Implemented LJ-PME nbnxn kernels
[gromacs.git] / src / gromacs / legacyheaders / types / interaction_const.h
blobb5f6e79055fc174a5b4d024e2dfc0e8a1ffce672
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 #ifndef _INTERACTION_CONST_
37 #define _INTERACTION_CONST_
39 #ifdef __cplusplus
40 extern "C" {
41 #endif
43 /* Used with force switching or a constant potential shift:
44 * rsw = max(r - r_switch, 0)
45 * force/p = r^-(p+1) + c2*rsw^2 + c3*rsw^3
46 * potential = r^-p + c2/3*rsw^3 + c3/4*rsw^4 + cpot
47 * With a constant potential shift c2 and c3 are both 0.
49 typedef struct {
50 real c2;
51 real c3;
52 real cpot;
53 } shift_consts_t;
55 /* Used with potential switching:
56 * rsw = max(r - r_switch, 0)
57 * sw = 1 + c3*rsw^3 + c4*rsw^4 + c5*rsw^5
58 * dsw = 3*c3*rsw^2 + 4*c4*rsw^3 + 5*c5*rsw^4
59 * force = force*dsw - potential*sw
60 * potential *= sw
62 typedef struct {
63 real c3;
64 real c4;
65 real c5;
66 } switch_consts_t;
68 typedef struct {
69 /* VdW */
70 int vdwtype;
71 int vdw_modifier;
72 real rvdw;
73 real rvdw_switch;
74 shift_consts_t dispersion_shift;
75 shift_consts_t repulsion_shift;
76 switch_consts_t vdw_switch;
77 /* TODO: remove this variable, used for not modyfing the group kernels,
78 * it is equal to -dispersion_shift->cpot
80 real sh_invrc6;
82 /* type of electrostatics (defined in enums.h) */
83 int eeltype;
84 int coulomb_modifier;
86 /* Coulomb */
87 real rcoulomb;
89 /* Cut-off */
90 real rlist;
91 real rlistlong;
93 /* PME/Ewald */
94 real ewaldcoeff_q;
95 real ewaldcoeff_lj;
96 int ljpme_comb_rule; /* LJ combination rule for the LJ PME mesh part */
97 real sh_ewald; /* -sh_ewald is added to the direct space potential */
98 real sh_lj_ewald; /* sh_lj_ewald is added to the correction potential */
100 /* Dielectric constant resp. multiplication factor for charges */
101 real epsilon_r;
102 real epsfac;
104 /* Constants for reaction-field or plain cut-off */
105 real epsilon_rf;
106 real k_rf;
107 real c_rf;
109 /* Force/energy interpolation tables, linear in force, quadratic in V */
110 real tabq_scale;
111 int tabq_size;
112 /* Coulomb force table, size of array is tabq_size (when used) */
113 real *tabq_coul_F;
114 /* Coulomb energy table, size of array is tabq_size (when used) */
115 real *tabq_coul_V;
116 /* Coulomb force+energy table, size of array is tabq_size*4,
117 entry quadruplets are: F[i], F[i+1]-F[i], V[i], 0,
118 this is used with single precision x86 SIMD for aligned loads */
119 real *tabq_coul_FDV0;
120 } interaction_const_t;
122 #ifdef __cplusplus
124 #endif
126 #endif /* _INTERACTION_CONST_ */