Removed simple.h from nb_kernel_sse4_1_XX
[gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_sse4_1_double.c
blob5fe1307709aeba64d9d7edd0a5cc5cf164812f13
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
38 #include "gmxpre.h"
40 #include "config.h"
42 #include <math.h>
44 #include "../nb_kernel.h"
45 #include "gromacs/math/vec.h"
46 #include "gromacs/legacyheaders/nrnb.h"
48 #include "gromacs/simd/math_x86_sse4_1_double.h"
49 #include "kernelutil_x86_sse4_1_double.h"
52 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse4_1_double
53 * Electrostatics interaction: ReactionField
54 * VdW interaction: LennardJones
55 * Geometry: Particle-Particle
56 * Calculate force/pot: PotentialAndForce
58 void
59 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse4_1_double
60 (t_nblist * gmx_restrict nlist,
61 rvec * gmx_restrict xx,
62 rvec * gmx_restrict ff,
63 t_forcerec * gmx_restrict fr,
64 t_mdatoms * gmx_restrict mdatoms,
65 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
66 t_nrnb * gmx_restrict nrnb)
68 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
69 * just 0 for non-waters.
70 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
71 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 int i_shift_offset,i_coord_offset,outeriter,inneriter;
74 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
75 int jnrA,jnrB;
76 int j_coord_offsetA,j_coord_offsetB;
77 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
78 real rcutoff_scalar;
79 real *shiftvec,*fshift,*x,*f;
80 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
81 int vdwioffset0;
82 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
83 int vdwjidx0A,vdwjidx0B;
84 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
85 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
86 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
93 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
94 __m128d dummy_mask,cutoff_mask;
95 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
96 __m128d one = _mm_set1_pd(1.0);
97 __m128d two = _mm_set1_pd(2.0);
98 x = xx[0];
99 f = ff[0];
101 nri = nlist->nri;
102 iinr = nlist->iinr;
103 jindex = nlist->jindex;
104 jjnr = nlist->jjnr;
105 shiftidx = nlist->shift;
106 gid = nlist->gid;
107 shiftvec = fr->shift_vec[0];
108 fshift = fr->fshift[0];
109 facel = _mm_set1_pd(fr->epsfac);
110 charge = mdatoms->chargeA;
111 krf = _mm_set1_pd(fr->ic->k_rf);
112 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
113 crf = _mm_set1_pd(fr->ic->c_rf);
114 nvdwtype = fr->ntype;
115 vdwparam = fr->nbfp;
116 vdwtype = mdatoms->typeA;
118 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
119 rcutoff_scalar = fr->rcoulomb;
120 rcutoff = _mm_set1_pd(rcutoff_scalar);
121 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
123 sh_vdw_invrcut6 = _mm_set1_pd(fr->ic->sh_invrc6);
124 rvdw = _mm_set1_pd(fr->rvdw);
126 /* Avoid stupid compiler warnings */
127 jnrA = jnrB = 0;
128 j_coord_offsetA = 0;
129 j_coord_offsetB = 0;
131 outeriter = 0;
132 inneriter = 0;
134 /* Start outer loop over neighborlists */
135 for(iidx=0; iidx<nri; iidx++)
137 /* Load shift vector for this list */
138 i_shift_offset = DIM*shiftidx[iidx];
140 /* Load limits for loop over neighbors */
141 j_index_start = jindex[iidx];
142 j_index_end = jindex[iidx+1];
144 /* Get outer coordinate index */
145 inr = iinr[iidx];
146 i_coord_offset = DIM*inr;
148 /* Load i particle coords and add shift vector */
149 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151 fix0 = _mm_setzero_pd();
152 fiy0 = _mm_setzero_pd();
153 fiz0 = _mm_setzero_pd();
155 /* Load parameters for i particles */
156 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
157 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
159 /* Reset potential sums */
160 velecsum = _mm_setzero_pd();
161 vvdwsum = _mm_setzero_pd();
163 /* Start inner kernel loop */
164 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
167 /* Get j neighbor index, and coordinate index */
168 jnrA = jjnr[jidx];
169 jnrB = jjnr[jidx+1];
170 j_coord_offsetA = DIM*jnrA;
171 j_coord_offsetB = DIM*jnrB;
173 /* load j atom coordinates */
174 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
175 &jx0,&jy0,&jz0);
177 /* Calculate displacement vector */
178 dx00 = _mm_sub_pd(ix0,jx0);
179 dy00 = _mm_sub_pd(iy0,jy0);
180 dz00 = _mm_sub_pd(iz0,jz0);
182 /* Calculate squared distance and things based on it */
183 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
185 rinv00 = gmx_mm_invsqrt_pd(rsq00);
187 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
189 /* Load parameters for j particles */
190 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
191 vdwjidx0A = 2*vdwtype[jnrA+0];
192 vdwjidx0B = 2*vdwtype[jnrB+0];
194 /**************************
195 * CALCULATE INTERACTIONS *
196 **************************/
198 if (gmx_mm_any_lt(rsq00,rcutoff2))
201 /* Compute parameters for interactions between i and j atoms */
202 qq00 = _mm_mul_pd(iq0,jq0);
203 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
204 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
206 /* REACTION-FIELD ELECTROSTATICS */
207 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
208 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
210 /* LENNARD-JONES DISPERSION/REPULSION */
212 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
213 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
214 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
215 vvdw = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
216 _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
217 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
219 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
221 /* Update potential sum for this i atom from the interaction with this j atom. */
222 velec = _mm_and_pd(velec,cutoff_mask);
223 velecsum = _mm_add_pd(velecsum,velec);
224 vvdw = _mm_and_pd(vvdw,cutoff_mask);
225 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
227 fscal = _mm_add_pd(felec,fvdw);
229 fscal = _mm_and_pd(fscal,cutoff_mask);
231 /* Calculate temporary vectorial force */
232 tx = _mm_mul_pd(fscal,dx00);
233 ty = _mm_mul_pd(fscal,dy00);
234 tz = _mm_mul_pd(fscal,dz00);
236 /* Update vectorial force */
237 fix0 = _mm_add_pd(fix0,tx);
238 fiy0 = _mm_add_pd(fiy0,ty);
239 fiz0 = _mm_add_pd(fiz0,tz);
241 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
245 /* Inner loop uses 54 flops */
248 if(jidx<j_index_end)
251 jnrA = jjnr[jidx];
252 j_coord_offsetA = DIM*jnrA;
254 /* load j atom coordinates */
255 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
256 &jx0,&jy0,&jz0);
258 /* Calculate displacement vector */
259 dx00 = _mm_sub_pd(ix0,jx0);
260 dy00 = _mm_sub_pd(iy0,jy0);
261 dz00 = _mm_sub_pd(iz0,jz0);
263 /* Calculate squared distance and things based on it */
264 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
266 rinv00 = gmx_mm_invsqrt_pd(rsq00);
268 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
270 /* Load parameters for j particles */
271 jq0 = _mm_load_sd(charge+jnrA+0);
272 vdwjidx0A = 2*vdwtype[jnrA+0];
274 /**************************
275 * CALCULATE INTERACTIONS *
276 **************************/
278 if (gmx_mm_any_lt(rsq00,rcutoff2))
281 /* Compute parameters for interactions between i and j atoms */
282 qq00 = _mm_mul_pd(iq0,jq0);
283 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
285 /* REACTION-FIELD ELECTROSTATICS */
286 velec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
287 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
289 /* LENNARD-JONES DISPERSION/REPULSION */
291 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
292 vvdw6 = _mm_mul_pd(c6_00,rinvsix);
293 vvdw12 = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
294 vvdw = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
295 _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
296 fvdw = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
298 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
300 /* Update potential sum for this i atom from the interaction with this j atom. */
301 velec = _mm_and_pd(velec,cutoff_mask);
302 velec = _mm_unpacklo_pd(velec,_mm_setzero_pd());
303 velecsum = _mm_add_pd(velecsum,velec);
304 vvdw = _mm_and_pd(vvdw,cutoff_mask);
305 vvdw = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
306 vvdwsum = _mm_add_pd(vvdwsum,vvdw);
308 fscal = _mm_add_pd(felec,fvdw);
310 fscal = _mm_and_pd(fscal,cutoff_mask);
312 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
314 /* Calculate temporary vectorial force */
315 tx = _mm_mul_pd(fscal,dx00);
316 ty = _mm_mul_pd(fscal,dy00);
317 tz = _mm_mul_pd(fscal,dz00);
319 /* Update vectorial force */
320 fix0 = _mm_add_pd(fix0,tx);
321 fiy0 = _mm_add_pd(fiy0,ty);
322 fiz0 = _mm_add_pd(fiz0,tz);
324 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
328 /* Inner loop uses 54 flops */
331 /* End of innermost loop */
333 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
334 f+i_coord_offset,fshift+i_shift_offset);
336 ggid = gid[iidx];
337 /* Update potential energies */
338 gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
339 gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
341 /* Increment number of inner iterations */
342 inneriter += j_index_end - j_index_start;
344 /* Outer loop uses 9 flops */
347 /* Increment number of outer iterations */
348 outeriter += nri;
350 /* Update outer/inner flops */
352 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
355 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse4_1_double
356 * Electrostatics interaction: ReactionField
357 * VdW interaction: LennardJones
358 * Geometry: Particle-Particle
359 * Calculate force/pot: Force
361 void
362 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse4_1_double
363 (t_nblist * gmx_restrict nlist,
364 rvec * gmx_restrict xx,
365 rvec * gmx_restrict ff,
366 t_forcerec * gmx_restrict fr,
367 t_mdatoms * gmx_restrict mdatoms,
368 nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
369 t_nrnb * gmx_restrict nrnb)
371 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
372 * just 0 for non-waters.
373 * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
374 * jnr indices corresponding to data put in the four positions in the SIMD register.
376 int i_shift_offset,i_coord_offset,outeriter,inneriter;
377 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
378 int jnrA,jnrB;
379 int j_coord_offsetA,j_coord_offsetB;
380 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
381 real rcutoff_scalar;
382 real *shiftvec,*fshift,*x,*f;
383 __m128d tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
384 int vdwioffset0;
385 __m128d ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
386 int vdwjidx0A,vdwjidx0B;
387 __m128d jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
388 __m128d dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
389 __m128d velec,felec,velecsum,facel,crf,krf,krf2;
390 real *charge;
391 int nvdwtype;
392 __m128d rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
393 int *vdwtype;
394 real *vdwparam;
395 __m128d one_sixth = _mm_set1_pd(1.0/6.0);
396 __m128d one_twelfth = _mm_set1_pd(1.0/12.0);
397 __m128d dummy_mask,cutoff_mask;
398 __m128d signbit = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
399 __m128d one = _mm_set1_pd(1.0);
400 __m128d two = _mm_set1_pd(2.0);
401 x = xx[0];
402 f = ff[0];
404 nri = nlist->nri;
405 iinr = nlist->iinr;
406 jindex = nlist->jindex;
407 jjnr = nlist->jjnr;
408 shiftidx = nlist->shift;
409 gid = nlist->gid;
410 shiftvec = fr->shift_vec[0];
411 fshift = fr->fshift[0];
412 facel = _mm_set1_pd(fr->epsfac);
413 charge = mdatoms->chargeA;
414 krf = _mm_set1_pd(fr->ic->k_rf);
415 krf2 = _mm_set1_pd(fr->ic->k_rf*2.0);
416 crf = _mm_set1_pd(fr->ic->c_rf);
417 nvdwtype = fr->ntype;
418 vdwparam = fr->nbfp;
419 vdwtype = mdatoms->typeA;
421 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
422 rcutoff_scalar = fr->rcoulomb;
423 rcutoff = _mm_set1_pd(rcutoff_scalar);
424 rcutoff2 = _mm_mul_pd(rcutoff,rcutoff);
426 sh_vdw_invrcut6 = _mm_set1_pd(fr->ic->sh_invrc6);
427 rvdw = _mm_set1_pd(fr->rvdw);
429 /* Avoid stupid compiler warnings */
430 jnrA = jnrB = 0;
431 j_coord_offsetA = 0;
432 j_coord_offsetB = 0;
434 outeriter = 0;
435 inneriter = 0;
437 /* Start outer loop over neighborlists */
438 for(iidx=0; iidx<nri; iidx++)
440 /* Load shift vector for this list */
441 i_shift_offset = DIM*shiftidx[iidx];
443 /* Load limits for loop over neighbors */
444 j_index_start = jindex[iidx];
445 j_index_end = jindex[iidx+1];
447 /* Get outer coordinate index */
448 inr = iinr[iidx];
449 i_coord_offset = DIM*inr;
451 /* Load i particle coords and add shift vector */
452 gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
454 fix0 = _mm_setzero_pd();
455 fiy0 = _mm_setzero_pd();
456 fiz0 = _mm_setzero_pd();
458 /* Load parameters for i particles */
459 iq0 = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
460 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
462 /* Start inner kernel loop */
463 for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
466 /* Get j neighbor index, and coordinate index */
467 jnrA = jjnr[jidx];
468 jnrB = jjnr[jidx+1];
469 j_coord_offsetA = DIM*jnrA;
470 j_coord_offsetB = DIM*jnrB;
472 /* load j atom coordinates */
473 gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
474 &jx0,&jy0,&jz0);
476 /* Calculate displacement vector */
477 dx00 = _mm_sub_pd(ix0,jx0);
478 dy00 = _mm_sub_pd(iy0,jy0);
479 dz00 = _mm_sub_pd(iz0,jz0);
481 /* Calculate squared distance and things based on it */
482 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
484 rinv00 = gmx_mm_invsqrt_pd(rsq00);
486 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
488 /* Load parameters for j particles */
489 jq0 = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
490 vdwjidx0A = 2*vdwtype[jnrA+0];
491 vdwjidx0B = 2*vdwtype[jnrB+0];
493 /**************************
494 * CALCULATE INTERACTIONS *
495 **************************/
497 if (gmx_mm_any_lt(rsq00,rcutoff2))
500 /* Compute parameters for interactions between i and j atoms */
501 qq00 = _mm_mul_pd(iq0,jq0);
502 gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
503 vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
505 /* REACTION-FIELD ELECTROSTATICS */
506 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
508 /* LENNARD-JONES DISPERSION/REPULSION */
510 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
511 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
513 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
515 fscal = _mm_add_pd(felec,fvdw);
517 fscal = _mm_and_pd(fscal,cutoff_mask);
519 /* Calculate temporary vectorial force */
520 tx = _mm_mul_pd(fscal,dx00);
521 ty = _mm_mul_pd(fscal,dy00);
522 tz = _mm_mul_pd(fscal,dz00);
524 /* Update vectorial force */
525 fix0 = _mm_add_pd(fix0,tx);
526 fiy0 = _mm_add_pd(fiy0,ty);
527 fiz0 = _mm_add_pd(fiz0,tz);
529 gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
533 /* Inner loop uses 37 flops */
536 if(jidx<j_index_end)
539 jnrA = jjnr[jidx];
540 j_coord_offsetA = DIM*jnrA;
542 /* load j atom coordinates */
543 gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
544 &jx0,&jy0,&jz0);
546 /* Calculate displacement vector */
547 dx00 = _mm_sub_pd(ix0,jx0);
548 dy00 = _mm_sub_pd(iy0,jy0);
549 dz00 = _mm_sub_pd(iz0,jz0);
551 /* Calculate squared distance and things based on it */
552 rsq00 = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
554 rinv00 = gmx_mm_invsqrt_pd(rsq00);
556 rinvsq00 = _mm_mul_pd(rinv00,rinv00);
558 /* Load parameters for j particles */
559 jq0 = _mm_load_sd(charge+jnrA+0);
560 vdwjidx0A = 2*vdwtype[jnrA+0];
562 /**************************
563 * CALCULATE INTERACTIONS *
564 **************************/
566 if (gmx_mm_any_lt(rsq00,rcutoff2))
569 /* Compute parameters for interactions between i and j atoms */
570 qq00 = _mm_mul_pd(iq0,jq0);
571 gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
573 /* REACTION-FIELD ELECTROSTATICS */
574 felec = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
576 /* LENNARD-JONES DISPERSION/REPULSION */
578 rinvsix = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
579 fvdw = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
581 cutoff_mask = _mm_cmplt_pd(rsq00,rcutoff2);
583 fscal = _mm_add_pd(felec,fvdw);
585 fscal = _mm_and_pd(fscal,cutoff_mask);
587 fscal = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
589 /* Calculate temporary vectorial force */
590 tx = _mm_mul_pd(fscal,dx00);
591 ty = _mm_mul_pd(fscal,dy00);
592 tz = _mm_mul_pd(fscal,dz00);
594 /* Update vectorial force */
595 fix0 = _mm_add_pd(fix0,tx);
596 fiy0 = _mm_add_pd(fiy0,ty);
597 fiz0 = _mm_add_pd(fiz0,tz);
599 gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
603 /* Inner loop uses 37 flops */
606 /* End of innermost loop */
608 gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
609 f+i_coord_offset,fshift+i_shift_offset);
611 /* Increment number of inner iterations */
612 inneriter += j_index_end - j_index_start;
614 /* Outer loop uses 7 flops */
617 /* Increment number of outer iterations */
618 outeriter += nri;
620 /* Update outer/inner flops */
622 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);