Fix CG minimization with DD
[gromacs.git] / src / gromacs / mdrun / minimize.cpp
blob211377835691c55a6215aa4effb9b5bcfe7fa7e1
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017,2018,2019, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 /*! \internal \file
39 * \brief This file defines integrators for energy minimization
41 * \author Berk Hess <hess@kth.se>
42 * \author Erik Lindahl <erik@kth.se>
43 * \ingroup module_mdrun
45 #include "gmxpre.h"
47 #include "config.h"
49 #include <cmath>
50 #include <cstring>
51 #include <ctime>
53 #include <algorithm>
54 #include <vector>
56 #include "gromacs/commandline/filenm.h"
57 #include "gromacs/domdec/collect.h"
58 #include "gromacs/domdec/dlbtiming.h"
59 #include "gromacs/domdec/domdec.h"
60 #include "gromacs/domdec/domdec_struct.h"
61 #include "gromacs/domdec/mdsetup.h"
62 #include "gromacs/domdec/partition.h"
63 #include "gromacs/ewald/pme.h"
64 #include "gromacs/fileio/confio.h"
65 #include "gromacs/fileio/mtxio.h"
66 #include "gromacs/gmxlib/network.h"
67 #include "gromacs/gmxlib/nrnb.h"
68 #include "gromacs/imd/imd.h"
69 #include "gromacs/linearalgebra/sparsematrix.h"
70 #include "gromacs/listed_forces/manage_threading.h"
71 #include "gromacs/math/functions.h"
72 #include "gromacs/math/vec.h"
73 #include "gromacs/mdlib/constr.h"
74 #include "gromacs/mdlib/dispersioncorrection.h"
75 #include "gromacs/mdlib/ebin.h"
76 #include "gromacs/mdlib/enerdata_utils.h"
77 #include "gromacs/mdlib/energyoutput.h"
78 #include "gromacs/mdlib/force.h"
79 #include "gromacs/mdlib/forcerec.h"
80 #include "gromacs/mdlib/gmx_omp_nthreads.h"
81 #include "gromacs/mdlib/md_support.h"
82 #include "gromacs/mdlib/mdatoms.h"
83 #include "gromacs/mdlib/stat.h"
84 #include "gromacs/mdlib/tgroup.h"
85 #include "gromacs/mdlib/trajectory_writing.h"
86 #include "gromacs/mdlib/update.h"
87 #include "gromacs/mdlib/vsite.h"
88 #include "gromacs/mdrunutility/handlerestart.h"
89 #include "gromacs/mdrunutility/printtime.h"
90 #include "gromacs/mdtypes/commrec.h"
91 #include "gromacs/mdtypes/inputrec.h"
92 #include "gromacs/mdtypes/md_enums.h"
93 #include "gromacs/mdtypes/mdrunoptions.h"
94 #include "gromacs/mdtypes/state.h"
95 #include "gromacs/pbcutil/mshift.h"
96 #include "gromacs/pbcutil/pbc.h"
97 #include "gromacs/timing/wallcycle.h"
98 #include "gromacs/timing/walltime_accounting.h"
99 #include "gromacs/topology/mtop_util.h"
100 #include "gromacs/topology/topology.h"
101 #include "gromacs/utility/cstringutil.h"
102 #include "gromacs/utility/exceptions.h"
103 #include "gromacs/utility/fatalerror.h"
104 #include "gromacs/utility/logger.h"
105 #include "gromacs/utility/smalloc.h"
107 #include "legacysimulator.h"
108 #include "shellfc.h"
110 using gmx::MdrunScheduleWorkload;
112 //! Utility structure for manipulating states during EM
113 typedef struct {
114 //! Copy of the global state
115 t_state s;
116 //! Force array
117 PaddedHostVector<gmx::RVec> f;
118 //! Potential energy
119 real epot;
120 //! Norm of the force
121 real fnorm;
122 //! Maximum force
123 real fmax;
124 //! Direction
125 int a_fmax;
126 } em_state_t;
128 //! Print the EM starting conditions
129 static void print_em_start(FILE *fplog,
130 const t_commrec *cr,
131 gmx_walltime_accounting_t walltime_accounting,
132 gmx_wallcycle_t wcycle,
133 const char *name)
135 walltime_accounting_start_time(walltime_accounting);
136 wallcycle_start(wcycle, ewcRUN);
137 print_start(fplog, cr, walltime_accounting, name);
140 //! Stop counting time for EM
141 static void em_time_end(gmx_walltime_accounting_t walltime_accounting,
142 gmx_wallcycle_t wcycle)
144 wallcycle_stop(wcycle, ewcRUN);
146 walltime_accounting_end_time(walltime_accounting);
149 //! Printing a log file and console header
150 static void sp_header(FILE *out, const char *minimizer, real ftol, int nsteps)
152 fprintf(out, "\n");
153 fprintf(out, "%s:\n", minimizer);
154 fprintf(out, " Tolerance (Fmax) = %12.5e\n", ftol);
155 fprintf(out, " Number of steps = %12d\n", nsteps);
158 //! Print warning message
159 static void warn_step(FILE *fp,
160 real ftol,
161 real fmax,
162 gmx_bool bLastStep,
163 gmx_bool bConstrain)
165 constexpr bool realIsDouble = GMX_DOUBLE;
166 char buffer[2048];
168 if (!std::isfinite(fmax))
170 sprintf(buffer,
171 "\nEnergy minimization has stopped because the force "
172 "on at least one atom is not finite. This usually means "
173 "atoms are overlapping. Modify the input coordinates to "
174 "remove atom overlap or use soft-core potentials with "
175 "the free energy code to avoid infinite forces.\n%s",
176 !realIsDouble ?
177 "You could also be lucky that switching to double precision "
178 "is sufficient to obtain finite forces.\n" :
179 "");
181 else if (bLastStep)
183 sprintf(buffer,
184 "\nEnergy minimization reached the maximum number "
185 "of steps before the forces reached the requested "
186 "precision Fmax < %g.\n", ftol);
188 else
190 sprintf(buffer,
191 "\nEnergy minimization has stopped, but the forces have "
192 "not converged to the requested precision Fmax < %g (which "
193 "may not be possible for your system). It stopped "
194 "because the algorithm tried to make a new step whose size "
195 "was too small, or there was no change in the energy since "
196 "last step. Either way, we regard the minimization as "
197 "converged to within the available machine precision, "
198 "given your starting configuration and EM parameters.\n%s%s",
199 ftol,
200 !realIsDouble ?
201 "\nDouble precision normally gives you higher accuracy, but "
202 "this is often not needed for preparing to run molecular "
203 "dynamics.\n" :
205 bConstrain ?
206 "You might need to increase your constraint accuracy, or turn\n"
207 "off constraints altogether (set constraints = none in mdp file)\n" :
208 "");
211 fputs(wrap_lines(buffer, 78, 0, FALSE), stderr);
212 fputs(wrap_lines(buffer, 78, 0, FALSE), fp);
215 //! Print message about convergence of the EM
216 static void print_converged(FILE *fp, const char *alg, real ftol,
217 int64_t count, gmx_bool bDone, int64_t nsteps,
218 const em_state_t *ems, double sqrtNumAtoms)
220 char buf[STEPSTRSIZE];
222 if (bDone)
224 fprintf(fp, "\n%s converged to Fmax < %g in %s steps\n",
225 alg, ftol, gmx_step_str(count, buf));
227 else if (count < nsteps)
229 fprintf(fp, "\n%s converged to machine precision in %s steps,\n"
230 "but did not reach the requested Fmax < %g.\n",
231 alg, gmx_step_str(count, buf), ftol);
233 else
235 fprintf(fp, "\n%s did not converge to Fmax < %g in %s steps.\n",
236 alg, ftol, gmx_step_str(count, buf));
239 #if GMX_DOUBLE
240 fprintf(fp, "Potential Energy = %21.14e\n", ems->epot);
241 fprintf(fp, "Maximum force = %21.14e on atom %d\n", ems->fmax, ems->a_fmax + 1);
242 fprintf(fp, "Norm of force = %21.14e\n", ems->fnorm/sqrtNumAtoms);
243 #else
244 fprintf(fp, "Potential Energy = %14.7e\n", ems->epot);
245 fprintf(fp, "Maximum force = %14.7e on atom %d\n", ems->fmax, ems->a_fmax + 1);
246 fprintf(fp, "Norm of force = %14.7e\n", ems->fnorm/sqrtNumAtoms);
247 #endif
250 //! Compute the norm and max of the force array in parallel
251 static void get_f_norm_max(const t_commrec *cr,
252 t_grpopts *opts, t_mdatoms *mdatoms, const rvec *f,
253 real *fnorm, real *fmax, int *a_fmax)
255 double fnorm2, *sum;
256 real fmax2, fam;
257 int la_max, a_max, start, end, i, m, gf;
259 /* This routine finds the largest force and returns it.
260 * On parallel machines the global max is taken.
262 fnorm2 = 0;
263 fmax2 = 0;
264 la_max = -1;
265 start = 0;
266 end = mdatoms->homenr;
267 if (mdatoms->cFREEZE)
269 for (i = start; i < end; i++)
271 gf = mdatoms->cFREEZE[i];
272 fam = 0;
273 for (m = 0; m < DIM; m++)
275 if (!opts->nFreeze[gf][m])
277 fam += gmx::square(f[i][m]);
280 fnorm2 += fam;
281 if (fam > fmax2)
283 fmax2 = fam;
284 la_max = i;
288 else
290 for (i = start; i < end; i++)
292 fam = norm2(f[i]);
293 fnorm2 += fam;
294 if (fam > fmax2)
296 fmax2 = fam;
297 la_max = i;
302 if (la_max >= 0 && DOMAINDECOMP(cr))
304 a_max = cr->dd->globalAtomIndices[la_max];
306 else
308 a_max = la_max;
310 if (PAR(cr))
312 snew(sum, 2*cr->nnodes+1);
313 sum[2*cr->nodeid] = fmax2;
314 sum[2*cr->nodeid+1] = a_max;
315 sum[2*cr->nnodes] = fnorm2;
316 gmx_sumd(2*cr->nnodes+1, sum, cr);
317 fnorm2 = sum[2*cr->nnodes];
318 /* Determine the global maximum */
319 for (i = 0; i < cr->nnodes; i++)
321 if (sum[2*i] > fmax2)
323 fmax2 = sum[2*i];
324 a_max = gmx::roundToInt(sum[2*i+1]);
327 sfree(sum);
330 if (fnorm)
332 *fnorm = sqrt(fnorm2);
334 if (fmax)
336 *fmax = sqrt(fmax2);
338 if (a_fmax)
340 *a_fmax = a_max;
344 //! Compute the norm of the force
345 static void get_state_f_norm_max(const t_commrec *cr,
346 t_grpopts *opts, t_mdatoms *mdatoms,
347 em_state_t *ems)
349 get_f_norm_max(cr, opts, mdatoms, ems->f.rvec_array(),
350 &ems->fnorm, &ems->fmax, &ems->a_fmax);
353 //! Initialize the energy minimization
354 static void init_em(FILE *fplog,
355 const gmx::MDLogger &mdlog,
356 const char *title,
357 const t_commrec *cr,
358 t_inputrec *ir,
359 gmx::ImdSession *imdSession,
360 pull_t *pull_work,
361 t_state *state_global, gmx_mtop_t *top_global,
362 em_state_t *ems, gmx_localtop_t *top,
363 t_nrnb *nrnb,
364 t_forcerec *fr,
365 t_graph **graph, gmx::MDAtoms *mdAtoms, gmx_global_stat_t *gstat,
366 gmx_vsite_t *vsite, gmx::Constraints *constr, gmx_shellfc_t **shellfc)
368 real dvdl_constr;
370 if (fplog)
372 fprintf(fplog, "Initiating %s\n", title);
375 if (MASTER(cr))
377 state_global->ngtc = 0;
379 initialize_lambdas(fplog, *ir, MASTER(cr), &(state_global->fep_state), state_global->lambda, nullptr);
381 if (ir->eI == eiNM)
383 GMX_ASSERT(shellfc != nullptr, "With NM we always support shells");
385 *shellfc = init_shell_flexcon(stdout,
386 top_global,
387 constr ? constr->numFlexibleConstraints() : 0,
388 ir->nstcalcenergy,
389 DOMAINDECOMP(cr));
391 else
393 GMX_ASSERT(EI_ENERGY_MINIMIZATION(ir->eI), "This else currently only handles energy minimizers, consider if your algorithm needs shell/flexible-constraint support");
395 /* With energy minimization, shells and flexible constraints are
396 * automatically minimized when treated like normal DOFS.
398 if (shellfc != nullptr)
400 *shellfc = nullptr;
404 auto mdatoms = mdAtoms->mdatoms();
405 if (DOMAINDECOMP(cr))
407 top->useInDomainDecomp_ = true;
408 dd_init_local_top(*top_global, top);
410 dd_init_local_state(cr->dd, state_global, &ems->s);
412 /* Distribute the charge groups over the nodes from the master node */
413 dd_partition_system(fplog, mdlog, ir->init_step, cr, TRUE, 1,
414 state_global, *top_global, ir, imdSession, pull_work,
415 &ems->s, &ems->f, mdAtoms, top,
416 fr, vsite, constr,
417 nrnb, nullptr, FALSE);
418 dd_store_state(cr->dd, &ems->s);
420 *graph = nullptr;
422 else
424 state_change_natoms(state_global, state_global->natoms);
425 /* Just copy the state */
426 ems->s = *state_global;
427 state_change_natoms(&ems->s, ems->s.natoms);
428 ems->f.resizeWithPadding(ems->s.natoms);
430 mdAlgorithmsSetupAtomData(cr, ir, *top_global, top, fr,
431 graph, mdAtoms,
432 constr, vsite, shellfc ? *shellfc : nullptr);
434 if (vsite)
436 set_vsite_top(vsite, top, mdatoms);
440 update_mdatoms(mdAtoms->mdatoms(), ems->s.lambda[efptMASS]);
442 if (constr)
444 // TODO how should this cross-module support dependency be managed?
445 if (ir->eConstrAlg == econtSHAKE &&
446 gmx_mtop_ftype_count(top_global, F_CONSTR) > 0)
448 gmx_fatal(FARGS, "Can not do energy minimization with %s, use %s\n",
449 econstr_names[econtSHAKE], econstr_names[econtLINCS]);
452 if (!ir->bContinuation)
454 /* Constrain the starting coordinates */
455 dvdl_constr = 0;
456 constr->apply(TRUE, TRUE,
457 -1, 0, 1.0,
458 ems->s.x.rvec_array(),
459 ems->s.x.rvec_array(),
460 nullptr,
461 ems->s.box,
462 ems->s.lambda[efptFEP], &dvdl_constr,
463 nullptr, nullptr, gmx::ConstraintVariable::Positions);
467 if (PAR(cr))
469 *gstat = global_stat_init(ir);
471 else
473 *gstat = nullptr;
476 calc_shifts(ems->s.box, fr->shift_vec);
479 //! Finalize the minimization
480 static void finish_em(const t_commrec *cr, gmx_mdoutf_t outf,
481 gmx_walltime_accounting_t walltime_accounting,
482 gmx_wallcycle_t wcycle)
484 if (!thisRankHasDuty(cr, DUTY_PME))
486 /* Tell the PME only node to finish */
487 gmx_pme_send_finish(cr);
490 done_mdoutf(outf);
492 em_time_end(walltime_accounting, wcycle);
495 //! Swap two different EM states during minimization
496 static void swap_em_state(em_state_t **ems1, em_state_t **ems2)
498 em_state_t *tmp;
500 tmp = *ems1;
501 *ems1 = *ems2;
502 *ems2 = tmp;
505 //! Save the EM trajectory
506 static void write_em_traj(FILE *fplog, const t_commrec *cr,
507 gmx_mdoutf_t outf,
508 gmx_bool bX, gmx_bool bF, const char *confout,
509 gmx_mtop_t *top_global,
510 t_inputrec *ir, int64_t step,
511 em_state_t *state,
512 t_state *state_global,
513 ObservablesHistory *observablesHistory)
515 int mdof_flags = 0;
517 if (bX)
519 mdof_flags |= MDOF_X;
521 if (bF)
523 mdof_flags |= MDOF_F;
526 /* If we want IMD output, set appropriate MDOF flag */
527 if (ir->bIMD)
529 mdof_flags |= MDOF_IMD;
532 mdoutf_write_to_trajectory_files(fplog, cr, outf, mdof_flags,
533 top_global->natoms, step, static_cast<double>(step),
534 &state->s, state_global, observablesHistory,
535 state->f);
537 if (confout != nullptr)
539 if (DOMAINDECOMP(cr))
541 /* If bX=true, x was collected to state_global in the call above */
542 if (!bX)
544 auto globalXRef = MASTER(cr) ? state_global->x : gmx::ArrayRef<gmx::RVec>();
545 dd_collect_vec(cr->dd, &state->s, state->s.x, globalXRef);
548 else
550 /* Copy the local state pointer */
551 state_global = &state->s;
554 if (MASTER(cr))
556 if (ir->ePBC != epbcNONE && !ir->bPeriodicMols && DOMAINDECOMP(cr))
558 /* Make molecules whole only for confout writing */
559 do_pbc_mtop(ir->ePBC, state->s.box, top_global,
560 state_global->x.rvec_array());
563 write_sto_conf_mtop(confout,
564 *top_global->name, top_global,
565 state_global->x.rvec_array(), nullptr, ir->ePBC, state->s.box);
570 //! \brief Do one minimization step
572 // \returns true when the step succeeded, false when a constraint error occurred
573 static bool do_em_step(const t_commrec *cr,
574 t_inputrec *ir, t_mdatoms *md,
575 em_state_t *ems1, real a, const PaddedHostVector<gmx::RVec> *force,
576 em_state_t *ems2,
577 gmx::Constraints *constr,
578 int64_t count)
581 t_state *s1, *s2;
582 int start, end;
583 real dvdl_constr;
584 int nthreads gmx_unused;
586 bool validStep = true;
588 s1 = &ems1->s;
589 s2 = &ems2->s;
591 if (DOMAINDECOMP(cr) && s1->ddp_count != cr->dd->ddp_count)
593 gmx_incons("state mismatch in do_em_step");
596 s2->flags = s1->flags;
598 if (s2->natoms != s1->natoms)
600 state_change_natoms(s2, s1->natoms);
601 ems2->f.resizeWithPadding(s2->natoms);
603 if (DOMAINDECOMP(cr) && s2->cg_gl.size() != s1->cg_gl.size())
605 s2->cg_gl.resize(s1->cg_gl.size());
608 copy_mat(s1->box, s2->box);
609 /* Copy free energy state */
610 s2->lambda = s1->lambda;
611 copy_mat(s1->box, s2->box);
613 start = 0;
614 end = md->homenr;
616 nthreads = gmx_omp_nthreads_get(emntUpdate);
617 #pragma omp parallel num_threads(nthreads)
619 const rvec *x1 = s1->x.rvec_array();
620 rvec *x2 = s2->x.rvec_array();
621 const rvec *f = force->rvec_array();
623 int gf = 0;
624 #pragma omp for schedule(static) nowait
625 for (int i = start; i < end; i++)
629 if (md->cFREEZE)
631 gf = md->cFREEZE[i];
633 for (int m = 0; m < DIM; m++)
635 if (ir->opts.nFreeze[gf][m])
637 x2[i][m] = x1[i][m];
639 else
641 x2[i][m] = x1[i][m] + a*f[i][m];
645 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
648 if (s2->flags & (1<<estCGP))
650 /* Copy the CG p vector */
651 const rvec *p1 = s1->cg_p.rvec_array();
652 rvec *p2 = s2->cg_p.rvec_array();
653 #pragma omp for schedule(static) nowait
654 for (int i = start; i < end; i++)
656 // Trivial OpenMP block that does not throw
657 copy_rvec(p1[i], p2[i]);
661 if (DOMAINDECOMP(cr))
663 s2->ddp_count = s1->ddp_count;
665 /* OpenMP does not supported unsigned loop variables */
666 #pragma omp for schedule(static) nowait
667 for (gmx::index i = 0; i < gmx::ssize(s2->cg_gl); i++)
669 s2->cg_gl[i] = s1->cg_gl[i];
671 s2->ddp_count_cg_gl = s1->ddp_count_cg_gl;
675 if (constr)
677 dvdl_constr = 0;
678 validStep =
679 constr->apply(TRUE, TRUE,
680 count, 0, 1.0,
681 s1->x.rvec_array(), s2->x.rvec_array(),
682 nullptr, s2->box,
683 s2->lambda[efptBONDED], &dvdl_constr,
684 nullptr, nullptr, gmx::ConstraintVariable::Positions);
686 if (cr->nnodes > 1)
688 /* This global reduction will affect performance at high
689 * parallelization, but we can not really avoid it.
690 * But usually EM is not run at high parallelization.
692 int reductionBuffer = static_cast<int>(!validStep);
693 gmx_sumi(1, &reductionBuffer, cr);
694 validStep = (reductionBuffer == 0);
697 // We should move this check to the different minimizers
698 if (!validStep && ir->eI != eiSteep)
700 gmx_fatal(FARGS, "The coordinates could not be constrained. Minimizer '%s' can not handle constraint failures, use minimizer '%s' before using '%s'.",
701 EI(ir->eI), EI(eiSteep), EI(ir->eI));
705 return validStep;
708 //! Prepare EM for using domain decomposition parallellization
709 static void em_dd_partition_system(FILE *fplog,
710 const gmx::MDLogger &mdlog,
711 int step, const t_commrec *cr,
712 gmx_mtop_t *top_global, t_inputrec *ir,
713 gmx::ImdSession *imdSession,
714 pull_t *pull_work,
715 em_state_t *ems, gmx_localtop_t *top,
716 gmx::MDAtoms *mdAtoms, t_forcerec *fr,
717 gmx_vsite_t *vsite, gmx::Constraints *constr,
718 t_nrnb *nrnb, gmx_wallcycle_t wcycle)
720 /* Repartition the domain decomposition */
721 dd_partition_system(fplog, mdlog, step, cr, FALSE, 1,
722 nullptr, *top_global, ir, imdSession, pull_work,
723 &ems->s, &ems->f,
724 mdAtoms, top, fr, vsite, constr,
725 nrnb, wcycle, FALSE);
726 dd_store_state(cr->dd, &ems->s);
729 namespace
732 /*! \brief Class to handle the work of setting and doing an energy evaluation.
734 * This class is a mere aggregate of parameters to pass to evaluate an
735 * energy, so that future changes to names and types of them consume
736 * less time when refactoring other code.
738 * Aggregate initialization is used, for which the chief risk is that
739 * if a member is added at the end and not all initializer lists are
740 * updated, then the member will be value initialized, which will
741 * typically mean initialization to zero.
743 * Use a braced initializer list to construct one of these. */
744 class EnergyEvaluator
746 public:
747 /*! \brief Evaluates an energy on the state in \c ems.
749 * \todo In practice, the same objects mu_tot, vir, and pres
750 * are always passed to this function, so we would rather have
751 * them as data members. However, their C-array types are
752 * unsuited for aggregate initialization. When the types
753 * improve, the call signature of this method can be reduced.
755 void run(em_state_t *ems, rvec mu_tot,
756 tensor vir, tensor pres,
757 int64_t count, gmx_bool bFirst);
758 //! Handles logging (deprecated).
759 FILE *fplog;
760 //! Handles logging.
761 const gmx::MDLogger &mdlog;
762 //! Handles communication.
763 const t_commrec *cr;
764 //! Coordinates multi-simulations.
765 const gmx_multisim_t *ms;
766 //! Holds the simulation topology.
767 gmx_mtop_t *top_global;
768 //! Holds the domain topology.
769 gmx_localtop_t *top;
770 //! User input options.
771 t_inputrec *inputrec;
772 //! The Interactive Molecular Dynamics session.
773 gmx::ImdSession *imdSession;
774 //! The pull work object.
775 pull_t *pull_work;
776 //! Manages flop accounting.
777 t_nrnb *nrnb;
778 //! Manages wall cycle accounting.
779 gmx_wallcycle_t wcycle;
780 //! Coordinates global reduction.
781 gmx_global_stat_t gstat;
782 //! Handles virtual sites.
783 gmx_vsite_t *vsite;
784 //! Handles constraints.
785 gmx::Constraints *constr;
786 //! Handles strange things.
787 t_fcdata *fcd;
788 //! Molecular graph for SHAKE.
789 t_graph *graph;
790 //! Per-atom data for this domain.
791 gmx::MDAtoms *mdAtoms;
792 //! Handles how to calculate the forces.
793 t_forcerec *fr;
794 //! Schedule of force-calculation work each step for this task.
795 MdrunScheduleWorkload *runScheduleWork;
796 //! Stores the computed energies.
797 gmx_enerdata_t *enerd;
800 void
801 EnergyEvaluator::run(em_state_t *ems, rvec mu_tot,
802 tensor vir, tensor pres,
803 int64_t count, gmx_bool bFirst)
805 real t;
806 gmx_bool bNS;
807 tensor force_vir, shake_vir, ekin;
808 real dvdl_constr;
809 real terminate = 0;
811 /* Set the time to the initial time, the time does not change during EM */
812 t = inputrec->init_t;
814 if (bFirst ||
815 (DOMAINDECOMP(cr) && ems->s.ddp_count < cr->dd->ddp_count))
817 /* This is the first state or an old state used before the last ns */
818 bNS = TRUE;
820 else
822 bNS = FALSE;
823 if (inputrec->nstlist > 0)
825 bNS = TRUE;
829 if (vsite)
831 construct_vsites(vsite, ems->s.x.rvec_array(), 1, nullptr,
832 top->idef.iparams, top->idef.il,
833 fr->ePBC, fr->bMolPBC, cr, ems->s.box);
836 if (DOMAINDECOMP(cr) && bNS)
838 /* Repartition the domain decomposition */
839 em_dd_partition_system(fplog, mdlog, count, cr, top_global, inputrec, imdSession,
840 pull_work,
841 ems, top, mdAtoms, fr, vsite, constr,
842 nrnb, wcycle);
845 /* Calc force & energy on new trial position */
846 /* do_force always puts the charge groups in the box and shifts again
847 * We do not unshift, so molecules are always whole in congrad.c
849 do_force(fplog, cr, ms, inputrec, nullptr, nullptr, imdSession,
850 pull_work,
851 count, nrnb, wcycle, top,
852 ems->s.box, ems->s.x.arrayRefWithPadding(), &ems->s.hist,
853 ems->f.arrayRefWithPadding(), force_vir, mdAtoms->mdatoms(), enerd, fcd,
854 ems->s.lambda, graph, fr, runScheduleWork, vsite, mu_tot, t, nullptr,
855 GMX_FORCE_STATECHANGED | GMX_FORCE_ALLFORCES |
856 GMX_FORCE_VIRIAL | GMX_FORCE_ENERGY |
857 (bNS ? GMX_FORCE_NS : 0),
858 DDBalanceRegionHandler(cr));
860 /* Clear the unused shake virial and pressure */
861 clear_mat(shake_vir);
862 clear_mat(pres);
864 /* Communicate stuff when parallel */
865 if (PAR(cr) && inputrec->eI != eiNM)
867 wallcycle_start(wcycle, ewcMoveE);
869 global_stat(gstat, cr, enerd, force_vir, shake_vir, mu_tot,
870 inputrec, nullptr, nullptr, nullptr, 1, &terminate,
871 nullptr, FALSE,
872 CGLO_ENERGY |
873 CGLO_PRESSURE |
874 CGLO_CONSTRAINT);
876 wallcycle_stop(wcycle, ewcMoveE);
879 if (fr->dispersionCorrection)
881 /* Calculate long range corrections to pressure and energy */
882 const DispersionCorrection::Correction correction =
883 fr->dispersionCorrection->calculate(ems->s.box, ems->s.lambda[efptVDW]);
885 enerd->term[F_DISPCORR] = correction.energy;
886 enerd->term[F_EPOT] += correction.energy;
887 enerd->term[F_PRES] += correction.pressure;
888 enerd->term[F_DVDL] += correction.dvdl;
890 else
892 enerd->term[F_DISPCORR] = 0;
895 ems->epot = enerd->term[F_EPOT];
897 if (constr)
899 /* Project out the constraint components of the force */
900 dvdl_constr = 0;
901 rvec *f_rvec = ems->f.rvec_array();
902 constr->apply(FALSE, FALSE,
903 count, 0, 1.0,
904 ems->s.x.rvec_array(), f_rvec, f_rvec,
905 ems->s.box,
906 ems->s.lambda[efptBONDED], &dvdl_constr,
907 nullptr, &shake_vir, gmx::ConstraintVariable::ForceDispl);
908 enerd->term[F_DVDL_CONSTR] += dvdl_constr;
909 m_add(force_vir, shake_vir, vir);
911 else
913 copy_mat(force_vir, vir);
916 clear_mat(ekin);
917 enerd->term[F_PRES] =
918 calc_pres(fr->ePBC, inputrec->nwall, ems->s.box, ekin, vir, pres);
920 sum_dhdl(enerd, ems->s.lambda, *inputrec->fepvals);
922 if (EI_ENERGY_MINIMIZATION(inputrec->eI))
924 get_state_f_norm_max(cr, &(inputrec->opts), mdAtoms->mdatoms(), ems);
928 } // namespace
930 //! Parallel utility summing energies and forces
931 static double reorder_partsum(const t_commrec *cr, t_grpopts *opts,
932 gmx_mtop_t *top_global,
933 em_state_t *s_min, em_state_t *s_b)
935 if (debug)
937 fprintf(debug, "Doing reorder_partsum\n");
940 const rvec *fm = s_min->f.rvec_array();
941 const rvec *fb = s_b->f.rvec_array();
943 /* Collect fm in a global vector fmg.
944 * This conflicts with the spirit of domain decomposition,
945 * but to fully optimize this a much more complicated algorithm is required.
947 const int natoms = top_global->natoms;
948 rvec *fmg;
949 snew(fmg, natoms);
951 gmx::ArrayRef<const int> indicesMin = s_min->s.cg_gl;
952 int i = 0;
953 for (int a : indicesMin)
955 copy_rvec(fm[i], fmg[a]);
956 i++;
958 gmx_sum(top_global->natoms*3, fmg[0], cr);
960 /* Now we will determine the part of the sum for the cgs in state s_b */
961 gmx::ArrayRef<const int> indicesB = s_b->s.cg_gl;
963 double partsum = 0;
964 i = 0;
965 int gf = 0;
966 gmx::ArrayRef<unsigned char> grpnrFREEZE = top_global->groups.groupNumbers[SimulationAtomGroupType::Freeze];
967 for (int a : indicesB)
969 if (!grpnrFREEZE.empty())
971 gf = grpnrFREEZE[i];
973 for (int m = 0; m < DIM; m++)
975 if (!opts->nFreeze[gf][m])
977 partsum += (fb[i][m] - fmg[a][m])*fb[i][m];
980 i++;
983 sfree(fmg);
985 return partsum;
988 //! Print some stuff, like beta, whatever that means.
989 static real pr_beta(const t_commrec *cr, t_grpopts *opts, t_mdatoms *mdatoms,
990 gmx_mtop_t *top_global,
991 em_state_t *s_min, em_state_t *s_b)
993 double sum;
995 /* This is just the classical Polak-Ribiere calculation of beta;
996 * it looks a bit complicated since we take freeze groups into account,
997 * and might have to sum it in parallel runs.
1000 if (!DOMAINDECOMP(cr) ||
1001 (s_min->s.ddp_count == cr->dd->ddp_count &&
1002 s_b->s.ddp_count == cr->dd->ddp_count))
1004 const rvec *fm = s_min->f.rvec_array();
1005 const rvec *fb = s_b->f.rvec_array();
1006 sum = 0;
1007 int gf = 0;
1008 /* This part of code can be incorrect with DD,
1009 * since the atom ordering in s_b and s_min might differ.
1011 for (int i = 0; i < mdatoms->homenr; i++)
1013 if (mdatoms->cFREEZE)
1015 gf = mdatoms->cFREEZE[i];
1017 for (int m = 0; m < DIM; m++)
1019 if (!opts->nFreeze[gf][m])
1021 sum += (fb[i][m] - fm[i][m])*fb[i][m];
1026 else
1028 /* We need to reorder cgs while summing */
1029 sum = reorder_partsum(cr, opts, top_global, s_min, s_b);
1031 if (PAR(cr))
1033 gmx_sumd(1, &sum, cr);
1036 return sum/gmx::square(s_min->fnorm);
1039 namespace gmx
1042 void
1043 LegacySimulator::do_cg()
1045 const char *CG = "Polak-Ribiere Conjugate Gradients";
1047 gmx_localtop_t top;
1048 gmx_global_stat_t gstat;
1049 t_graph *graph;
1050 double tmp, minstep;
1051 real stepsize;
1052 real a, b, c, beta = 0.0;
1053 real epot_repl = 0;
1054 real pnorm;
1055 gmx_bool converged, foundlower;
1056 rvec mu_tot = {0};
1057 gmx_bool do_log = FALSE, do_ene = FALSE, do_x, do_f;
1058 tensor vir, pres;
1059 int number_steps, neval = 0, nstcg = inputrec->nstcgsteep;
1060 int m, step, nminstep;
1061 auto mdatoms = mdAtoms->mdatoms();
1063 GMX_LOG(mdlog.info).asParagraph().
1064 appendText("Note that activating conjugate gradient energy minimization via the "
1065 "integrator .mdp option and the command gmx mdrun may "
1066 "be available in a different form in a future version of GROMACS, "
1067 "e.g. gmx minimize and an .mdp option.");
1069 step = 0;
1071 if (MASTER(cr))
1073 // In CG, the state is extended with a search direction
1074 state_global->flags |= (1<<estCGP);
1076 // Ensure the extra per-atom state array gets allocated
1077 state_change_natoms(state_global, state_global->natoms);
1079 // Initialize the search direction to zero
1080 for (RVec &cg_p : state_global->cg_p)
1082 cg_p = { 0, 0, 0 };
1086 /* Create 4 states on the stack and extract pointers that we will swap */
1087 em_state_t s0 {}, s1 {}, s2 {}, s3 {};
1088 em_state_t *s_min = &s0;
1089 em_state_t *s_a = &s1;
1090 em_state_t *s_b = &s2;
1091 em_state_t *s_c = &s3;
1093 /* Init em and store the local state in s_min */
1094 init_em(fplog, mdlog, CG, cr, inputrec, imdSession,
1095 pull_work,
1096 state_global, top_global, s_min, &top,
1097 nrnb, fr, &graph, mdAtoms, &gstat,
1098 vsite, constr, nullptr);
1099 gmx_mdoutf *outf = init_mdoutf(fplog, nfile, fnm, mdrunOptions, cr, outputProvider, mdModulesNotifier, inputrec, top_global, nullptr, wcycle,
1100 StartingBehavior::NewSimulation);
1101 gmx::EnergyOutput energyOutput(mdoutf_get_fp_ene(outf), top_global, inputrec, pull_work, nullptr, false, mdModulesNotifier);
1103 /* Print to log file */
1104 print_em_start(fplog, cr, walltime_accounting, wcycle, CG);
1106 /* Max number of steps */
1107 number_steps = inputrec->nsteps;
1109 if (MASTER(cr))
1111 sp_header(stderr, CG, inputrec->em_tol, number_steps);
1113 if (fplog)
1115 sp_header(fplog, CG, inputrec->em_tol, number_steps);
1118 EnergyEvaluator energyEvaluator {
1119 fplog, mdlog, cr, ms,
1120 top_global, &top,
1121 inputrec, imdSession, pull_work, nrnb, wcycle, gstat,
1122 vsite, constr, fcd, graph,
1123 mdAtoms, fr, runScheduleWork, enerd
1125 /* Call the force routine and some auxiliary (neighboursearching etc.) */
1126 /* do_force always puts the charge groups in the box and shifts again
1127 * We do not unshift, so molecules are always whole in congrad.c
1129 energyEvaluator.run(s_min, mu_tot, vir, pres, -1, TRUE);
1131 if (MASTER(cr))
1133 /* Copy stuff to the energy bin for easy printing etc. */
1134 matrix nullBox = {};
1135 energyOutput.addDataAtEnergyStep(false, false, static_cast<double>(step),
1136 mdatoms->tmass, enerd, nullptr, nullptr, nullptr, nullBox,
1137 nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);
1139 energyOutput.printHeader(fplog, step, step);
1140 energyOutput.printStepToEnergyFile(mdoutf_get_fp_ene(outf), TRUE, FALSE, FALSE,
1141 fplog, step, step,
1142 fcd, nullptr);
1145 /* Estimate/guess the initial stepsize */
1146 stepsize = inputrec->em_stepsize/s_min->fnorm;
1148 if (MASTER(cr))
1150 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
1151 fprintf(stderr, " F-max = %12.5e on atom %d\n",
1152 s_min->fmax, s_min->a_fmax+1);
1153 fprintf(stderr, " F-Norm = %12.5e\n",
1154 s_min->fnorm/sqrtNumAtoms);
1155 fprintf(stderr, "\n");
1156 /* and copy to the log file too... */
1157 fprintf(fplog, " F-max = %12.5e on atom %d\n",
1158 s_min->fmax, s_min->a_fmax+1);
1159 fprintf(fplog, " F-Norm = %12.5e\n",
1160 s_min->fnorm/sqrtNumAtoms);
1161 fprintf(fplog, "\n");
1163 /* Start the loop over CG steps.
1164 * Each successful step is counted, and we continue until
1165 * we either converge or reach the max number of steps.
1167 converged = FALSE;
1168 for (step = 0; (number_steps < 0 || step <= number_steps) && !converged; step++)
1171 /* start taking steps in a new direction
1172 * First time we enter the routine, beta=0, and the direction is
1173 * simply the negative gradient.
1176 /* Calculate the new direction in p, and the gradient in this direction, gpa */
1177 rvec *pm = s_min->s.cg_p.rvec_array();
1178 const rvec *sfm = s_min->f.rvec_array();
1179 double gpa = 0;
1180 int gf = 0;
1181 for (int i = 0; i < mdatoms->homenr; i++)
1183 if (mdatoms->cFREEZE)
1185 gf = mdatoms->cFREEZE[i];
1187 for (m = 0; m < DIM; m++)
1189 if (!inputrec->opts.nFreeze[gf][m])
1191 pm[i][m] = sfm[i][m] + beta*pm[i][m];
1192 gpa -= pm[i][m]*sfm[i][m];
1193 /* f is negative gradient, thus the sign */
1195 else
1197 pm[i][m] = 0;
1202 /* Sum the gradient along the line across CPUs */
1203 if (PAR(cr))
1205 gmx_sumd(1, &gpa, cr);
1208 /* Calculate the norm of the search vector */
1209 get_f_norm_max(cr, &(inputrec->opts), mdatoms, pm, &pnorm, nullptr, nullptr);
1211 /* Just in case stepsize reaches zero due to numerical precision... */
1212 if (stepsize <= 0)
1214 stepsize = inputrec->em_stepsize/pnorm;
1218 * Double check the value of the derivative in the search direction.
1219 * If it is positive it must be due to the old information in the
1220 * CG formula, so just remove that and start over with beta=0.
1221 * This corresponds to a steepest descent step.
1223 if (gpa > 0)
1225 beta = 0;
1226 step--; /* Don't count this step since we are restarting */
1227 continue; /* Go back to the beginning of the big for-loop */
1230 /* Calculate minimum allowed stepsize, before the average (norm)
1231 * relative change in coordinate is smaller than precision
1233 minstep = 0;
1234 auto s_min_x = makeArrayRef(s_min->s.x);
1235 for (int i = 0; i < mdatoms->homenr; i++)
1237 for (m = 0; m < DIM; m++)
1239 tmp = fabs(s_min_x[i][m]);
1240 if (tmp < 1.0)
1242 tmp = 1.0;
1244 tmp = pm[i][m]/tmp;
1245 minstep += tmp*tmp;
1248 /* Add up from all CPUs */
1249 if (PAR(cr))
1251 gmx_sumd(1, &minstep, cr);
1254 minstep = GMX_REAL_EPS/sqrt(minstep/(3*top_global->natoms));
1256 if (stepsize < minstep)
1258 converged = TRUE;
1259 break;
1262 /* Write coordinates if necessary */
1263 do_x = do_per_step(step, inputrec->nstxout);
1264 do_f = do_per_step(step, inputrec->nstfout);
1266 write_em_traj(fplog, cr, outf, do_x, do_f, nullptr,
1267 top_global, inputrec, step,
1268 s_min, state_global, observablesHistory);
1270 /* Take a step downhill.
1271 * In theory, we should minimize the function along this direction.
1272 * That is quite possible, but it turns out to take 5-10 function evaluations
1273 * for each line. However, we dont really need to find the exact minimum -
1274 * it is much better to start a new CG step in a modified direction as soon
1275 * as we are close to it. This will save a lot of energy evaluations.
1277 * In practice, we just try to take a single step.
1278 * If it worked (i.e. lowered the energy), we increase the stepsize but
1279 * the continue straight to the next CG step without trying to find any minimum.
1280 * If it didn't work (higher energy), there must be a minimum somewhere between
1281 * the old position and the new one.
1283 * Due to the finite numerical accuracy, it turns out that it is a good idea
1284 * to even accept a SMALL increase in energy, if the derivative is still downhill.
1285 * This leads to lower final energies in the tests I've done. / Erik
1287 s_a->epot = s_min->epot;
1288 a = 0.0;
1289 c = a + stepsize; /* reference position along line is zero */
1291 if (DOMAINDECOMP(cr) && s_min->s.ddp_count < cr->dd->ddp_count)
1293 em_dd_partition_system(fplog, mdlog, step, cr, top_global, inputrec, imdSession,
1294 pull_work,
1295 s_min, &top, mdAtoms, fr, vsite, constr,
1296 nrnb, wcycle);
1299 /* Take a trial step (new coords in s_c) */
1300 do_em_step(cr, inputrec, mdatoms, s_min, c, &s_min->s.cg_p, s_c,
1301 constr, -1);
1303 neval++;
1304 /* Calculate energy for the trial step */
1305 energyEvaluator.run(s_c, mu_tot, vir, pres, -1, FALSE);
1307 /* Calc derivative along line */
1308 const rvec *pc = s_c->s.cg_p.rvec_array();
1309 const rvec *sfc = s_c->f.rvec_array();
1310 double gpc = 0;
1311 for (int i = 0; i < mdatoms->homenr; i++)
1313 for (m = 0; m < DIM; m++)
1315 gpc -= pc[i][m]*sfc[i][m]; /* f is negative gradient, thus the sign */
1318 /* Sum the gradient along the line across CPUs */
1319 if (PAR(cr))
1321 gmx_sumd(1, &gpc, cr);
1324 /* This is the max amount of increase in energy we tolerate */
1325 tmp = std::sqrt(GMX_REAL_EPS)*fabs(s_a->epot);
1327 /* Accept the step if the energy is lower, or if it is not significantly higher
1328 * and the line derivative is still negative.
1330 if (s_c->epot < s_a->epot || (gpc < 0 && s_c->epot < (s_a->epot + tmp)))
1332 foundlower = TRUE;
1333 /* Great, we found a better energy. Increase step for next iteration
1334 * if we are still going down, decrease it otherwise
1336 if (gpc < 0)
1338 stepsize *= 1.618034; /* The golden section */
1340 else
1342 stepsize *= 0.618034; /* 1/golden section */
1345 else
1347 /* New energy is the same or higher. We will have to do some work
1348 * to find a smaller value in the interval. Take smaller step next time!
1350 foundlower = FALSE;
1351 stepsize *= 0.618034;
1357 /* OK, if we didn't find a lower value we will have to locate one now - there must
1358 * be one in the interval [a=0,c].
1359 * The same thing is valid here, though: Don't spend dozens of iterations to find
1360 * the line minimum. We try to interpolate based on the derivative at the endpoints,
1361 * and only continue until we find a lower value. In most cases this means 1-2 iterations.
1363 * I also have a safeguard for potentially really pathological functions so we never
1364 * take more than 20 steps before we give up ...
1366 * If we already found a lower value we just skip this step and continue to the update.
1368 double gpb;
1369 if (!foundlower)
1371 nminstep = 0;
1375 /* Select a new trial point.
1376 * If the derivatives at points a & c have different sign we interpolate to zero,
1377 * otherwise just do a bisection.
1379 if (gpa < 0 && gpc > 0)
1381 b = a + gpa*(a-c)/(gpc-gpa);
1383 else
1385 b = 0.5*(a+c);
1388 /* safeguard if interpolation close to machine accuracy causes errors:
1389 * never go outside the interval
1391 if (b <= a || b >= c)
1393 b = 0.5*(a+c);
1396 if (DOMAINDECOMP(cr) && s_min->s.ddp_count != cr->dd->ddp_count)
1398 /* Reload the old state */
1399 em_dd_partition_system(fplog, mdlog, -1, cr, top_global, inputrec, imdSession,
1400 pull_work,
1401 s_min, &top, mdAtoms, fr, vsite, constr,
1402 nrnb, wcycle);
1405 /* Take a trial step to this new point - new coords in s_b */
1406 do_em_step(cr, inputrec, mdatoms, s_min, b, &s_min->s.cg_p, s_b,
1407 constr, -1);
1409 neval++;
1410 /* Calculate energy for the trial step */
1411 energyEvaluator.run(s_b, mu_tot, vir, pres, -1, FALSE);
1413 /* p does not change within a step, but since the domain decomposition
1414 * might change, we have to use cg_p of s_b here.
1416 const rvec *pb = s_b->s.cg_p.rvec_array();
1417 const rvec *sfb = s_b->f.rvec_array();
1418 gpb = 0;
1419 for (int i = 0; i < mdatoms->homenr; i++)
1421 for (m = 0; m < DIM; m++)
1423 gpb -= pb[i][m]*sfb[i][m]; /* f is negative gradient, thus the sign */
1426 /* Sum the gradient along the line across CPUs */
1427 if (PAR(cr))
1429 gmx_sumd(1, &gpb, cr);
1432 if (debug)
1434 fprintf(debug, "CGE: EpotA %f EpotB %f EpotC %f gpb %f\n",
1435 s_a->epot, s_b->epot, s_c->epot, gpb);
1438 epot_repl = s_b->epot;
1440 /* Keep one of the intervals based on the value of the derivative at the new point */
1441 if (gpb > 0)
1443 /* Replace c endpoint with b */
1444 swap_em_state(&s_b, &s_c);
1445 c = b;
1446 gpc = gpb;
1448 else
1450 /* Replace a endpoint with b */
1451 swap_em_state(&s_b, &s_a);
1452 a = b;
1453 gpa = gpb;
1457 * Stop search as soon as we find a value smaller than the endpoints.
1458 * Never run more than 20 steps, no matter what.
1460 nminstep++;
1462 while ((epot_repl > s_a->epot || epot_repl > s_c->epot) &&
1463 (nminstep < 20));
1465 if (std::fabs(epot_repl - s_min->epot) < fabs(s_min->epot)*GMX_REAL_EPS ||
1466 nminstep >= 20)
1468 /* OK. We couldn't find a significantly lower energy.
1469 * If beta==0 this was steepest descent, and then we give up.
1470 * If not, set beta=0 and restart with steepest descent before quitting.
1472 if (beta == 0.0)
1474 /* Converged */
1475 converged = TRUE;
1476 break;
1478 else
1480 /* Reset memory before giving up */
1481 beta = 0.0;
1482 continue;
1486 /* Select min energy state of A & C, put the best in B.
1488 if (s_c->epot < s_a->epot)
1490 if (debug)
1492 fprintf(debug, "CGE: C (%f) is lower than A (%f), moving C to B\n",
1493 s_c->epot, s_a->epot);
1495 swap_em_state(&s_b, &s_c);
1496 gpb = gpc;
1498 else
1500 if (debug)
1502 fprintf(debug, "CGE: A (%f) is lower than C (%f), moving A to B\n",
1503 s_a->epot, s_c->epot);
1505 swap_em_state(&s_b, &s_a);
1506 gpb = gpa;
1510 else
1512 if (debug)
1514 fprintf(debug, "CGE: Found a lower energy %f, moving C to B\n",
1515 s_c->epot);
1517 swap_em_state(&s_b, &s_c);
1518 gpb = gpc;
1521 /* new search direction */
1522 /* beta = 0 means forget all memory and restart with steepest descents. */
1523 if (nstcg && ((step % nstcg) == 0))
1525 beta = 0.0;
1527 else
1529 /* s_min->fnorm cannot be zero, because then we would have converged
1530 * and broken out.
1533 /* Polak-Ribiere update.
1534 * Change to fnorm2/fnorm2_old for Fletcher-Reeves
1536 beta = pr_beta(cr, &inputrec->opts, mdatoms, top_global, s_min, s_b);
1538 /* Limit beta to prevent oscillations */
1539 if (fabs(beta) > 5.0)
1541 beta = 0.0;
1545 /* update positions */
1546 swap_em_state(&s_min, &s_b);
1547 gpa = gpb;
1549 /* Print it if necessary */
1550 if (MASTER(cr))
1552 if (mdrunOptions.verbose)
1554 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
1555 fprintf(stderr, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n",
1556 step, s_min->epot, s_min->fnorm/sqrtNumAtoms,
1557 s_min->fmax, s_min->a_fmax+1);
1558 fflush(stderr);
1560 /* Store the new (lower) energies */
1561 matrix nullBox = {};
1562 energyOutput.addDataAtEnergyStep(false, false, static_cast<double>(step),
1563 mdatoms->tmass, enerd, nullptr, nullptr, nullptr, nullBox,
1564 nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);
1566 do_log = do_per_step(step, inputrec->nstlog);
1567 do_ene = do_per_step(step, inputrec->nstenergy);
1569 imdSession->fillEnergyRecord(step, TRUE);
1571 if (do_log)
1573 energyOutput.printHeader(fplog, step, step);
1575 energyOutput.printStepToEnergyFile(mdoutf_get_fp_ene(outf), do_ene, FALSE, FALSE,
1576 do_log ? fplog : nullptr, step, step,
1577 fcd, nullptr);
1580 /* Send energies and positions to the IMD client if bIMD is TRUE. */
1581 if (MASTER(cr) && imdSession->run(step, TRUE, state_global->box, state_global->x.rvec_array(), 0))
1583 imdSession->sendPositionsAndEnergies();
1586 /* Stop when the maximum force lies below tolerance.
1587 * If we have reached machine precision, converged is already set to true.
1589 converged = converged || (s_min->fmax < inputrec->em_tol);
1591 } /* End of the loop */
1593 if (converged)
1595 step--; /* we never took that last step in this case */
1598 if (s_min->fmax > inputrec->em_tol)
1600 if (MASTER(cr))
1602 warn_step(fplog, inputrec->em_tol, s_min->fmax,
1603 step-1 == number_steps, FALSE);
1605 converged = FALSE;
1608 if (MASTER(cr))
1610 /* If we printed energy and/or logfile last step (which was the last step)
1611 * we don't have to do it again, but otherwise print the final values.
1613 if (!do_log)
1615 /* Write final value to log since we didn't do anything the last step */
1616 energyOutput.printHeader(fplog, step, step);
1618 if (!do_ene || !do_log)
1620 /* Write final energy file entries */
1621 energyOutput.printStepToEnergyFile(mdoutf_get_fp_ene(outf), !do_ene, FALSE, FALSE,
1622 !do_log ? fplog : nullptr, step, step,
1623 fcd, nullptr);
1627 /* Print some stuff... */
1628 if (MASTER(cr))
1630 fprintf(stderr, "\nwriting lowest energy coordinates.\n");
1633 /* IMPORTANT!
1634 * For accurate normal mode calculation it is imperative that we
1635 * store the last conformation into the full precision binary trajectory.
1637 * However, we should only do it if we did NOT already write this step
1638 * above (which we did if do_x or do_f was true).
1640 /* Note that with 0 < nstfout != nstxout we can end up with two frames
1641 * in the trajectory with the same step number.
1643 do_x = !do_per_step(step, inputrec->nstxout);
1644 do_f = (inputrec->nstfout > 0 && !do_per_step(step, inputrec->nstfout));
1646 write_em_traj(fplog, cr, outf, do_x, do_f, ftp2fn(efSTO, nfile, fnm),
1647 top_global, inputrec, step,
1648 s_min, state_global, observablesHistory);
1651 if (MASTER(cr))
1653 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
1654 print_converged(stderr, CG, inputrec->em_tol, step, converged, number_steps,
1655 s_min, sqrtNumAtoms);
1656 print_converged(fplog, CG, inputrec->em_tol, step, converged, number_steps,
1657 s_min, sqrtNumAtoms);
1659 fprintf(fplog, "\nPerformed %d energy evaluations in total.\n", neval);
1662 finish_em(cr, outf, walltime_accounting, wcycle);
1664 /* To print the actual number of steps we needed somewhere */
1665 walltime_accounting_set_nsteps_done(walltime_accounting, step);
1669 void
1670 LegacySimulator::do_lbfgs()
1672 static const char *LBFGS = "Low-Memory BFGS Minimizer";
1673 em_state_t ems;
1674 gmx_localtop_t top;
1675 gmx_global_stat_t gstat;
1676 t_graph *graph;
1677 int ncorr, nmaxcorr, point, cp, neval, nminstep;
1678 double stepsize, step_taken, gpa, gpb, gpc, tmp, minstep;
1679 real *rho, *alpha, *p, *s, **dx, **dg;
1680 real a, b, c, maxdelta, delta;
1681 real diag, Epot0;
1682 real dgdx, dgdg, sq, yr, beta;
1683 gmx_bool converged;
1684 rvec mu_tot = {0};
1685 gmx_bool do_log, do_ene, do_x, do_f, foundlower, *frozen;
1686 tensor vir, pres;
1687 int start, end, number_steps;
1688 int i, k, m, n, gf, step;
1689 int mdof_flags;
1690 auto mdatoms = mdAtoms->mdatoms();
1692 GMX_LOG(mdlog.info).asParagraph().
1693 appendText("Note that activating L-BFGS energy minimization via the "
1694 "integrator .mdp option and the command gmx mdrun may "
1695 "be available in a different form in a future version of GROMACS, "
1696 "e.g. gmx minimize and an .mdp option.");
1698 if (PAR(cr))
1700 gmx_fatal(FARGS, "L-BFGS minimization only supports a single rank");
1703 if (nullptr != constr)
1705 gmx_fatal(FARGS, "The combination of constraints and L-BFGS minimization is not implemented. Either do not use constraints, or use another minimizer (e.g. steepest descent).");
1708 n = 3*state_global->natoms;
1709 nmaxcorr = inputrec->nbfgscorr;
1711 snew(frozen, n);
1713 snew(p, n);
1714 snew(rho, nmaxcorr);
1715 snew(alpha, nmaxcorr);
1717 snew(dx, nmaxcorr);
1718 for (i = 0; i < nmaxcorr; i++)
1720 snew(dx[i], n);
1723 snew(dg, nmaxcorr);
1724 for (i = 0; i < nmaxcorr; i++)
1726 snew(dg[i], n);
1729 step = 0;
1730 neval = 0;
1732 /* Init em */
1733 init_em(fplog, mdlog, LBFGS, cr, inputrec, imdSession,
1734 pull_work,
1735 state_global, top_global, &ems, &top,
1736 nrnb, fr, &graph, mdAtoms, &gstat,
1737 vsite, constr, nullptr);
1738 gmx_mdoutf *outf = init_mdoutf(fplog, nfile, fnm, mdrunOptions, cr, outputProvider, mdModulesNotifier, inputrec, top_global, nullptr, wcycle,
1739 StartingBehavior::NewSimulation);
1740 gmx::EnergyOutput energyOutput(mdoutf_get_fp_ene(outf), top_global, inputrec, pull_work, nullptr, false, mdModulesNotifier);
1742 start = 0;
1743 end = mdatoms->homenr;
1745 /* We need 4 working states */
1746 em_state_t s0 {}, s1 {}, s2 {}, s3 {};
1747 em_state_t *sa = &s0;
1748 em_state_t *sb = &s1;
1749 em_state_t *sc = &s2;
1750 em_state_t *last = &s3;
1751 /* Initialize by copying the state from ems (we could skip x and f here) */
1752 *sa = ems;
1753 *sb = ems;
1754 *sc = ems;
1756 /* Print to log file */
1757 print_em_start(fplog, cr, walltime_accounting, wcycle, LBFGS);
1759 do_log = do_ene = do_x = do_f = TRUE;
1761 /* Max number of steps */
1762 number_steps = inputrec->nsteps;
1764 /* Create a 3*natoms index to tell whether each degree of freedom is frozen */
1765 gf = 0;
1766 for (i = start; i < end; i++)
1768 if (mdatoms->cFREEZE)
1770 gf = mdatoms->cFREEZE[i];
1772 for (m = 0; m < DIM; m++)
1774 frozen[3*i+m] = (inputrec->opts.nFreeze[gf][m] != 0);
1777 if (MASTER(cr))
1779 sp_header(stderr, LBFGS, inputrec->em_tol, number_steps);
1781 if (fplog)
1783 sp_header(fplog, LBFGS, inputrec->em_tol, number_steps);
1786 if (vsite)
1788 construct_vsites(vsite, state_global->x.rvec_array(), 1, nullptr,
1789 top.idef.iparams, top.idef.il,
1790 fr->ePBC, fr->bMolPBC, cr, state_global->box);
1793 /* Call the force routine and some auxiliary (neighboursearching etc.) */
1794 /* do_force always puts the charge groups in the box and shifts again
1795 * We do not unshift, so molecules are always whole
1797 neval++;
1798 EnergyEvaluator energyEvaluator {
1799 fplog, mdlog, cr, ms,
1800 top_global, &top,
1801 inputrec, imdSession, pull_work, nrnb, wcycle, gstat,
1802 vsite, constr, fcd, graph,
1803 mdAtoms, fr, runScheduleWork, enerd
1805 energyEvaluator.run(&ems, mu_tot, vir, pres, -1, TRUE);
1807 if (MASTER(cr))
1809 /* Copy stuff to the energy bin for easy printing etc. */
1810 matrix nullBox = {};
1811 energyOutput.addDataAtEnergyStep(false, false, static_cast<double>(step),
1812 mdatoms->tmass, enerd, nullptr, nullptr, nullptr, nullBox,
1813 nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);
1815 energyOutput.printHeader(fplog, step, step);
1816 energyOutput.printStepToEnergyFile(mdoutf_get_fp_ene(outf), TRUE, FALSE, FALSE,
1817 fplog, step, step,
1818 fcd, nullptr);
1821 /* Set the initial step.
1822 * since it will be multiplied by the non-normalized search direction
1823 * vector (force vector the first time), we scale it by the
1824 * norm of the force.
1827 if (MASTER(cr))
1829 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
1830 fprintf(stderr, "Using %d BFGS correction steps.\n\n", nmaxcorr);
1831 fprintf(stderr, " F-max = %12.5e on atom %d\n", ems.fmax, ems.a_fmax + 1);
1832 fprintf(stderr, " F-Norm = %12.5e\n", ems.fnorm/sqrtNumAtoms);
1833 fprintf(stderr, "\n");
1834 /* and copy to the log file too... */
1835 fprintf(fplog, "Using %d BFGS correction steps.\n\n", nmaxcorr);
1836 fprintf(fplog, " F-max = %12.5e on atom %d\n", ems.fmax, ems.a_fmax + 1);
1837 fprintf(fplog, " F-Norm = %12.5e\n", ems.fnorm/sqrtNumAtoms);
1838 fprintf(fplog, "\n");
1841 // Point is an index to the memory of search directions, where 0 is the first one.
1842 point = 0;
1844 // Set initial search direction to the force (-gradient), or 0 for frozen particles.
1845 real *fInit = static_cast<real *>(ems.f.rvec_array()[0]);
1846 for (i = 0; i < n; i++)
1848 if (!frozen[i])
1850 dx[point][i] = fInit[i]; /* Initial search direction */
1852 else
1854 dx[point][i] = 0;
1858 // Stepsize will be modified during the search, and actually it is not critical
1859 // (the main efficiency in the algorithm comes from changing directions), but
1860 // we still need an initial value, so estimate it as the inverse of the norm
1861 // so we take small steps where the potential fluctuates a lot.
1862 stepsize = 1.0/ems.fnorm;
1864 /* Start the loop over BFGS steps.
1865 * Each successful step is counted, and we continue until
1866 * we either converge or reach the max number of steps.
1869 ncorr = 0;
1871 /* Set the gradient from the force */
1872 converged = FALSE;
1873 for (step = 0; (number_steps < 0 || step <= number_steps) && !converged; step++)
1876 /* Write coordinates if necessary */
1877 do_x = do_per_step(step, inputrec->nstxout);
1878 do_f = do_per_step(step, inputrec->nstfout);
1880 mdof_flags = 0;
1881 if (do_x)
1883 mdof_flags |= MDOF_X;
1886 if (do_f)
1888 mdof_flags |= MDOF_F;
1891 if (inputrec->bIMD)
1893 mdof_flags |= MDOF_IMD;
1896 mdoutf_write_to_trajectory_files(fplog, cr, outf, mdof_flags,
1897 top_global->natoms, step, static_cast<real>(step), &ems.s,
1898 state_global, observablesHistory, ems.f);
1900 /* Do the linesearching in the direction dx[point][0..(n-1)] */
1902 /* make s a pointer to current search direction - point=0 first time we get here */
1903 s = dx[point];
1905 real *xx = static_cast<real *>(ems.s.x.rvec_array()[0]);
1906 real *ff = static_cast<real *>(ems.f.rvec_array()[0]);
1908 // calculate line gradient in position A
1909 for (gpa = 0, i = 0; i < n; i++)
1911 gpa -= s[i]*ff[i];
1914 /* Calculate minimum allowed stepsize along the line, before the average (norm)
1915 * relative change in coordinate is smaller than precision
1917 for (minstep = 0, i = 0; i < n; i++)
1919 tmp = fabs(xx[i]);
1920 if (tmp < 1.0)
1922 tmp = 1.0;
1924 tmp = s[i]/tmp;
1925 minstep += tmp*tmp;
1927 minstep = GMX_REAL_EPS/sqrt(minstep/n);
1929 if (stepsize < minstep)
1931 converged = TRUE;
1932 break;
1935 // Before taking any steps along the line, store the old position
1936 *last = ems;
1937 real *lastx = static_cast<real *>(last->s.x.data()[0]);
1938 real *lastf = static_cast<real *>(last->f.data()[0]);
1939 Epot0 = ems.epot;
1941 *sa = ems;
1943 /* Take a step downhill.
1944 * In theory, we should find the actual minimum of the function in this
1945 * direction, somewhere along the line.
1946 * That is quite possible, but it turns out to take 5-10 function evaluations
1947 * for each line. However, we dont really need to find the exact minimum -
1948 * it is much better to start a new BFGS step in a modified direction as soon
1949 * as we are close to it. This will save a lot of energy evaluations.
1951 * In practice, we just try to take a single step.
1952 * If it worked (i.e. lowered the energy), we increase the stepsize but
1953 * continue straight to the next BFGS step without trying to find any minimum,
1954 * i.e. we change the search direction too. If the line was smooth, it is
1955 * likely we are in a smooth region, and then it makes sense to take longer
1956 * steps in the modified search direction too.
1958 * If it didn't work (higher energy), there must be a minimum somewhere between
1959 * the old position and the new one. Then we need to start by finding a lower
1960 * value before we change search direction. Since the energy was apparently
1961 * quite rough, we need to decrease the step size.
1963 * Due to the finite numerical accuracy, it turns out that it is a good idea
1964 * to accept a SMALL increase in energy, if the derivative is still downhill.
1965 * This leads to lower final energies in the tests I've done. / Erik
1968 // State "A" is the first position along the line.
1969 // reference position along line is initially zero
1970 a = 0.0;
1972 // Check stepsize first. We do not allow displacements
1973 // larger than emstep.
1977 // Pick a new position C by adding stepsize to A.
1978 c = a + stepsize;
1980 // Calculate what the largest change in any individual coordinate
1981 // would be (translation along line * gradient along line)
1982 maxdelta = 0;
1983 for (i = 0; i < n; i++)
1985 delta = c*s[i];
1986 if (delta > maxdelta)
1988 maxdelta = delta;
1991 // If any displacement is larger than the stepsize limit, reduce the step
1992 if (maxdelta > inputrec->em_stepsize)
1994 stepsize *= 0.1;
1997 while (maxdelta > inputrec->em_stepsize);
1999 // Take a trial step and move the coordinate array xc[] to position C
2000 real *xc = static_cast<real *>(sc->s.x.rvec_array()[0]);
2001 for (i = 0; i < n; i++)
2003 xc[i] = lastx[i] + c*s[i];
2006 neval++;
2007 // Calculate energy for the trial step in position C
2008 energyEvaluator.run(sc, mu_tot, vir, pres, step, FALSE);
2010 // Calc line gradient in position C
2011 real *fc = static_cast<real *>(sc->f.rvec_array()[0]);
2012 for (gpc = 0, i = 0; i < n; i++)
2014 gpc -= s[i]*fc[i]; /* f is negative gradient, thus the sign */
2016 /* Sum the gradient along the line across CPUs */
2017 if (PAR(cr))
2019 gmx_sumd(1, &gpc, cr);
2022 // This is the max amount of increase in energy we tolerate.
2023 // By allowing VERY small changes (close to numerical precision) we
2024 // frequently find even better (lower) final energies.
2025 tmp = std::sqrt(GMX_REAL_EPS)*fabs(sa->epot);
2027 // Accept the step if the energy is lower in the new position C (compared to A),
2028 // or if it is not significantly higher and the line derivative is still negative.
2029 foundlower = sc->epot < sa->epot || (gpc < 0 && sc->epot < (sa->epot + tmp));
2030 // If true, great, we found a better energy. We no longer try to alter the
2031 // stepsize, but simply accept this new better position. The we select a new
2032 // search direction instead, which will be much more efficient than continuing
2033 // to take smaller steps along a line. Set fnorm based on the new C position,
2034 // which will be used to update the stepsize to 1/fnorm further down.
2036 // If false, the energy is NOT lower in point C, i.e. it will be the same
2037 // or higher than in point A. In this case it is pointless to move to point C,
2038 // so we will have to do more iterations along the same line to find a smaller
2039 // value in the interval [A=0.0,C].
2040 // Here, A is still 0.0, but that will change when we do a search in the interval
2041 // [0.0,C] below. That search we will do by interpolation or bisection rather
2042 // than with the stepsize, so no need to modify it. For the next search direction
2043 // it will be reset to 1/fnorm anyway.
2045 if (!foundlower)
2047 // OK, if we didn't find a lower value we will have to locate one now - there must
2048 // be one in the interval [a,c].
2049 // The same thing is valid here, though: Don't spend dozens of iterations to find
2050 // the line minimum. We try to interpolate based on the derivative at the endpoints,
2051 // and only continue until we find a lower value. In most cases this means 1-2 iterations.
2052 // I also have a safeguard for potentially really pathological functions so we never
2053 // take more than 20 steps before we give up.
2054 // If we already found a lower value we just skip this step and continue to the update.
2055 real fnorm = 0;
2056 nminstep = 0;
2059 // Select a new trial point B in the interval [A,C].
2060 // If the derivatives at points a & c have different sign we interpolate to zero,
2061 // otherwise just do a bisection since there might be multiple minima/maxima
2062 // inside the interval.
2063 if (gpa < 0 && gpc > 0)
2065 b = a + gpa*(a-c)/(gpc-gpa);
2067 else
2069 b = 0.5*(a+c);
2072 /* safeguard if interpolation close to machine accuracy causes errors:
2073 * never go outside the interval
2075 if (b <= a || b >= c)
2077 b = 0.5*(a+c);
2080 // Take a trial step to point B
2081 real *xb = static_cast<real *>(sb->s.x.rvec_array()[0]);
2082 for (i = 0; i < n; i++)
2084 xb[i] = lastx[i] + b*s[i];
2087 neval++;
2088 // Calculate energy for the trial step in point B
2089 energyEvaluator.run(sb, mu_tot, vir, pres, step, FALSE);
2090 fnorm = sb->fnorm;
2092 // Calculate gradient in point B
2093 real *fb = static_cast<real *>(sb->f.rvec_array()[0]);
2094 for (gpb = 0, i = 0; i < n; i++)
2096 gpb -= s[i]*fb[i]; /* f is negative gradient, thus the sign */
2099 /* Sum the gradient along the line across CPUs */
2100 if (PAR(cr))
2102 gmx_sumd(1, &gpb, cr);
2105 // Keep one of the intervals [A,B] or [B,C] based on the value of the derivative
2106 // at the new point B, and rename the endpoints of this new interval A and C.
2107 if (gpb > 0)
2109 /* Replace c endpoint with b */
2110 c = b;
2111 /* copy state b to c */
2112 *sc = *sb;
2114 else
2116 /* Replace a endpoint with b */
2117 a = b;
2118 /* copy state b to a */
2119 *sa = *sb;
2123 * Stop search as soon as we find a value smaller than the endpoints,
2124 * or if the tolerance is below machine precision.
2125 * Never run more than 20 steps, no matter what.
2127 nminstep++;
2129 while ((sb->epot > sa->epot || sb->epot > sc->epot) && (nminstep < 20));
2131 if (std::fabs(sb->epot - Epot0) < GMX_REAL_EPS || nminstep >= 20)
2133 /* OK. We couldn't find a significantly lower energy.
2134 * If ncorr==0 this was steepest descent, and then we give up.
2135 * If not, reset memory to restart as steepest descent before quitting.
2137 if (ncorr == 0)
2139 /* Converged */
2140 converged = TRUE;
2141 break;
2143 else
2145 /* Reset memory */
2146 ncorr = 0;
2147 /* Search in gradient direction */
2148 for (i = 0; i < n; i++)
2150 dx[point][i] = ff[i];
2152 /* Reset stepsize */
2153 stepsize = 1.0/fnorm;
2154 continue;
2158 /* Select min energy state of A & C, put the best in xx/ff/Epot
2160 if (sc->epot < sa->epot)
2162 /* Use state C */
2163 ems = *sc;
2164 step_taken = c;
2166 else
2168 /* Use state A */
2169 ems = *sa;
2170 step_taken = a;
2174 else
2176 /* found lower */
2177 /* Use state C */
2178 ems = *sc;
2179 step_taken = c;
2182 /* Update the memory information, and calculate a new
2183 * approximation of the inverse hessian
2186 /* Have new data in Epot, xx, ff */
2187 if (ncorr < nmaxcorr)
2189 ncorr++;
2192 for (i = 0; i < n; i++)
2194 dg[point][i] = lastf[i]-ff[i];
2195 dx[point][i] *= step_taken;
2198 dgdg = 0;
2199 dgdx = 0;
2200 for (i = 0; i < n; i++)
2202 dgdg += dg[point][i]*dg[point][i];
2203 dgdx += dg[point][i]*dx[point][i];
2206 diag = dgdx/dgdg;
2208 rho[point] = 1.0/dgdx;
2209 point++;
2211 if (point >= nmaxcorr)
2213 point = 0;
2216 /* Update */
2217 for (i = 0; i < n; i++)
2219 p[i] = ff[i];
2222 cp = point;
2224 /* Recursive update. First go back over the memory points */
2225 for (k = 0; k < ncorr; k++)
2227 cp--;
2228 if (cp < 0)
2230 cp = ncorr-1;
2233 sq = 0;
2234 for (i = 0; i < n; i++)
2236 sq += dx[cp][i]*p[i];
2239 alpha[cp] = rho[cp]*sq;
2241 for (i = 0; i < n; i++)
2243 p[i] -= alpha[cp]*dg[cp][i];
2247 for (i = 0; i < n; i++)
2249 p[i] *= diag;
2252 /* And then go forward again */
2253 for (k = 0; k < ncorr; k++)
2255 yr = 0;
2256 for (i = 0; i < n; i++)
2258 yr += p[i]*dg[cp][i];
2261 beta = rho[cp]*yr;
2262 beta = alpha[cp]-beta;
2264 for (i = 0; i < n; i++)
2266 p[i] += beta*dx[cp][i];
2269 cp++;
2270 if (cp >= ncorr)
2272 cp = 0;
2276 for (i = 0; i < n; i++)
2278 if (!frozen[i])
2280 dx[point][i] = p[i];
2282 else
2284 dx[point][i] = 0;
2288 /* Print it if necessary */
2289 if (MASTER(cr))
2291 if (mdrunOptions.verbose)
2293 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
2294 fprintf(stderr, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n",
2295 step, ems.epot, ems.fnorm/sqrtNumAtoms, ems.fmax, ems.a_fmax + 1);
2296 fflush(stderr);
2298 /* Store the new (lower) energies */
2299 matrix nullBox = {};
2300 energyOutput.addDataAtEnergyStep(false, false, static_cast<double>(step),
2301 mdatoms->tmass, enerd, nullptr, nullptr, nullptr, nullBox,
2302 nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);
2304 do_log = do_per_step(step, inputrec->nstlog);
2305 do_ene = do_per_step(step, inputrec->nstenergy);
2307 imdSession->fillEnergyRecord(step, TRUE);
2309 if (do_log)
2311 energyOutput.printHeader(fplog, step, step);
2313 energyOutput.printStepToEnergyFile(mdoutf_get_fp_ene(outf), do_ene, FALSE, FALSE,
2314 do_log ? fplog : nullptr, step, step,
2315 fcd, nullptr);
2318 /* Send x and E to IMD client, if bIMD is TRUE. */
2319 if (imdSession->run(step, TRUE, state_global->box, state_global->x.rvec_array(), 0) && MASTER(cr))
2321 imdSession->sendPositionsAndEnergies();
2324 // Reset stepsize in we are doing more iterations
2325 stepsize = 1.0;
2327 /* Stop when the maximum force lies below tolerance.
2328 * If we have reached machine precision, converged is already set to true.
2330 converged = converged || (ems.fmax < inputrec->em_tol);
2332 } /* End of the loop */
2334 if (converged)
2336 step--; /* we never took that last step in this case */
2339 if (ems.fmax > inputrec->em_tol)
2341 if (MASTER(cr))
2343 warn_step(fplog, inputrec->em_tol, ems.fmax,
2344 step-1 == number_steps, FALSE);
2346 converged = FALSE;
2349 /* If we printed energy and/or logfile last step (which was the last step)
2350 * we don't have to do it again, but otherwise print the final values.
2352 if (!do_log) /* Write final value to log since we didn't do anythin last step */
2354 energyOutput.printHeader(fplog, step, step);
2356 if (!do_ene || !do_log) /* Write final energy file entries */
2358 energyOutput.printStepToEnergyFile(mdoutf_get_fp_ene(outf), !do_ene, FALSE, FALSE,
2359 !do_log ? fplog : nullptr, step, step,
2360 fcd, nullptr);
2363 /* Print some stuff... */
2364 if (MASTER(cr))
2366 fprintf(stderr, "\nwriting lowest energy coordinates.\n");
2369 /* IMPORTANT!
2370 * For accurate normal mode calculation it is imperative that we
2371 * store the last conformation into the full precision binary trajectory.
2373 * However, we should only do it if we did NOT already write this step
2374 * above (which we did if do_x or do_f was true).
2376 do_x = !do_per_step(step, inputrec->nstxout);
2377 do_f = !do_per_step(step, inputrec->nstfout);
2378 write_em_traj(fplog, cr, outf, do_x, do_f, ftp2fn(efSTO, nfile, fnm),
2379 top_global, inputrec, step,
2380 &ems, state_global, observablesHistory);
2382 if (MASTER(cr))
2384 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
2385 print_converged(stderr, LBFGS, inputrec->em_tol, step, converged,
2386 number_steps, &ems, sqrtNumAtoms);
2387 print_converged(fplog, LBFGS, inputrec->em_tol, step, converged,
2388 number_steps, &ems, sqrtNumAtoms);
2390 fprintf(fplog, "\nPerformed %d energy evaluations in total.\n", neval);
2393 finish_em(cr, outf, walltime_accounting, wcycle);
2395 /* To print the actual number of steps we needed somewhere */
2396 walltime_accounting_set_nsteps_done(walltime_accounting, step);
2399 void
2400 LegacySimulator::do_steep()
2402 const char *SD = "Steepest Descents";
2403 gmx_localtop_t top;
2404 gmx_global_stat_t gstat;
2405 t_graph *graph;
2406 real stepsize;
2407 real ustep;
2408 gmx_bool bDone, bAbort, do_x, do_f;
2409 tensor vir, pres;
2410 rvec mu_tot = {0};
2411 int nsteps;
2412 int count = 0;
2413 int steps_accepted = 0;
2414 auto mdatoms = mdAtoms->mdatoms();
2416 GMX_LOG(mdlog.info).asParagraph().
2417 appendText("Note that activating steepest-descent energy minimization via the "
2418 "integrator .mdp option and the command gmx mdrun may "
2419 "be available in a different form in a future version of GROMACS, "
2420 "e.g. gmx minimize and an .mdp option.");
2422 /* Create 2 states on the stack and extract pointers that we will swap */
2423 em_state_t s0 {}, s1 {};
2424 em_state_t *s_min = &s0;
2425 em_state_t *s_try = &s1;
2427 /* Init em and store the local state in s_try */
2428 init_em(fplog, mdlog, SD, cr, inputrec, imdSession,
2429 pull_work,
2430 state_global, top_global, s_try, &top,
2431 nrnb, fr, &graph, mdAtoms, &gstat,
2432 vsite, constr, nullptr);
2433 gmx_mdoutf *outf = init_mdoutf(fplog, nfile, fnm, mdrunOptions, cr, outputProvider, mdModulesNotifier, inputrec, top_global, nullptr, wcycle,
2434 StartingBehavior::NewSimulation);
2435 gmx::EnergyOutput energyOutput(mdoutf_get_fp_ene(outf), top_global, inputrec, pull_work, nullptr, false, mdModulesNotifier);
2437 /* Print to log file */
2438 print_em_start(fplog, cr, walltime_accounting, wcycle, SD);
2440 /* Set variables for stepsize (in nm). This is the largest
2441 * step that we are going to make in any direction.
2443 ustep = inputrec->em_stepsize;
2444 stepsize = 0;
2446 /* Max number of steps */
2447 nsteps = inputrec->nsteps;
2449 if (MASTER(cr))
2451 /* Print to the screen */
2452 sp_header(stderr, SD, inputrec->em_tol, nsteps);
2454 if (fplog)
2456 sp_header(fplog, SD, inputrec->em_tol, nsteps);
2458 EnergyEvaluator energyEvaluator {
2459 fplog, mdlog, cr, ms,
2460 top_global, &top,
2461 inputrec, imdSession, pull_work, nrnb, wcycle, gstat,
2462 vsite, constr, fcd, graph,
2463 mdAtoms, fr, runScheduleWork, enerd
2466 /**** HERE STARTS THE LOOP ****
2467 * count is the counter for the number of steps
2468 * bDone will be TRUE when the minimization has converged
2469 * bAbort will be TRUE when nsteps steps have been performed or when
2470 * the stepsize becomes smaller than is reasonable for machine precision
2472 count = 0;
2473 bDone = FALSE;
2474 bAbort = FALSE;
2475 while (!bDone && !bAbort)
2477 bAbort = (nsteps >= 0) && (count == nsteps);
2479 /* set new coordinates, except for first step */
2480 bool validStep = true;
2481 if (count > 0)
2483 validStep =
2484 do_em_step(cr, inputrec, mdatoms,
2485 s_min, stepsize, &s_min->f, s_try,
2486 constr, count);
2489 if (validStep)
2491 energyEvaluator.run(s_try, mu_tot, vir, pres, count, count == 0);
2493 else
2495 // Signal constraint error during stepping with energy=inf
2496 s_try->epot = std::numeric_limits<real>::infinity();
2499 if (MASTER(cr))
2501 energyOutput.printHeader(fplog, count, count);
2504 if (count == 0)
2506 s_min->epot = s_try->epot;
2509 /* Print it if necessary */
2510 if (MASTER(cr))
2512 if (mdrunOptions.verbose)
2514 fprintf(stderr, "Step=%5d, Dmax= %6.1e nm, Epot= %12.5e Fmax= %11.5e, atom= %d%c",
2515 count, ustep, s_try->epot, s_try->fmax, s_try->a_fmax+1,
2516 ( (count == 0) || (s_try->epot < s_min->epot) ) ? '\n' : '\r');
2517 fflush(stderr);
2520 if ( (count == 0) || (s_try->epot < s_min->epot) )
2522 /* Store the new (lower) energies */
2523 matrix nullBox = {};
2524 energyOutput.addDataAtEnergyStep(false, false, static_cast<double>(count),
2525 mdatoms->tmass, enerd, nullptr, nullptr, nullptr, nullBox,
2526 nullptr, nullptr, vir, pres, nullptr, mu_tot, constr);
2528 imdSession->fillEnergyRecord(count, TRUE);
2530 const bool do_dr = do_per_step(steps_accepted, inputrec->nstdisreout);
2531 const bool do_or = do_per_step(steps_accepted, inputrec->nstorireout);
2532 energyOutput.printStepToEnergyFile(mdoutf_get_fp_ene(outf), TRUE,
2533 do_dr, do_or,
2534 fplog, count, count,
2535 fcd, nullptr);
2536 fflush(fplog);
2540 /* Now if the new energy is smaller than the previous...
2541 * or if this is the first step!
2542 * or if we did random steps!
2545 if ( (count == 0) || (s_try->epot < s_min->epot) )
2547 steps_accepted++;
2549 /* Test whether the convergence criterion is met... */
2550 bDone = (s_try->fmax < inputrec->em_tol);
2552 /* Copy the arrays for force, positions and energy */
2553 /* The 'Min' array always holds the coords and forces of the minimal
2554 sampled energy */
2555 swap_em_state(&s_min, &s_try);
2556 if (count > 0)
2558 ustep *= 1.2;
2561 /* Write to trn, if necessary */
2562 do_x = do_per_step(steps_accepted, inputrec->nstxout);
2563 do_f = do_per_step(steps_accepted, inputrec->nstfout);
2564 write_em_traj(fplog, cr, outf, do_x, do_f, nullptr,
2565 top_global, inputrec, count,
2566 s_min, state_global, observablesHistory);
2568 else
2570 /* If energy is not smaller make the step smaller... */
2571 ustep *= 0.5;
2573 if (DOMAINDECOMP(cr) && s_min->s.ddp_count != cr->dd->ddp_count)
2575 /* Reload the old state */
2576 em_dd_partition_system(fplog, mdlog, count, cr, top_global, inputrec, imdSession,
2577 pull_work,
2578 s_min, &top, mdAtoms, fr, vsite, constr,
2579 nrnb, wcycle);
2583 // If the force is very small after finishing minimization,
2584 // we risk dividing by zero when calculating the step size.
2585 // So we check first if the minimization has stopped before
2586 // trying to obtain a new step size.
2587 if (!bDone)
2589 /* Determine new step */
2590 stepsize = ustep/s_min->fmax;
2593 /* Check if stepsize is too small, with 1 nm as a characteristic length */
2594 #if GMX_DOUBLE
2595 if (count == nsteps || ustep < 1e-12)
2596 #else
2597 if (count == nsteps || ustep < 1e-6)
2598 #endif
2600 if (MASTER(cr))
2602 warn_step(fplog, inputrec->em_tol, s_min->fmax,
2603 count == nsteps, constr != nullptr);
2605 bAbort = TRUE;
2608 /* Send IMD energies and positions, if bIMD is TRUE. */
2609 if (imdSession->run(count, TRUE, state_global->box,
2610 MASTER(cr) ? state_global->x.rvec_array() : nullptr,
2611 0) &&
2612 MASTER(cr))
2614 imdSession->sendPositionsAndEnergies();
2617 count++;
2618 } /* End of the loop */
2620 /* Print some data... */
2621 if (MASTER(cr))
2623 fprintf(stderr, "\nwriting lowest energy coordinates.\n");
2625 write_em_traj(fplog, cr, outf, TRUE, inputrec->nstfout != 0, ftp2fn(efSTO, nfile, fnm),
2626 top_global, inputrec, count,
2627 s_min, state_global, observablesHistory);
2629 if (MASTER(cr))
2631 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
2633 print_converged(stderr, SD, inputrec->em_tol, count, bDone, nsteps,
2634 s_min, sqrtNumAtoms);
2635 print_converged(fplog, SD, inputrec->em_tol, count, bDone, nsteps,
2636 s_min, sqrtNumAtoms);
2639 finish_em(cr, outf, walltime_accounting, wcycle);
2641 /* To print the actual number of steps we needed somewhere */
2642 inputrec->nsteps = count;
2644 walltime_accounting_set_nsteps_done(walltime_accounting, count);
2647 void
2648 LegacySimulator::do_nm()
2650 const char *NM = "Normal Mode Analysis";
2651 int nnodes;
2652 gmx_localtop_t top;
2653 gmx_global_stat_t gstat;
2654 t_graph *graph;
2655 tensor vir, pres;
2656 rvec mu_tot = {0};
2657 rvec *dfdx;
2658 gmx_bool bSparse; /* use sparse matrix storage format */
2659 size_t sz;
2660 gmx_sparsematrix_t * sparse_matrix = nullptr;
2661 real * full_matrix = nullptr;
2663 /* added with respect to mdrun */
2664 int row, col;
2665 real der_range = 10.0*std::sqrt(GMX_REAL_EPS);
2666 real x_min;
2667 bool bIsMaster = MASTER(cr);
2668 auto mdatoms = mdAtoms->mdatoms();
2670 GMX_LOG(mdlog.info).asParagraph().
2671 appendText("Note that activating normal-mode analysis via the integrator "
2672 ".mdp option and the command gmx mdrun may "
2673 "be available in a different form in a future version of GROMACS, "
2674 "e.g. gmx normal-modes.");
2676 if (constr != nullptr)
2678 gmx_fatal(FARGS, "Constraints present with Normal Mode Analysis, this combination is not supported");
2681 gmx_shellfc_t *shellfc;
2683 em_state_t state_work {};
2685 /* Init em and store the local state in state_minimum */
2686 init_em(fplog, mdlog, NM, cr, inputrec, imdSession,
2687 pull_work,
2688 state_global, top_global, &state_work, &top,
2689 nrnb, fr, &graph, mdAtoms, &gstat,
2690 vsite, constr, &shellfc);
2691 gmx_mdoutf *outf = init_mdoutf(fplog, nfile, fnm, mdrunOptions, cr, outputProvider, mdModulesNotifier, inputrec, top_global, nullptr, wcycle,
2692 StartingBehavior::NewSimulation);
2694 std::vector<int> atom_index = get_atom_index(top_global);
2695 std::vector<gmx::RVec> fneg(atom_index.size(), {0, 0, 0});
2696 snew(dfdx, atom_index.size());
2698 #if !GMX_DOUBLE
2699 if (bIsMaster)
2701 fprintf(stderr,
2702 "NOTE: This version of GROMACS has been compiled in single precision,\n"
2703 " which MIGHT not be accurate enough for normal mode analysis.\n"
2704 " GROMACS now uses sparse matrix storage, so the memory requirements\n"
2705 " are fairly modest even if you recompile in double precision.\n\n");
2707 #endif
2709 /* Check if we can/should use sparse storage format.
2711 * Sparse format is only useful when the Hessian itself is sparse, which it
2712 * will be when we use a cutoff.
2713 * For small systems (n<1000) it is easier to always use full matrix format, though.
2715 if (EEL_FULL(fr->ic->eeltype) || fr->rlist == 0.0)
2717 GMX_LOG(mdlog.warning).appendText("Non-cutoff electrostatics used, forcing full Hessian format.");
2718 bSparse = FALSE;
2720 else if (atom_index.size() < 1000)
2722 GMX_LOG(mdlog.warning).appendTextFormatted("Small system size (N=%zu), using full Hessian format.",
2723 atom_index.size());
2724 bSparse = FALSE;
2726 else
2728 GMX_LOG(mdlog.warning).appendText("Using compressed symmetric sparse Hessian format.");
2729 bSparse = TRUE;
2732 /* Number of dimensions, based on real atoms, that is not vsites or shell */
2733 sz = DIM*atom_index.size();
2735 fprintf(stderr, "Allocating Hessian memory...\n\n");
2737 if (bSparse)
2739 sparse_matrix = gmx_sparsematrix_init(sz);
2740 sparse_matrix->compressed_symmetric = TRUE;
2742 else
2744 snew(full_matrix, sz*sz);
2747 /* Write start time and temperature */
2748 print_em_start(fplog, cr, walltime_accounting, wcycle, NM);
2750 /* fudge nr of steps to nr of atoms */
2751 inputrec->nsteps = atom_index.size()*2;
2753 if (bIsMaster)
2755 fprintf(stderr, "starting normal mode calculation '%s'\n%" PRId64 " steps.\n\n",
2756 *(top_global->name), inputrec->nsteps);
2759 nnodes = cr->nnodes;
2761 /* Make evaluate_energy do a single node force calculation */
2762 cr->nnodes = 1;
2763 EnergyEvaluator energyEvaluator {
2764 fplog, mdlog, cr, ms,
2765 top_global, &top,
2766 inputrec, imdSession, pull_work, nrnb, wcycle, gstat,
2767 vsite, constr, fcd, graph,
2768 mdAtoms, fr, runScheduleWork, enerd
2770 energyEvaluator.run(&state_work, mu_tot, vir, pres, -1, TRUE);
2771 cr->nnodes = nnodes;
2773 /* if forces are not small, warn user */
2774 get_state_f_norm_max(cr, &(inputrec->opts), mdatoms, &state_work);
2776 GMX_LOG(mdlog.warning).appendTextFormatted("Maximum force:%12.5e", state_work.fmax);
2777 if (state_work.fmax > 1.0e-3)
2779 GMX_LOG(mdlog.warning).appendText(
2780 "The force is probably not small enough to "
2781 "ensure that you are at a minimum.\n"
2782 "Be aware that negative eigenvalues may occur\n"
2783 "when the resulting matrix is diagonalized.");
2786 /***********************************************************
2788 * Loop over all pairs in matrix
2790 * do_force called twice. Once with positive and
2791 * once with negative displacement
2793 ************************************************************/
2795 /* Steps are divided one by one over the nodes */
2796 bool bNS = true;
2797 auto state_work_x = makeArrayRef(state_work.s.x);
2798 auto state_work_f = makeArrayRef(state_work.f);
2799 for (index aid = cr->nodeid; aid < ssize(atom_index); aid += nnodes)
2801 size_t atom = atom_index[aid];
2802 for (size_t d = 0; d < DIM; d++)
2804 int64_t step = 0;
2805 int force_flags = GMX_FORCE_STATECHANGED | GMX_FORCE_ALLFORCES;
2806 double t = 0;
2808 x_min = state_work_x[atom][d];
2810 for (unsigned int dx = 0; (dx < 2); dx++)
2812 if (dx == 0)
2814 state_work_x[atom][d] = x_min - der_range;
2816 else
2818 state_work_x[atom][d] = x_min + der_range;
2821 /* Make evaluate_energy do a single node force calculation */
2822 cr->nnodes = 1;
2823 if (shellfc)
2825 /* Now is the time to relax the shells */
2826 relax_shell_flexcon(fplog,
2829 mdrunOptions.verbose,
2830 nullptr,
2831 step,
2832 inputrec,
2833 imdSession,
2834 pull_work,
2835 bNS,
2836 force_flags,
2837 &top,
2838 constr,
2839 enerd,
2840 fcd,
2841 state_work.s.natoms,
2842 state_work.s.x.arrayRefWithPadding(),
2843 state_work.s.v.arrayRefWithPadding(),
2844 state_work.s.box,
2845 state_work.s.lambda,
2846 &state_work.s.hist,
2847 state_work.f.arrayRefWithPadding(),
2848 vir,
2849 mdatoms,
2850 nrnb,
2851 wcycle,
2852 graph,
2853 shellfc,
2855 runScheduleWork,
2857 mu_tot,
2858 vsite,
2859 DDBalanceRegionHandler(nullptr));
2860 bNS = false;
2861 step++;
2863 else
2865 energyEvaluator.run(&state_work, mu_tot, vir, pres, aid*2+dx, FALSE);
2868 cr->nnodes = nnodes;
2870 if (dx == 0)
2872 std::copy(state_work_f.begin(), state_work_f.begin()+atom_index.size(), fneg.begin());
2876 /* x is restored to original */
2877 state_work_x[atom][d] = x_min;
2879 for (size_t j = 0; j < atom_index.size(); j++)
2881 for (size_t k = 0; (k < DIM); k++)
2883 dfdx[j][k] =
2884 -(state_work_f[atom_index[j]][k] - fneg[j][k])/(2*der_range);
2888 if (!bIsMaster)
2890 #if GMX_MPI
2891 #define mpi_type GMX_MPI_REAL
2892 MPI_Send(dfdx[0], atom_index.size()*DIM, mpi_type, MASTER(cr),
2893 cr->nodeid, cr->mpi_comm_mygroup);
2894 #endif
2896 else
2898 for (index node = 0; (node < nnodes && aid+node < ssize(atom_index)); node++)
2900 if (node > 0)
2902 #if GMX_MPI
2903 MPI_Status stat;
2904 MPI_Recv(dfdx[0], atom_index.size()*DIM, mpi_type, node, node,
2905 cr->mpi_comm_mygroup, &stat);
2906 #undef mpi_type
2907 #endif
2910 row = (aid + node)*DIM + d;
2912 for (size_t j = 0; j < atom_index.size(); j++)
2914 for (size_t k = 0; k < DIM; k++)
2916 col = j*DIM + k;
2918 if (bSparse)
2920 if (col >= row && dfdx[j][k] != 0.0)
2922 gmx_sparsematrix_increment_value(sparse_matrix,
2923 row, col, dfdx[j][k]);
2926 else
2928 full_matrix[row*sz+col] = dfdx[j][k];
2935 if (mdrunOptions.verbose && fplog)
2937 fflush(fplog);
2940 /* write progress */
2941 if (bIsMaster && mdrunOptions.verbose)
2943 fprintf(stderr, "\rFinished step %d out of %td",
2944 std::min<int>(atom+nnodes, atom_index.size()),
2945 ssize(atom_index));
2946 fflush(stderr);
2950 if (bIsMaster)
2952 fprintf(stderr, "\n\nWriting Hessian...\n");
2953 gmx_mtxio_write(ftp2fn(efMTX, nfile, fnm), sz, sz, full_matrix, sparse_matrix);
2956 finish_em(cr, outf, walltime_accounting, wcycle);
2958 walltime_accounting_set_nsteps_done(walltime_accounting, atom_index.size()*2);
2961 } // namespace gmx