 /* set new coordinates, except for first step */
2480 bool validStep
= true;
2484 do_em_step(cr
, inputrec
, mdatoms
,
2485 s_min
, stepsize
, &s_min
->f
, s_try
,
2491 energyEvaluator
.run(s_try
, mu_tot
, vir
, pres
, count
, count
== 0);
2495 // Signal constraint error during stepping with energy=inf
2496 s_try
->epot
= std::numeric_limits
<real
>::infinity();
2501 energyOutput
.printHeader(fplog
, count
, count
);
2506 s_min
->epot
= s_try
->epot
;
2509 /* Print it if necessary */
2512 if (mdrunOptions
.verbose
)
2514 fprintf(stderr
, "Step=%5d, Dmax= %6.1e nm, Epot= %12.5e Fmax= %11.5e, atom= %d%c",
2515 count
, ustep
, s_try
->epot
, s_try
->fmax
, s_try
->a_fmax
+1,
2516 ( (count
== 0) || (s_try
->epot
< s_min
->epot
) ) ? '\n' : '\r');
2520 if ( (count
== 0) || (s_try
->epot
< s_min
->epot
) )
2522 /* Store the new (lower) energies */
2523 matrix nullBox
= {};
2524 energyOutput
.addDataAtEnergyStep(false, false, static_cast<double>(count
),
2525 mdatoms
->tmass
, enerd
, nullptr, nullptr, nullptr, nullBox
,
2526 nullptr, nullptr, vir
, pres
, nullptr, mu_tot
, constr
);
2528 imdSession
->fillEnergyRecord(count
, TRUE
);
2530 const bool do_dr
= do_per_step(steps_accepted
, inputrec
->nstdisreout
);
2531 const bool do_or
= do_per_step(steps_accepted
, inputrec
->nstorireout
);
2532 energyOutput
.printStepToEnergyFile(mdoutf_get_fp_ene(outf
), TRUE
,
2534 fplog
, count
, count
,
2540 /* Now if the new energy is smaller than the previous...
2541 * or if this is the first step!
2542 * or if we did random steps!
2545 if ( (count
== 0) || (s_try
->epot
< s_min
->epot
) )
2549 /* Test whether the convergence criterion is met... */
2550 bDone
= (s_try
->fmax
< inputrec
->em_tol
);
2552 /* Copy the arrays for force, positions and energy */
2553 /* The 'Min' array always holds the coords and forces of the minimal
2555 swap_em_state(&s_min
, &s_try
);
2561 /* Write to trn, if necessary */
2562 do_x
= do_per_step(steps_accepted
, inputrec
->nstxout
);
2563 do_f
= do_per_step(steps_accepted
, inputrec
->nstfout
);
2564 write_em_traj(fplog
, cr
, outf
, do_x
, do_f
, nullptr,
2565 top_global
, inputrec
, count
,
2566 s_min
, state_global
, observablesHistory
);
2570 /* If energy is not smaller make the step smaller... */
2573 if (DOMAINDECOMP(cr
) && s_min
->s
.ddp_count
!= cr
->dd
->ddp_count
)
2575 /* Reload the old state */
2576 em_dd_partition_system(fplog
, mdlog
, count
, cr
, top_global
, inputrec
, imdSession
,
2578 s_min
, &top
, mdAtoms
, fr
, vsite
, constr
,
2583 // If the force is very small after finishing minimization,
2584 // we risk dividing by zero when calculating the step size.
2585 // So we check first if the minimization has stopped before
2586 // trying to obtain a new step size.
2589 /* Determine new step */
2590 stepsize
= ustep
/s_min
->fmax
;
2593 /* Check if stepsize is too small, with 1 nm as a characteristic length */
2595 if (count
== nsteps
|| ustep
< 1e-12)
2597 if (count
== nsteps
|| ustep
< 1e-6)
2602 warn_step(fplog
, inputrec
->em_tol
, s_min
->fmax
,
2603 count
== nsteps
, constr
!= nullptr);
2608 /* Send IMD energies and positions, if bIMD is TRUE. */
2609 if (imdSession
->run(count
, TRUE
, state_global
->box
,
2610 MASTER(cr
) ? state_global
->x
.rvec_array() : nullptr,
2614 imdSession
->sendPositionsAndEnergies();
2618 } /* End of the loop */
2620 /* Print some data... */
2623 fprintf(stderr
, "\nwriting lowest energy coordinates.\n");
2625 write_em_traj(fplog
, cr
, outf
, TRUE
, inputrec
->nstfout
!= 0, ftp2fn(efSTO
, nfile
, fnm
),
2626 top_global
, inputrec
, count
,
2627 s_min
, state_global
, observablesHistory
);
2631 double sqrtNumAtoms
= sqrt(static_cast<double>(state_global
->natoms
));
2633 print_converged(stderr
, SD
, inputrec
->em_tol
, count
, bDone
, nsteps
,
2634 s_min
, sqrtNumAtoms
);
2635 print_converged(fplog
, SD
, inputrec
->em_tol
, count
, bDone
, nsteps
,
2636 s_min
, sqrtNumAtoms
);
2639 finish_em(cr
, outf
, walltime_accounting
, wcycle
);
2641 /* To print the actual number of steps we needed somewhere */
2642 inputrec
->nsteps
= count
;
2644 walltime_accounting_set_nsteps_done(walltime_accounting
, count
);
2648 LegacySimulator::do_nm()
2650 const char *NM
= "Normal Mode Analysis";
2653 gmx_global_stat_t gstat
;
2658 gmx_bool bSparse
; /* use sparse matrix storage format */
2660 gmx_sparsematrix_t
* sparse_matrix
= nullptr;
2661 real
* full_matrix
= nullptr;
2663 /* added with respect to mdrun */
2665 real der_range
= 10.0*std::sqrt(GMX_REAL_EPS
);
2667 bool bIsMaster
= MASTER(cr
);
2668 auto mdatoms
= mdAtoms
->mdatoms();
2670 GMX_LOG(mdlog
.info
).asParagraph().
2671 appendText("Note that activating normal-mode analysis via the integrator "
2672 ".mdp option and the command gmx mdrun may "
2673 "be available in a different form in a future version of GROMACS, "
2674 "e.g. gmx normal-modes.");
2676 if (constr
!= nullptr)
2678 gmx_fatal(FARGS
, "Constraints present with Normal Mode Analysis, this combination is not supported");
2681 gmx_shellfc_t
*shellfc
;
2683 em_state_t state_work
{};
2685 /* Init em and store the local state in state_minimum */
2686 init_em(fplog
, mdlog
, NM
, cr
, inputrec
, imdSession
,
2688 state_global
, top_global
, &state_work
, &top
,
2689 nrnb
, fr
, &graph
, mdAtoms
, &gstat
,
2690 vsite
, constr
, &shellfc
);
2691 gmx_mdoutf
*outf
= init_mdoutf(fplog
, nfile
, fnm
, mdrunOptions
, cr
, outputProvider
, mdModulesNotifier
, inputrec
, top_global
, nullptr, wcycle
,
2692 StartingBehavior::NewSimulation
);
2694 std::vector
<int> atom_index
= get_atom_index(top_global
);
2695 std::vector
<gmx::RVec
> fneg(atom_index
.size(), {0, 0, 0});
2696 snew(dfdx
, atom_index
.size());
2702 "NOTE: This version of GROMACS has been compiled in single precision,\n"
2703 " which MIGHT not be accurate enough for normal mode analysis.\n"
2704 " GROMACS now uses sparse matrix storage, so the memory requirements\n"
2705 " are fairly modest even if you recompile in double precision.\n\n");
2709 /* Check if we can/should use sparse storage format.
2711 * Sparse format is only useful when the Hessian itself is sparse, which it
2712 * will be when we use a cutoff.
2713 * For small systems (n<1000) it is easier to always use full matrix format, though.
2715 if (EEL_FULL(fr
->ic
->eeltype
) || fr
->rlist
== 0.0)
2717 GMX_LOG(mdlog
.warning
).appendText("Non-cutoff electrostatics used, forcing full Hessian format.");
2720 else if (atom_index
.size() < 1000)
2722 GMX_LOG(mdlog
.warning
).appendTextFormatted("Small system size (N=%zu), using full Hessian format.",
2728 GMX_LOG(mdlog
.warning
).appendText("Using compressed symmetric sparse Hessian format.");
2732 /* Number of dimensions, based on real atoms, that is not vsites or shell */
2733 sz
= DIM
*atom_index
.size();
2735 fprintf(stderr
, "Allocating Hessian memory...\n\n");
2739 sparse_matrix
= gmx_sparsematrix_init(sz
);
2740 sparse_matrix
->compressed_symmetric
= TRUE
;
2744 snew(full_matrix
, sz
*sz
);
2747 /* Write start time and temperature */
2748 print_em_start(fplog
, cr
, walltime_accounting
, wcycle
, NM
);
2750 /* fudge nr of steps to nr of atoms */
2751 inputrec
->nsteps
= atom_index
.size()*2;
2755 fprintf(stderr
, "starting normal mode calculation '%s'\n%" PRId64
" steps.\n\n",
2756 *(top_global
->name
), inputrec
->nsteps
);
2759 nnodes
= cr
->nnodes
;
2761 /* Make evaluate_energy do a single node force calculation */
2763 EnergyEvaluator energyEvaluator
{
2764 fplog
, mdlog
, cr
, ms
,
2766 inputrec
, imdSession
, pull_work
, nrnb
, wcycle
, gstat
,
2767 vsite
, constr
, fcd
, graph
,
2768 mdAtoms
, fr
, runScheduleWork
, enerd
2770 energyEvaluator
.run(&state_work
, mu_tot
, vir
, pres
, -1, TRUE
);
2771 cr
->nnodes
= nnodes
;
2773 /* if forces are not small, warn user */
2774 get_state_f_norm_max(cr
, &(inputrec
->opts
), mdatoms
, &state_work
);
2776 GMX_LOG(mdlog
.warning
).appendTextFormatted("Maximum force:%12.5e", state_work
.fmax
);
2777 if (state_work
.fmax
> 1.0e-3)
2779 GMX_LOG(mdlog
.warning
).appendText(
2780 "The force is probably not small enough to "
2781 "ensure that you are at a minimum.\n"
2782 "Be aware that negative eigenvalues may occur\n"
2783 "when the resulting matrix is diagonalized.");
2786 /***********************************************************
2788 * Loop over all pairs in matrix
2790 * do_force called twice. Once with positive and
2791 * once with negative displacement
2793 ************************************************************/
2795 /* Steps are divided one by one over the nodes */
2797 auto state_work_x
= makeArrayRef(state_work
.s
.x
);
2798 auto state_work_f
= makeArrayRef(state_work
.f
);
2799 for (index aid
= cr
->nodeid
; aid
< ssize(atom_index
); aid
+= nnodes
)
2801 size_t atom
= atom_index
[aid
];
2802 for (size_t d
= 0; d
< DIM
; d
++)
2805 int force_flags
= GMX_FORCE_STATECHANGED
| GMX_FORCE_ALLFORCES
;
2808 x_min
= state_work_x
[atom
][d
];
2810 for (unsigned int dx
= 0; (dx
< 2); dx
++)
2814 state_work_x
[atom
][d
] = x_min
- der_range
;
2818 state_work_x
[atom
][d
] = x_min
+ der_range
;
2821 /* Make evaluate_energy do a single node force calculation */
2825 /* Now is the time to relax the shells */
2826 relax_shell_flexcon(fplog
,
2829 mdrunOptions
.verbose
,
2841 state_work
.s
.natoms
,
2842 state_work
.s
.x
.arrayRefWithPadding(),
2843 state_work
.s
.v
.arrayRefWithPadding(),
2845 state_work
.s
.lambda
,
2847 state_work
.f
.arrayRefWithPadding(),
2859 DDBalanceRegionHandler(nullptr));
2865 energyEvaluator
.run(&state_work
, mu_tot
, vir
, pres
, aid
*2+dx
, FALSE
);
2868 cr
->nnodes
= nnodes
;
2872 std::copy(state_work_f
.begin(), state_work_f
.begin()+atom_index
.size(), fneg
.begin());
2876 /* x is restored to original */
2877 state_work_x
[atom
][d
] = x_min
;
2879 for (size_t j
= 0; j
< atom_index
.size(); j
++)
2881 for (size_t k
= 0; (k
< DIM
); k
++)
2884 -(state_work_f
[atom_index
[j
]][k
] - fneg
[j
][k
])/(2*der_range
);
2891 #define mpi_type GMX_MPI_REAL
2892 MPI_Send(dfdx
[0], atom_index
.size()*DIM
, mpi_type
, MASTER(cr
),
2893 cr
->nodeid
, cr
->mpi_comm_mygroup
);
2898 for (index node
= 0; (node
< nnodes
&& aid
+node
< ssize(atom_index
)); node
++)
2904 MPI_Recv(dfdx
[0], atom_index
.size()*DIM
, mpi_type
, node
, node
,
2905 cr
->mpi_comm_mygroup
, &stat
);
2910 row
= (aid
+ node
)*DIM
+ d
;
2912 for (size_t j
= 0; j
< atom_index
.size(); j
++)
2914 for (size_t k
= 0; k
< DIM
; k
++)
2920 if (col
>= row
&& dfdx
[j
][k
] != 0.0)
2922 gmx_sparsematrix_increment_value(sparse_matrix
,
2923 row
, col
, dfdx
[j
][k
]);
2928 full_matrix
[row
*sz
+col
] = dfdx
[j
][k
];
2935 if (mdrunOptions
.verbose
&& fplog
)
2940 /* write progress */
2941 if (bIsMaster
&& mdrunOptions
.verbose
)
2943 fprintf(stderr
, "\rFinished step %d out of %td",
2944 std::min
<int>(atom
+nnodes
, atom_index
.size()),
2952 fprintf(stderr
, "\n\nWriting Hessian...\n");
2953 gmx_mtxio_write(ftp2fn(efMTX
, nfile
, fnm
), sz
, sz
, full_matrix
, sparse_matrix
);
2956 finish_em(cr
, outf
, walltime_accounting
, wcycle
);
2958 walltime_accounting_set_nsteps_done(walltime_accounting
, atom_index
.size()*2);