Make nbnxn_grid_t counts and sizes arrays
[gromacs.git] / src / gromacs / mdlib / nbnxn_search.cpp
blob8c4cefad68b1b39f61234668c6effcbc670d27e1
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2016,2017,2018, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 #include "gmxpre.h"
38 #include "nbnxn_search.h"
40 #include "config.h"
42 #include <assert.h>
43 #include <string.h>
45 #include <cmath>
47 #include <algorithm>
49 #include "gromacs/domdec/domdec_struct.h"
50 #include "gromacs/gmxlib/nrnb.h"
51 #include "gromacs/math/functions.h"
52 #include "gromacs/math/utilities.h"
53 #include "gromacs/math/vec.h"
54 #include "gromacs/mdlib/gmx_omp_nthreads.h"
55 #include "gromacs/mdlib/nb_verlet.h"
56 #include "gromacs/mdlib/nbnxn_atomdata.h"
57 #include "gromacs/mdlib/nbnxn_consts.h"
58 #include "gromacs/mdlib/nbnxn_grid.h"
59 #include "gromacs/mdlib/nbnxn_internal.h"
60 #include "gromacs/mdlib/nbnxn_simd.h"
61 #include "gromacs/mdlib/nbnxn_util.h"
62 #include "gromacs/mdlib/ns.h"
63 #include "gromacs/mdtypes/group.h"
64 #include "gromacs/mdtypes/md_enums.h"
65 #include "gromacs/pbcutil/ishift.h"
66 #include "gromacs/pbcutil/pbc.h"
67 #include "gromacs/simd/simd.h"
68 #include "gromacs/simd/vector_operations.h"
69 #include "gromacs/topology/block.h"
70 #include "gromacs/utility/exceptions.h"
71 #include "gromacs/utility/fatalerror.h"
72 #include "gromacs/utility/gmxomp.h"
73 #include "gromacs/utility/smalloc.h"
75 using namespace gmx; // TODO: Remove when this file is moved into gmx namespace
78 /* We shift the i-particles backward for PBC.
79 * This leads to more conditionals than shifting forward.
80 * We do this to get more balanced pair lists.
82 constexpr bool c_pbcShiftBackward = true;
85 static void nbs_cycle_clear(nbnxn_cycle_t *cc)
87 for (int i = 0; i < enbsCCnr; i++)
89 cc[i].count = 0;
90 cc[i].c = 0;
94 static double Mcyc_av(const nbnxn_cycle_t *cc)
96 return (double)cc->c*1e-6/cc->count;
99 static void nbs_cycle_print(FILE *fp, const nbnxn_search_t nbs)
101 fprintf(fp, "\n");
102 fprintf(fp, "ns %4d grid %4.1f search %4.1f red.f %5.3f",
103 nbs->cc[enbsCCgrid].count,
104 Mcyc_av(&nbs->cc[enbsCCgrid]),
105 Mcyc_av(&nbs->cc[enbsCCsearch]),
106 Mcyc_av(&nbs->cc[enbsCCreducef]));
108 if (nbs->work.size() > 1)
110 if (nbs->cc[enbsCCcombine].count > 0)
112 fprintf(fp, " comb %5.2f",
113 Mcyc_av(&nbs->cc[enbsCCcombine]));
115 fprintf(fp, " s. th");
116 for (const nbnxn_search_work_t &work : nbs->work)
118 fprintf(fp, " %4.1f",
119 Mcyc_av(&work.cc[enbsCCsearch]));
122 fprintf(fp, "\n");
125 /* Layout for the nonbonded NxN pair lists */
126 enum class NbnxnLayout
128 NoSimd4x4, // i-cluster size 4, j-cluster size 4
129 Simd4xN, // i-cluster size 4, j-cluster size SIMD width
130 Simd2xNN, // i-cluster size 4, j-cluster size half SIMD width
131 Gpu8x8x8 // i-cluster size 8, j-cluster size 8 + super-clustering
134 /* Returns the j-cluster size */
135 template <NbnxnLayout layout>
136 static constexpr int jClusterSize()
138 #if GMX_SIMD
139 static_assert(layout == NbnxnLayout::NoSimd4x4 || layout == NbnxnLayout::Simd4xN || layout == NbnxnLayout::Simd2xNN, "Currently jClusterSize only supports CPU layouts");
141 return layout == NbnxnLayout::Simd4xN ? GMX_SIMD_REAL_WIDTH : (layout == NbnxnLayout::Simd2xNN ? GMX_SIMD_REAL_WIDTH/2 : NBNXN_CPU_CLUSTER_I_SIZE);
142 #else
143 static_assert(layout == NbnxnLayout::NoSimd4x4, "Currently without SIMD, jClusterSize only supports NoSimd4x4");
145 return NBNXN_CPU_CLUSTER_I_SIZE;
146 #endif
149 /* Returns the j-cluster index given the i-cluster index */
150 template <int jClusterSize>
151 static inline int cjFromCi(int ci)
153 static_assert(jClusterSize == NBNXN_CPU_CLUSTER_I_SIZE/2 || jClusterSize == NBNXN_CPU_CLUSTER_I_SIZE || jClusterSize == NBNXN_CPU_CLUSTER_I_SIZE*2, "Only j-cluster sizes 2, 4 and 8 are currently implemented");
155 if (jClusterSize == NBNXN_CPU_CLUSTER_I_SIZE/2)
157 return ci << 1;
159 else if (jClusterSize == NBNXN_CPU_CLUSTER_I_SIZE)
161 return ci;
163 else
165 return ci >> 1;
169 /* Returns the j-cluster index given the i-cluster index */
170 template <NbnxnLayout layout>
171 static inline int cjFromCi(int ci)
173 constexpr int clusterSize = jClusterSize<layout>();
175 return cjFromCi<clusterSize>(ci);
178 /* Returns the nbnxn coordinate data index given the i-cluster index */
179 template <NbnxnLayout layout>
180 static inline int xIndexFromCi(int ci)
182 constexpr int clusterSize = jClusterSize<layout>();
184 static_assert(clusterSize == NBNXN_CPU_CLUSTER_I_SIZE/2 || clusterSize == NBNXN_CPU_CLUSTER_I_SIZE || clusterSize == NBNXN_CPU_CLUSTER_I_SIZE*2, "Only j-cluster sizes 2, 4 and 8 are currently implemented");
186 if (clusterSize <= NBNXN_CPU_CLUSTER_I_SIZE)
188 /* Coordinates are stored packed in groups of 4 */
189 return ci*STRIDE_P4;
191 else
193 /* Coordinates packed in 8, i-cluster size is half the packing width */
194 return (ci >> 1)*STRIDE_P8 + (ci & 1)*(c_packX8 >> 1);
198 /* Returns the nbnxn coordinate data index given the j-cluster index */
199 template <NbnxnLayout layout>
200 static inline int xIndexFromCj(int cj)
202 constexpr int clusterSize = jClusterSize<layout>();
204 static_assert(clusterSize == NBNXN_CPU_CLUSTER_I_SIZE/2 || clusterSize == NBNXN_CPU_CLUSTER_I_SIZE || clusterSize == NBNXN_CPU_CLUSTER_I_SIZE*2, "Only j-cluster sizes 2, 4 and 8 are currently implemented");
206 if (clusterSize == NBNXN_CPU_CLUSTER_I_SIZE/2)
208 /* Coordinates are stored packed in groups of 4 */
209 return (cj >> 1)*STRIDE_P4 + (cj & 1)*(c_packX4 >> 1);
211 else if (clusterSize == NBNXN_CPU_CLUSTER_I_SIZE)
213 /* Coordinates are stored packed in groups of 4 */
214 return cj*STRIDE_P4;
216 else
218 /* Coordinates are stored packed in groups of 8 */
219 return cj*STRIDE_P8;
223 gmx_bool nbnxn_kernel_pairlist_simple(int nb_kernel_type)
225 if (nb_kernel_type == nbnxnkNotSet)
227 gmx_fatal(FARGS, "Non-bonded kernel type not set for Verlet-style pair-list.");
230 switch (nb_kernel_type)
232 case nbnxnk8x8x8_GPU:
233 case nbnxnk8x8x8_PlainC:
234 return FALSE;
236 case nbnxnk4x4_PlainC:
237 case nbnxnk4xN_SIMD_4xN:
238 case nbnxnk4xN_SIMD_2xNN:
239 return TRUE;
241 default:
242 gmx_incons("Invalid nonbonded kernel type passed!");
243 return FALSE;
247 /* Initializes a single nbnxn_pairlist_t data structure */
248 static void nbnxn_init_pairlist_fep(t_nblist *nl)
250 nl->type = GMX_NBLIST_INTERACTION_FREE_ENERGY;
251 nl->igeometry = GMX_NBLIST_GEOMETRY_PARTICLE_PARTICLE;
252 /* The interaction functions are set in the free energy kernel fuction */
253 nl->ivdw = -1;
254 nl->ivdwmod = -1;
255 nl->ielec = -1;
256 nl->ielecmod = -1;
258 nl->maxnri = 0;
259 nl->maxnrj = 0;
260 nl->nri = 0;
261 nl->nrj = 0;
262 nl->iinr = nullptr;
263 nl->gid = nullptr;
264 nl->shift = nullptr;
265 nl->jindex = nullptr;
266 nl->jjnr = nullptr;
267 nl->excl_fep = nullptr;
271 static void free_nblist(t_nblist *nl)
273 sfree(nl->iinr);
274 sfree(nl->gid);
275 sfree(nl->shift);
276 sfree(nl->jindex);
277 sfree(nl->jjnr);
278 sfree(nl->excl_fep);
281 nbnxn_search_work_t::nbnxn_search_work_t() :
282 cp0({{0}}
284 buffer_flags({0, nullptr, 0}),
285 ndistc(0),
286 nbl_fep(new t_nblist),
287 cp1({{0}})
289 nbnxn_init_pairlist_fep(nbl_fep.get());
291 nbs_cycle_clear(cc);
294 nbnxn_search_work_t::~nbnxn_search_work_t()
296 sfree(buffer_flags.flag);
298 free_nblist(nbl_fep.get());
301 nbnxn_search::nbnxn_search(const ivec *n_dd_cells,
302 const gmx_domdec_zones_t *zones,
303 gmx_bool bFEP,
304 int nthread_max) :
305 bFEP(bFEP),
306 ePBC(epbcNONE), // The correct value will be set during the gridding
307 DomDec(n_dd_cells != nullptr),
308 zones(zones),
309 natoms_local(0),
310 natoms_nonlocal(0),
311 search_count(0),
312 work(nthread_max)
314 // The correct value will be set during the gridding
315 clear_mat(box);
316 clear_ivec(dd_dim);
317 int numGrids = 1;
318 if (DomDec)
320 for (int d = 0; d < DIM; d++)
322 if ((*n_dd_cells)[d] > 1)
324 dd_dim[d] = 1;
325 /* Each grid matches a DD zone */
326 numGrids *= 2;
331 grid.resize(numGrids);
333 /* Initialize detailed nbsearch cycle counting */
334 print_cycles = (getenv("GMX_NBNXN_CYCLE") != nullptr);
335 nbs_cycle_clear(cc);
338 nbnxn_search *nbnxn_init_search(const ivec *n_dd_cells,
339 const gmx_domdec_zones_t *zones,
340 gmx_bool bFEP,
341 int nthread_max)
343 return new nbnxn_search(n_dd_cells, zones, bFEP, nthread_max);
346 static void init_buffer_flags(nbnxn_buffer_flags_t *flags,
347 int natoms)
349 flags->nflag = (natoms + NBNXN_BUFFERFLAG_SIZE - 1)/NBNXN_BUFFERFLAG_SIZE;
350 if (flags->nflag > flags->flag_nalloc)
352 flags->flag_nalloc = over_alloc_large(flags->nflag);
353 srenew(flags->flag, flags->flag_nalloc);
355 for (int b = 0; b < flags->nflag; b++)
357 bitmask_clear(&(flags->flag[b]));
361 /* Determines the cell range along one dimension that
362 * the bounding box b0 - b1 sees.
364 template<int dim>
365 static void get_cell_range(real b0, real b1,
366 const nbnxn_grid_t &gridj,
367 real d2, real r2, int *cf, int *cl)
369 real distanceInCells = (b0 - gridj.c0[dim])*gridj.invCellSize[dim];
370 *cf = std::max(static_cast<int>(distanceInCells), 0);
372 while (*cf > 0 &&
373 d2 + gmx::square((b0 - gridj.c0[dim]) - (*cf - 1 + 1)*gridj.cellSize[dim]) < r2)
375 (*cf)--;
378 *cl = std::min(static_cast<int>((b1 - gridj.c0[dim])*gridj.invCellSize[dim]), gridj.numCells[dim] - 1);
379 while (*cl < gridj.numCells[dim] - 1 &&
380 d2 + gmx::square((*cl + 1)*gridj.cellSize[dim] - (b1 - gridj.c0[dim])) < r2)
382 (*cl)++;
386 /* Reference code calculating the distance^2 between two bounding boxes */
388 static float box_dist2(float bx0, float bx1, float by0,
389 float by1, float bz0, float bz1,
390 const nbnxn_bb_t *bb)
392 float d2;
393 float dl, dh, dm, dm0;
395 d2 = 0;
397 dl = bx0 - bb->upper[BB_X];
398 dh = bb->lower[BB_X] - bx1;
399 dm = std::max(dl, dh);
400 dm0 = std::max(dm, 0.0f);
401 d2 += dm0*dm0;
403 dl = by0 - bb->upper[BB_Y];
404 dh = bb->lower[BB_Y] - by1;
405 dm = std::max(dl, dh);
406 dm0 = std::max(dm, 0.0f);
407 d2 += dm0*dm0;
409 dl = bz0 - bb->upper[BB_Z];
410 dh = bb->lower[BB_Z] - bz1;
411 dm = std::max(dl, dh);
412 dm0 = std::max(dm, 0.0f);
413 d2 += dm0*dm0;
415 return d2;
419 /* Plain C code calculating the distance^2 between two bounding boxes */
420 static float subc_bb_dist2(int si,
421 const nbnxn_bb_t *bb_i_ci,
422 int csj,
423 gmx::ArrayRef<const nbnxn_bb_t> bb_j_all)
425 const nbnxn_bb_t *bb_i = bb_i_ci + si;
426 const nbnxn_bb_t *bb_j = bb_j_all.data() + csj;
428 float d2 = 0;
429 float dl, dh, dm, dm0;
431 dl = bb_i->lower[BB_X] - bb_j->upper[BB_X];
432 dh = bb_j->lower[BB_X] - bb_i->upper[BB_X];
433 dm = std::max(dl, dh);
434 dm0 = std::max(dm, 0.0f);
435 d2 += dm0*dm0;
437 dl = bb_i->lower[BB_Y] - bb_j->upper[BB_Y];
438 dh = bb_j->lower[BB_Y] - bb_i->upper[BB_Y];
439 dm = std::max(dl, dh);
440 dm0 = std::max(dm, 0.0f);
441 d2 += dm0*dm0;
443 dl = bb_i->lower[BB_Z] - bb_j->upper[BB_Z];
444 dh = bb_j->lower[BB_Z] - bb_i->upper[BB_Z];
445 dm = std::max(dl, dh);
446 dm0 = std::max(dm, 0.0f);
447 d2 += dm0*dm0;
449 return d2;
452 #if NBNXN_SEARCH_BB_SIMD4
454 /* 4-wide SIMD code for bb distance for bb format xyz0 */
455 static float subc_bb_dist2_simd4(int si,
456 const nbnxn_bb_t *bb_i_ci,
457 int csj,
458 gmx::ArrayRef<const nbnxn_bb_t> bb_j_all)
460 // TODO: During SIMDv2 transition only some archs use namespace (remove when done)
461 using namespace gmx;
463 Simd4Float bb_i_S0, bb_i_S1;
464 Simd4Float bb_j_S0, bb_j_S1;
465 Simd4Float dl_S;
466 Simd4Float dh_S;
467 Simd4Float dm_S;
468 Simd4Float dm0_S;
470 bb_i_S0 = load4(&bb_i_ci[si].lower[0]);
471 bb_i_S1 = load4(&bb_i_ci[si].upper[0]);
472 bb_j_S0 = load4(&bb_j_all[csj].lower[0]);
473 bb_j_S1 = load4(&bb_j_all[csj].upper[0]);
475 dl_S = bb_i_S0 - bb_j_S1;
476 dh_S = bb_j_S0 - bb_i_S1;
478 dm_S = max(dl_S, dh_S);
479 dm0_S = max(dm_S, simd4SetZeroF());
481 return dotProduct(dm0_S, dm0_S);
484 /* Calculate bb bounding distances of bb_i[si,...,si+3] and store them in d2 */
485 #define SUBC_BB_DIST2_SIMD4_XXXX_INNER(si, bb_i, d2) \
487 int shi; \
489 Simd4Float dx_0, dy_0, dz_0; \
490 Simd4Float dx_1, dy_1, dz_1; \
492 Simd4Float mx, my, mz; \
493 Simd4Float m0x, m0y, m0z; \
495 Simd4Float d2x, d2y, d2z; \
496 Simd4Float d2s, d2t; \
498 shi = si*NNBSBB_D*DIM; \
500 xi_l = load4(bb_i+shi+0*STRIDE_PBB); \
501 yi_l = load4(bb_i+shi+1*STRIDE_PBB); \
502 zi_l = load4(bb_i+shi+2*STRIDE_PBB); \
503 xi_h = load4(bb_i+shi+3*STRIDE_PBB); \
504 yi_h = load4(bb_i+shi+4*STRIDE_PBB); \
505 zi_h = load4(bb_i+shi+5*STRIDE_PBB); \
507 dx_0 = xi_l - xj_h; \
508 dy_0 = yi_l - yj_h; \
509 dz_0 = zi_l - zj_h; \
511 dx_1 = xj_l - xi_h; \
512 dy_1 = yj_l - yi_h; \
513 dz_1 = zj_l - zi_h; \
515 mx = max(dx_0, dx_1); \
516 my = max(dy_0, dy_1); \
517 mz = max(dz_0, dz_1); \
519 m0x = max(mx, zero); \
520 m0y = max(my, zero); \
521 m0z = max(mz, zero); \
523 d2x = m0x * m0x; \
524 d2y = m0y * m0y; \
525 d2z = m0z * m0z; \
527 d2s = d2x + d2y; \
528 d2t = d2s + d2z; \
530 store4(d2+si, d2t); \
533 /* 4-wide SIMD code for nsi bb distances for bb format xxxxyyyyzzzz */
534 static void subc_bb_dist2_simd4_xxxx(const float *bb_j,
535 int nsi, const float *bb_i,
536 float *d2)
538 // TODO: During SIMDv2 transition only some archs use namespace (remove when done)
539 using namespace gmx;
541 Simd4Float xj_l, yj_l, zj_l;
542 Simd4Float xj_h, yj_h, zj_h;
543 Simd4Float xi_l, yi_l, zi_l;
544 Simd4Float xi_h, yi_h, zi_h;
546 Simd4Float zero;
548 zero = setZero();
550 xj_l = Simd4Float(bb_j[0*STRIDE_PBB]);
551 yj_l = Simd4Float(bb_j[1*STRIDE_PBB]);
552 zj_l = Simd4Float(bb_j[2*STRIDE_PBB]);
553 xj_h = Simd4Float(bb_j[3*STRIDE_PBB]);
554 yj_h = Simd4Float(bb_j[4*STRIDE_PBB]);
555 zj_h = Simd4Float(bb_j[5*STRIDE_PBB]);
557 /* Here we "loop" over si (0,STRIDE_PBB) from 0 to nsi with step STRIDE_PBB.
558 * But as we know the number of iterations is 1 or 2, we unroll manually.
560 SUBC_BB_DIST2_SIMD4_XXXX_INNER(0, bb_i, d2);
561 if (STRIDE_PBB < nsi)
563 SUBC_BB_DIST2_SIMD4_XXXX_INNER(STRIDE_PBB, bb_i, d2);
567 #endif /* NBNXN_SEARCH_BB_SIMD4 */
570 /* Returns if any atom pair from two clusters is within distance sqrt(rlist2) */
571 static inline gmx_bool
572 clusterpair_in_range(const nbnxn_list_work_t *work,
573 int si,
574 int csj, int stride, const real *x_j,
575 real rlist2)
577 #if !GMX_SIMD4_HAVE_REAL
579 /* Plain C version.
580 * All coordinates are stored as xyzxyz...
583 const real *x_i = work->x_ci;
585 for (int i = 0; i < c_nbnxnGpuClusterSize; i++)
587 int i0 = (si*c_nbnxnGpuClusterSize + i)*DIM;
588 for (int j = 0; j < c_nbnxnGpuClusterSize; j++)
590 int j0 = (csj*c_nbnxnGpuClusterSize + j)*stride;
592 real d2 = gmx::square(x_i[i0 ] - x_j[j0 ]) + gmx::square(x_i[i0+1] - x_j[j0+1]) + gmx::square(x_i[i0+2] - x_j[j0+2]);
594 if (d2 < rlist2)
596 return TRUE;
601 return FALSE;
603 #else /* !GMX_SIMD4_HAVE_REAL */
605 /* 4-wide SIMD version.
606 * The coordinates x_i are stored as xxxxyyyy..., x_j is stored xyzxyz...
607 * Using 8-wide AVX(2) is not faster on Intel Sandy Bridge and Haswell.
609 static_assert(c_nbnxnGpuClusterSize == 8 || c_nbnxnGpuClusterSize == 4,
610 "A cluster is hard-coded to 4/8 atoms.");
612 Simd4Real rc2_S = Simd4Real(rlist2);
614 const real *x_i = work->x_ci_simd;
616 int dim_stride = c_nbnxnGpuClusterSize*DIM;
617 Simd4Real ix_S0 = load4(x_i + si*dim_stride + 0*GMX_SIMD4_WIDTH);
618 Simd4Real iy_S0 = load4(x_i + si*dim_stride + 1*GMX_SIMD4_WIDTH);
619 Simd4Real iz_S0 = load4(x_i + si*dim_stride + 2*GMX_SIMD4_WIDTH);
621 Simd4Real ix_S1, iy_S1, iz_S1;
622 if (c_nbnxnGpuClusterSize == 8)
624 ix_S1 = load4(x_i + si*dim_stride + 3*GMX_SIMD4_WIDTH);
625 iy_S1 = load4(x_i + si*dim_stride + 4*GMX_SIMD4_WIDTH);
626 iz_S1 = load4(x_i + si*dim_stride + 5*GMX_SIMD4_WIDTH);
628 /* We loop from the outer to the inner particles to maximize
629 * the chance that we find a pair in range quickly and return.
631 int j0 = csj*c_nbnxnGpuClusterSize;
632 int j1 = j0 + c_nbnxnGpuClusterSize - 1;
633 while (j0 < j1)
635 Simd4Real jx0_S, jy0_S, jz0_S;
636 Simd4Real jx1_S, jy1_S, jz1_S;
638 Simd4Real dx_S0, dy_S0, dz_S0;
639 Simd4Real dx_S1, dy_S1, dz_S1;
640 Simd4Real dx_S2, dy_S2, dz_S2;
641 Simd4Real dx_S3, dy_S3, dz_S3;
643 Simd4Real rsq_S0;
644 Simd4Real rsq_S1;
645 Simd4Real rsq_S2;
646 Simd4Real rsq_S3;
648 Simd4Bool wco_S0;
649 Simd4Bool wco_S1;
650 Simd4Bool wco_S2;
651 Simd4Bool wco_S3;
652 Simd4Bool wco_any_S01, wco_any_S23, wco_any_S;
654 jx0_S = Simd4Real(x_j[j0*stride+0]);
655 jy0_S = Simd4Real(x_j[j0*stride+1]);
656 jz0_S = Simd4Real(x_j[j0*stride+2]);
658 jx1_S = Simd4Real(x_j[j1*stride+0]);
659 jy1_S = Simd4Real(x_j[j1*stride+1]);
660 jz1_S = Simd4Real(x_j[j1*stride+2]);
662 /* Calculate distance */
663 dx_S0 = ix_S0 - jx0_S;
664 dy_S0 = iy_S0 - jy0_S;
665 dz_S0 = iz_S0 - jz0_S;
666 dx_S2 = ix_S0 - jx1_S;
667 dy_S2 = iy_S0 - jy1_S;
668 dz_S2 = iz_S0 - jz1_S;
669 if (c_nbnxnGpuClusterSize == 8)
671 dx_S1 = ix_S1 - jx0_S;
672 dy_S1 = iy_S1 - jy0_S;
673 dz_S1 = iz_S1 - jz0_S;
674 dx_S3 = ix_S1 - jx1_S;
675 dy_S3 = iy_S1 - jy1_S;
676 dz_S3 = iz_S1 - jz1_S;
679 /* rsq = dx*dx+dy*dy+dz*dz */
680 rsq_S0 = norm2(dx_S0, dy_S0, dz_S0);
681 rsq_S2 = norm2(dx_S2, dy_S2, dz_S2);
682 if (c_nbnxnGpuClusterSize == 8)
684 rsq_S1 = norm2(dx_S1, dy_S1, dz_S1);
685 rsq_S3 = norm2(dx_S3, dy_S3, dz_S3);
688 wco_S0 = (rsq_S0 < rc2_S);
689 wco_S2 = (rsq_S2 < rc2_S);
690 if (c_nbnxnGpuClusterSize == 8)
692 wco_S1 = (rsq_S1 < rc2_S);
693 wco_S3 = (rsq_S3 < rc2_S);
695 if (c_nbnxnGpuClusterSize == 8)
697 wco_any_S01 = wco_S0 || wco_S1;
698 wco_any_S23 = wco_S2 || wco_S3;
699 wco_any_S = wco_any_S01 || wco_any_S23;
701 else
703 wco_any_S = wco_S0 || wco_S2;
706 if (anyTrue(wco_any_S))
708 return TRUE;
711 j0++;
712 j1--;
715 return FALSE;
717 #endif /* !GMX_SIMD4_HAVE_REAL */
720 /* Returns the j-cluster index for index cjIndex in a cj list */
721 static inline int nblCj(const nbnxn_cj_t *cjList, int cjIndex)
723 return cjList[cjIndex].cj;
726 /* Returns the j-cluster index for index cjIndex in a cj4 list */
727 static inline int nblCj(const nbnxn_cj4_t *cj4List, int cjIndex)
729 return cj4List[cjIndex/c_nbnxnGpuJgroupSize].cj[cjIndex & (c_nbnxnGpuJgroupSize - 1)];
732 /* Returns the i-interaction mask of the j sub-cell for index cj_ind */
733 static unsigned int nbl_imask0(const nbnxn_pairlist_t *nbl, int cj_ind)
735 return nbl->cj4[cj_ind/c_nbnxnGpuJgroupSize].imei[0].imask;
738 /* Ensures there is enough space for extra extra exclusion masks */
739 static void check_excl_space(nbnxn_pairlist_t *nbl, int extra)
741 if (nbl->nexcl+extra > nbl->excl_nalloc)
743 nbl->excl_nalloc = over_alloc_small(nbl->nexcl+extra);
744 nbnxn_realloc_void((void **)&nbl->excl,
745 nbl->nexcl*sizeof(*nbl->excl),
746 nbl->excl_nalloc*sizeof(*nbl->excl),
747 nbl->alloc, nbl->free);
751 /* Ensures there is enough space for maxNumExtraClusters extra j-clusters in the list */
752 static void check_cell_list_space_simple(nbnxn_pairlist_t *nbl,
753 int maxNumExtraClusters)
755 int cj_max;
757 cj_max = nbl->ncj + maxNumExtraClusters;
759 if (cj_max > nbl->cj_nalloc)
761 nbl->cj_nalloc = over_alloc_small(cj_max);
762 nbnxn_realloc_void((void **)&nbl->cj,
763 nbl->ncj*sizeof(*nbl->cj),
764 nbl->cj_nalloc*sizeof(*nbl->cj),
765 nbl->alloc, nbl->free);
767 nbnxn_realloc_void((void **)&nbl->cjOuter,
768 nbl->ncj*sizeof(*nbl->cjOuter),
769 nbl->cj_nalloc*sizeof(*nbl->cjOuter),
770 nbl->alloc, nbl->free);
774 /* Ensures there is enough space for ncell extra j-clusters in the list */
775 static void check_cell_list_space_supersub(nbnxn_pairlist_t *nbl,
776 int ncell)
778 int ncj4_max, w;
780 /* We can have maximally nsupercell*c_gpuNumClusterPerCell sj lists */
781 /* We can store 4 j-subcell - i-supercell pairs in one struct.
782 * since we round down, we need one extra entry.
784 ncj4_max = ((nbl->work->cj_ind + ncell*c_gpuNumClusterPerCell + c_nbnxnGpuJgroupSize - 1)/c_nbnxnGpuJgroupSize);
786 if (ncj4_max > nbl->cj4_nalloc)
788 nbl->cj4_nalloc = over_alloc_small(ncj4_max);
789 nbnxn_realloc_void((void **)&nbl->cj4,
790 nbl->work->cj4_init*sizeof(*nbl->cj4),
791 nbl->cj4_nalloc*sizeof(*nbl->cj4),
792 nbl->alloc, nbl->free);
795 if (ncj4_max > nbl->work->cj4_init)
797 for (int j4 = nbl->work->cj4_init; j4 < ncj4_max; j4++)
799 /* No i-subcells and no excl's in the list initially */
800 for (w = 0; w < c_nbnxnGpuClusterpairSplit; w++)
802 nbl->cj4[j4].imei[w].imask = 0U;
803 nbl->cj4[j4].imei[w].excl_ind = 0;
807 nbl->work->cj4_init = ncj4_max;
811 /* Set all excl masks for one GPU warp no exclusions */
812 static void set_no_excls(nbnxn_excl_t *excl)
814 for (int t = 0; t < c_nbnxnGpuExclSize; t++)
816 /* Turn all interaction bits on */
817 excl->pair[t] = NBNXN_INTERACTION_MASK_ALL;
821 /* Initializes a single nbnxn_pairlist_t data structure */
822 static void nbnxn_init_pairlist(nbnxn_pairlist_t *nbl,
823 gmx_bool bSimple,
824 nbnxn_alloc_t *alloc,
825 nbnxn_free_t *free)
827 if (alloc == nullptr)
829 nbl->alloc = nbnxn_alloc_aligned;
831 else
833 nbl->alloc = alloc;
835 if (free == nullptr)
837 nbl->free = nbnxn_free_aligned;
839 else
841 nbl->free = free;
844 nbl->bSimple = bSimple;
845 nbl->na_sc = 0;
846 nbl->na_ci = 0;
847 nbl->na_cj = 0;
848 nbl->nci = 0;
849 nbl->ci = nullptr;
850 nbl->ci_nalloc = 0;
851 nbl->nsci = 0;
852 nbl->sci = nullptr;
853 nbl->sci_nalloc = 0;
854 nbl->ncj = 0;
855 nbl->ncjInUse = 0;
856 nbl->cj = nullptr;
857 nbl->cj_nalloc = 0;
858 nbl->ncj4 = 0;
859 /* We need one element extra in sj, so alloc initially with 1 */
860 nbl->cj4_nalloc = 0;
861 nbl->cj4 = nullptr;
862 nbl->nci_tot = 0;
864 if (!nbl->bSimple)
866 GMX_ASSERT(c_nbnxnGpuNumClusterPerSupercluster == c_gpuNumClusterPerCell, "The search code assumes that the a super-cluster matches a search grid cell");
868 GMX_ASSERT(sizeof(nbl->cj4[0].imei[0].imask)*8 >= c_nbnxnGpuJgroupSize*c_gpuNumClusterPerCell, "The i super-cluster cluster interaction mask does not contain a sufficient number of bits");
869 GMX_ASSERT(sizeof(nbl->excl[0])*8 >= c_nbnxnGpuJgroupSize*c_gpuNumClusterPerCell, "The GPU exclusion mask does not contain a sufficient number of bits");
871 nbl->excl = nullptr;
872 nbl->excl_nalloc = 0;
873 nbl->nexcl = 0;
874 check_excl_space(nbl, 1);
875 nbl->nexcl = 1;
876 set_no_excls(&nbl->excl[0]);
879 snew(nbl->work, 1);
880 if (nbl->bSimple)
882 snew_aligned(nbl->work->bb_ci, 1, NBNXN_SEARCH_BB_MEM_ALIGN);
884 else
886 #if NBNXN_BBXXXX
887 snew_aligned(nbl->work->pbb_ci, c_gpuNumClusterPerCell/STRIDE_PBB*NNBSBB_XXXX, NBNXN_SEARCH_BB_MEM_ALIGN);
888 #else
889 snew_aligned(nbl->work->bb_ci, c_gpuNumClusterPerCell, NBNXN_SEARCH_BB_MEM_ALIGN);
890 #endif
892 int gpu_clusterpair_nc = c_gpuNumClusterPerCell*c_nbnxnGpuClusterSize*DIM;
893 snew(nbl->work->x_ci, gpu_clusterpair_nc);
894 #if GMX_SIMD
895 snew_aligned(nbl->work->x_ci_simd,
896 std::max(NBNXN_CPU_CLUSTER_I_SIZE*DIM*GMX_SIMD_REAL_WIDTH,
897 gpu_clusterpair_nc),
898 GMX_SIMD_REAL_WIDTH);
899 #endif
900 snew_aligned(nbl->work->d2, c_gpuNumClusterPerCell, NBNXN_SEARCH_BB_MEM_ALIGN);
902 nbl->work->sort = nullptr;
903 nbl->work->sort_nalloc = 0;
904 nbl->work->sci_sort = nullptr;
905 nbl->work->sci_sort_nalloc = 0;
908 void nbnxn_init_pairlist_set(nbnxn_pairlist_set_t *nbl_list,
909 gmx_bool bSimple, gmx_bool bCombined,
910 nbnxn_alloc_t *alloc,
911 nbnxn_free_t *free)
913 nbl_list->bSimple = bSimple;
914 nbl_list->bCombined = bCombined;
916 nbl_list->nnbl = gmx_omp_nthreads_get(emntNonbonded);
918 if (!nbl_list->bCombined &&
919 nbl_list->nnbl > NBNXN_BUFFERFLAG_MAX_THREADS)
921 gmx_fatal(FARGS, "%d OpenMP threads were requested. Since the non-bonded force buffer reduction is prohibitively slow with more than %d threads, we do not allow this. Use %d or less OpenMP threads.",
922 nbl_list->nnbl, NBNXN_BUFFERFLAG_MAX_THREADS, NBNXN_BUFFERFLAG_MAX_THREADS);
925 snew(nbl_list->nbl, nbl_list->nnbl);
926 if (bSimple && nbl_list->nnbl > 1)
928 snew(nbl_list->nbl_work, nbl_list->nnbl);
930 snew(nbl_list->nbl_fep, nbl_list->nnbl);
931 /* Execute in order to avoid memory interleaving between threads */
932 #pragma omp parallel for num_threads(nbl_list->nnbl) schedule(static)
933 for (int i = 0; i < nbl_list->nnbl; i++)
937 /* Allocate the nblist data structure locally on each thread
938 * to optimize memory access for NUMA architectures.
940 snew(nbl_list->nbl[i], 1);
942 /* Only list 0 is used on the GPU, use normal allocation for i>0 */
943 if (!bSimple && i == 0)
945 nbnxn_init_pairlist(nbl_list->nbl[i], nbl_list->bSimple, alloc, free);
947 else
949 nbnxn_init_pairlist(nbl_list->nbl[i], nbl_list->bSimple, nullptr, nullptr);
950 if (bSimple && nbl_list->nnbl > 1)
952 snew(nbl_list->nbl_work[i], 1);
953 nbnxn_init_pairlist(nbl_list->nbl_work[i], nbl_list->bSimple, nullptr, nullptr);
957 snew(nbl_list->nbl_fep[i], 1);
958 nbnxn_init_pairlist_fep(nbl_list->nbl_fep[i]);
960 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
964 /* Print statistics of a pair list, used for debug output */
965 static void print_nblist_statistics_simple(FILE *fp, const nbnxn_pairlist_t *nbl,
966 const nbnxn_search_t nbs, real rl)
968 const nbnxn_grid_t *grid;
969 int cs[SHIFTS];
970 int npexcl;
972 grid = &nbs->grid[0];
974 fprintf(fp, "nbl nci %d ncj %d\n",
975 nbl->nci, nbl->ncjInUse);
976 fprintf(fp, "nbl na_sc %d rl %g ncp %d per cell %.1f atoms %.1f ratio %.2f\n",
977 nbl->na_sc, rl, nbl->ncjInUse, nbl->ncjInUse/(double)grid->nc,
978 nbl->ncjInUse/(double)grid->nc*grid->na_sc,
979 nbl->ncjInUse/(double)grid->nc*grid->na_sc/(0.5*4.0/3.0*M_PI*rl*rl*rl*grid->nc*grid->na_sc/(grid->size[XX]*grid->size[YY]*grid->size[ZZ])));
981 fprintf(fp, "nbl average j cell list length %.1f\n",
982 0.25*nbl->ncjInUse/(double)std::max(nbl->nci, 1));
984 for (int s = 0; s < SHIFTS; s++)
986 cs[s] = 0;
988 npexcl = 0;
989 for (int i = 0; i < nbl->nci; i++)
991 cs[nbl->ci[i].shift & NBNXN_CI_SHIFT] +=
992 nbl->ci[i].cj_ind_end - nbl->ci[i].cj_ind_start;
994 int j = nbl->ci[i].cj_ind_start;
995 while (j < nbl->ci[i].cj_ind_end &&
996 nbl->cj[j].excl != NBNXN_INTERACTION_MASK_ALL)
998 npexcl++;
999 j++;
1002 fprintf(fp, "nbl cell pairs, total: %d excl: %d %.1f%%\n",
1003 nbl->ncj, npexcl, 100*npexcl/(double)std::max(nbl->ncj, 1));
1004 for (int s = 0; s < SHIFTS; s++)
1006 if (cs[s] > 0)
1008 fprintf(fp, "nbl shift %2d ncj %3d\n", s, cs[s]);
1013 /* Print statistics of a pair lists, used for debug output */
1014 static void print_nblist_statistics_supersub(FILE *fp, const nbnxn_pairlist_t *nbl,
1015 const nbnxn_search_t nbs, real rl)
1017 const nbnxn_grid_t *grid;
1018 int b;
1019 int c[c_gpuNumClusterPerCell + 1];
1020 double sum_nsp, sum_nsp2;
1021 int nsp_max;
1023 /* This code only produces correct statistics with domain decomposition */
1024 grid = &nbs->grid[0];
1026 fprintf(fp, "nbl nsci %d ncj4 %d nsi %d excl4 %d\n",
1027 nbl->nsci, nbl->ncj4, nbl->nci_tot, nbl->nexcl);
1028 fprintf(fp, "nbl na_c %d rl %g ncp %d per cell %.1f atoms %.1f ratio %.2f\n",
1029 nbl->na_ci, rl, nbl->nci_tot, nbl->nci_tot/(double)grid->nsubc_tot,
1030 nbl->nci_tot/(double)grid->nsubc_tot*grid->na_c,
1031 nbl->nci_tot/(double)grid->nsubc_tot*grid->na_c/(0.5*4.0/3.0*M_PI*rl*rl*rl*grid->nsubc_tot*grid->na_c/(grid->size[XX]*grid->size[YY]*grid->size[ZZ])));
1033 sum_nsp = 0;
1034 sum_nsp2 = 0;
1035 nsp_max = 0;
1036 for (int si = 0; si <= c_gpuNumClusterPerCell; si++)
1038 c[si] = 0;
1040 for (int i = 0; i < nbl->nsci; i++)
1042 int nsp;
1044 nsp = 0;
1045 for (int j4 = nbl->sci[i].cj4_ind_start; j4 < nbl->sci[i].cj4_ind_end; j4++)
1047 for (int j = 0; j < c_nbnxnGpuJgroupSize; j++)
1049 b = 0;
1050 for (int si = 0; si < c_gpuNumClusterPerCell; si++)
1052 if (nbl->cj4[j4].imei[0].imask & (1U << (j*c_gpuNumClusterPerCell + si)))
1054 b++;
1057 nsp += b;
1058 c[b]++;
1061 sum_nsp += nsp;
1062 sum_nsp2 += nsp*nsp;
1063 nsp_max = std::max(nsp_max, nsp);
1065 if (nbl->nsci > 0)
1067 sum_nsp /= nbl->nsci;
1068 sum_nsp2 /= nbl->nsci;
1070 fprintf(fp, "nbl #cluster-pairs: av %.1f stddev %.1f max %d\n",
1071 sum_nsp, std::sqrt(sum_nsp2 - sum_nsp*sum_nsp), nsp_max);
1073 if (nbl->ncj4 > 0)
1075 for (b = 0; b <= c_gpuNumClusterPerCell; b++)
1077 fprintf(fp, "nbl j-list #i-subcell %d %7d %4.1f\n",
1078 b, c[b],
1079 100.0*c[b]/(double)(nbl->ncj4*c_nbnxnGpuJgroupSize));
1084 /* Returns a pointer to the exclusion mask for cj4-unit cj4, warp warp */
1085 static void low_get_nbl_exclusions(nbnxn_pairlist_t *nbl, int cj4,
1086 int warp, nbnxn_excl_t **excl)
1088 if (nbl->cj4[cj4].imei[warp].excl_ind == 0)
1090 /* No exclusions set, make a new list entry */
1091 nbl->cj4[cj4].imei[warp].excl_ind = nbl->nexcl;
1092 nbl->nexcl++;
1093 *excl = &nbl->excl[nbl->cj4[cj4].imei[warp].excl_ind];
1094 set_no_excls(*excl);
1096 else
1098 /* We already have some exclusions, new ones can be added to the list */
1099 *excl = &nbl->excl[nbl->cj4[cj4].imei[warp].excl_ind];
1103 /* Returns a pointer to the exclusion mask for cj4-unit cj4, warp warp,
1104 * generates a new element and allocates extra memory, if necessary.
1106 static void get_nbl_exclusions_1(nbnxn_pairlist_t *nbl, int cj4,
1107 int warp, nbnxn_excl_t **excl)
1109 if (nbl->cj4[cj4].imei[warp].excl_ind == 0)
1111 /* We need to make a new list entry, check if we have space */
1112 check_excl_space(nbl, 1);
1114 low_get_nbl_exclusions(nbl, cj4, warp, excl);
1117 /* Returns pointers to the exclusion masks for cj4-unit cj4 for both warps,
1118 * generates a new element and allocates extra memory, if necessary.
1120 static void get_nbl_exclusions_2(nbnxn_pairlist_t *nbl, int cj4,
1121 nbnxn_excl_t **excl_w0,
1122 nbnxn_excl_t **excl_w1)
1124 /* Check for space we might need */
1125 check_excl_space(nbl, 2);
1127 low_get_nbl_exclusions(nbl, cj4, 0, excl_w0);
1128 low_get_nbl_exclusions(nbl, cj4, 1, excl_w1);
1131 /* Sets the self exclusions i=j and pair exclusions i>j */
1132 static void set_self_and_newton_excls_supersub(nbnxn_pairlist_t *nbl,
1133 int cj4_ind, int sj_offset,
1134 int i_cluster_in_cell)
1136 nbnxn_excl_t *excl[c_nbnxnGpuClusterpairSplit];
1138 /* Here we only set the set self and double pair exclusions */
1140 static_assert(c_nbnxnGpuClusterpairSplit == 2, "");
1142 get_nbl_exclusions_2(nbl, cj4_ind, &excl[0], &excl[1]);
1144 /* Only minor < major bits set */
1145 for (int ej = 0; ej < nbl->na_ci; ej++)
1147 int w = (ej>>2);
1148 for (int ei = ej; ei < nbl->na_ci; ei++)
1150 excl[w]->pair[(ej & (c_nbnxnGpuJgroupSize-1))*nbl->na_ci + ei] &=
1151 ~(1U << (sj_offset*c_gpuNumClusterPerCell + i_cluster_in_cell));
1156 /* Returns a diagonal or off-diagonal interaction mask for plain C lists */
1157 static unsigned int get_imask(gmx_bool rdiag, int ci, int cj)
1159 return (rdiag && ci == cj ? NBNXN_INTERACTION_MASK_DIAG : NBNXN_INTERACTION_MASK_ALL);
1162 /* Returns a diagonal or off-diagonal interaction mask for cj-size=2 */
1163 gmx_unused static unsigned int get_imask_simd_j2(gmx_bool rdiag, int ci, int cj)
1165 return (rdiag && ci*2 == cj ? NBNXN_INTERACTION_MASK_DIAG_J2_0 :
1166 (rdiag && ci*2+1 == cj ? NBNXN_INTERACTION_MASK_DIAG_J2_1 :
1167 NBNXN_INTERACTION_MASK_ALL));
1170 /* Returns a diagonal or off-diagonal interaction mask for cj-size=4 */
1171 gmx_unused static unsigned int get_imask_simd_j4(gmx_bool rdiag, int ci, int cj)
1173 return (rdiag && ci == cj ? NBNXN_INTERACTION_MASK_DIAG : NBNXN_INTERACTION_MASK_ALL);
1176 /* Returns a diagonal or off-diagonal interaction mask for cj-size=8 */
1177 gmx_unused static unsigned int get_imask_simd_j8(gmx_bool rdiag, int ci, int cj)
1179 return (rdiag && ci == cj*2 ? NBNXN_INTERACTION_MASK_DIAG_J8_0 :
1180 (rdiag && ci == cj*2+1 ? NBNXN_INTERACTION_MASK_DIAG_J8_1 :
1181 NBNXN_INTERACTION_MASK_ALL));
1184 #if GMX_SIMD
1185 #if GMX_SIMD_REAL_WIDTH == 2
1186 #define get_imask_simd_4xn get_imask_simd_j2
1187 #endif
1188 #if GMX_SIMD_REAL_WIDTH == 4
1189 #define get_imask_simd_4xn get_imask_simd_j4
1190 #endif
1191 #if GMX_SIMD_REAL_WIDTH == 8
1192 #define get_imask_simd_4xn get_imask_simd_j8
1193 #define get_imask_simd_2xnn get_imask_simd_j4
1194 #endif
1195 #if GMX_SIMD_REAL_WIDTH == 16
1196 #define get_imask_simd_2xnn get_imask_simd_j8
1197 #endif
1198 #endif
1200 /* Plain C code for checking and adding cluster-pairs to the list.
1202 * \param[in] gridj The j-grid
1203 * \param[in,out] nbl The pair-list to store the cluster pairs in
1204 * \param[in] icluster The index of the i-cluster
1205 * \param[in] jclusterFirst The first cluster in the j-range
1206 * \param[in] jclusterLast The last cluster in the j-range
1207 * \param[in] excludeSubDiagonal Exclude atom pairs with i-index > j-index
1208 * \param[in] x_j Coordinates for the j-atom, in xyz format
1209 * \param[in] rlist2 The squared list cut-off
1210 * \param[in] rbb2 The squared cut-off for putting cluster-pairs in the list based on bounding box distance only
1211 * \param[in,out] numDistanceChecks The number of distance checks performed
1213 static void
1214 makeClusterListSimple(const nbnxn_grid_t * gridj,
1215 nbnxn_pairlist_t * nbl,
1216 int icluster,
1217 int jclusterFirst,
1218 int jclusterLast,
1219 bool excludeSubDiagonal,
1220 const real * gmx_restrict x_j,
1221 real rlist2,
1222 float rbb2,
1223 int * gmx_restrict numDistanceChecks)
1225 const nbnxn_bb_t * gmx_restrict bb_ci = nbl->work->bb_ci;
1226 const real * gmx_restrict x_ci = nbl->work->x_ci;
1228 gmx_bool InRange;
1230 InRange = FALSE;
1231 while (!InRange && jclusterFirst <= jclusterLast)
1233 real d2 = subc_bb_dist2(0, bb_ci, jclusterFirst, gridj->bb);
1234 *numDistanceChecks += 2;
1236 /* Check if the distance is within the distance where
1237 * we use only the bounding box distance rbb,
1238 * or within the cut-off and there is at least one atom pair
1239 * within the cut-off.
1241 if (d2 < rbb2)
1243 InRange = TRUE;
1245 else if (d2 < rlist2)
1247 int cjf_gl = gridj->cell0 + jclusterFirst;
1248 for (int i = 0; i < NBNXN_CPU_CLUSTER_I_SIZE && !InRange; i++)
1250 for (int j = 0; j < NBNXN_CPU_CLUSTER_I_SIZE; j++)
1252 InRange = InRange ||
1253 (gmx::square(x_ci[i*STRIDE_XYZ+XX] - x_j[(cjf_gl*NBNXN_CPU_CLUSTER_I_SIZE+j)*STRIDE_XYZ+XX]) +
1254 gmx::square(x_ci[i*STRIDE_XYZ+YY] - x_j[(cjf_gl*NBNXN_CPU_CLUSTER_I_SIZE+j)*STRIDE_XYZ+YY]) +
1255 gmx::square(x_ci[i*STRIDE_XYZ+ZZ] - x_j[(cjf_gl*NBNXN_CPU_CLUSTER_I_SIZE+j)*STRIDE_XYZ+ZZ]) < rlist2);
1258 *numDistanceChecks += NBNXN_CPU_CLUSTER_I_SIZE*NBNXN_CPU_CLUSTER_I_SIZE;
1260 if (!InRange)
1262 jclusterFirst++;
1265 if (!InRange)
1267 return;
1270 InRange = FALSE;
1271 while (!InRange && jclusterLast > jclusterFirst)
1273 real d2 = subc_bb_dist2(0, bb_ci, jclusterLast, gridj->bb);
1274 *numDistanceChecks += 2;
1276 /* Check if the distance is within the distance where
1277 * we use only the bounding box distance rbb,
1278 * or within the cut-off and there is at least one atom pair
1279 * within the cut-off.
1281 if (d2 < rbb2)
1283 InRange = TRUE;
1285 else if (d2 < rlist2)
1287 int cjl_gl = gridj->cell0 + jclusterLast;
1288 for (int i = 0; i < NBNXN_CPU_CLUSTER_I_SIZE && !InRange; i++)
1290 for (int j = 0; j < NBNXN_CPU_CLUSTER_I_SIZE; j++)
1292 InRange = InRange ||
1293 (gmx::square(x_ci[i*STRIDE_XYZ+XX] - x_j[(cjl_gl*NBNXN_CPU_CLUSTER_I_SIZE+j)*STRIDE_XYZ+XX]) +
1294 gmx::square(x_ci[i*STRIDE_XYZ+YY] - x_j[(cjl_gl*NBNXN_CPU_CLUSTER_I_SIZE+j)*STRIDE_XYZ+YY]) +
1295 gmx::square(x_ci[i*STRIDE_XYZ+ZZ] - x_j[(cjl_gl*NBNXN_CPU_CLUSTER_I_SIZE+j)*STRIDE_XYZ+ZZ]) < rlist2);
1298 *numDistanceChecks += NBNXN_CPU_CLUSTER_I_SIZE*NBNXN_CPU_CLUSTER_I_SIZE;
1300 if (!InRange)
1302 jclusterLast--;
1306 if (jclusterFirst <= jclusterLast)
1308 for (int jcluster = jclusterFirst; jcluster <= jclusterLast; jcluster++)
1310 /* Store cj and the interaction mask */
1311 nbl->cj[nbl->ncj].cj = gridj->cell0 + jcluster;
1312 nbl->cj[nbl->ncj].excl = get_imask(excludeSubDiagonal, icluster, jcluster);
1313 nbl->ncj++;
1315 /* Increase the closing index in i super-cell list */
1316 nbl->ci[nbl->nci].cj_ind_end = nbl->ncj;
1320 #ifdef GMX_NBNXN_SIMD_4XN
1321 #include "gromacs/mdlib/nbnxn_search_simd_4xn.h"
1322 #endif
1323 #ifdef GMX_NBNXN_SIMD_2XNN
1324 #include "gromacs/mdlib/nbnxn_search_simd_2xnn.h"
1325 #endif
1327 /* Plain C or SIMD4 code for making a pair list of super-cell sci vs scj.
1328 * Checks bounding box distances and possibly atom pair distances.
1330 static void make_cluster_list_supersub(const nbnxn_grid_t *gridi,
1331 const nbnxn_grid_t *gridj,
1332 nbnxn_pairlist_t *nbl,
1333 int sci, int scj,
1334 gmx_bool sci_equals_scj,
1335 int stride, const real *x,
1336 real rlist2, float rbb2,
1337 int *numDistanceChecks)
1339 nbnxn_list_work_t *work = nbl->work;
1341 #if NBNXN_BBXXXX
1342 const float *pbb_ci = work->pbb_ci;
1343 #else
1344 const nbnxn_bb_t *bb_ci = work->bb_ci;
1345 #endif
1347 assert(c_nbnxnGpuClusterSize == gridi->na_c);
1348 assert(c_nbnxnGpuClusterSize == gridj->na_c);
1350 /* We generate the pairlist mainly based on bounding-box distances
1351 * and do atom pair distance based pruning on the GPU.
1352 * Only if a j-group contains a single cluster-pair, we try to prune
1353 * that pair based on atom distances on the CPU to avoid empty j-groups.
1355 #define PRUNE_LIST_CPU_ONE 1
1356 #define PRUNE_LIST_CPU_ALL 0
1358 #if PRUNE_LIST_CPU_ONE
1359 int ci_last = -1;
1360 #endif
1362 float *d2l = work->d2;
1364 for (int subc = 0; subc < gridj->nsubc[scj]; subc++)
1366 int cj4_ind = nbl->work->cj_ind/c_nbnxnGpuJgroupSize;
1367 int cj_offset = nbl->work->cj_ind - cj4_ind*c_nbnxnGpuJgroupSize;
1368 nbnxn_cj4_t *cj4 = &nbl->cj4[cj4_ind];
1370 int cj = scj*c_gpuNumClusterPerCell + subc;
1372 int cj_gl = gridj->cell0*c_gpuNumClusterPerCell + cj;
1374 /* Initialize this j-subcell i-subcell list */
1375 cj4->cj[cj_offset] = cj_gl;
1377 int ci1;
1378 if (sci_equals_scj)
1380 ci1 = subc + 1;
1382 else
1384 ci1 = gridi->nsubc[sci];
1387 #if NBNXN_BBXXXX
1388 /* Determine all ci1 bb distances in one call with SIMD4 */
1389 subc_bb_dist2_simd4_xxxx(gridj->pbb.data() + (cj >> STRIDE_PBB_2LOG)*NNBSBB_XXXX + (cj & (STRIDE_PBB-1)),
1390 ci1, pbb_ci, d2l);
1391 *numDistanceChecks += c_nbnxnGpuClusterSize*2;
1392 #endif
1394 int npair = 0;
1395 unsigned int imask = 0;
1396 /* We use a fixed upper-bound instead of ci1 to help optimization */
1397 for (int ci = 0; ci < c_gpuNumClusterPerCell; ci++)
1399 if (ci == ci1)
1401 break;
1404 #if !NBNXN_BBXXXX
1405 /* Determine the bb distance between ci and cj */
1406 d2l[ci] = subc_bb_dist2(ci, bb_ci, cj, gridj->bb);
1407 *numDistanceChecks += 2;
1408 #endif
1409 float d2 = d2l[ci];
1411 #if PRUNE_LIST_CPU_ALL
1412 /* Check if the distance is within the distance where
1413 * we use only the bounding box distance rbb,
1414 * or within the cut-off and there is at least one atom pair
1415 * within the cut-off. This check is very costly.
1417 *numDistanceChecks += c_nbnxnGpuClusterSize*c_nbnxnGpuClusterSize;
1418 if (d2 < rbb2 ||
1419 (d2 < rlist2 &&
1420 clusterpair_in_range(work, ci, cj_gl, stride, x, rlist2)))
1421 #else
1422 /* Check if the distance between the two bounding boxes
1423 * in within the pair-list cut-off.
1425 if (d2 < rlist2)
1426 #endif
1428 /* Flag this i-subcell to be taken into account */
1429 imask |= (1U << (cj_offset*c_gpuNumClusterPerCell + ci));
1431 #if PRUNE_LIST_CPU_ONE
1432 ci_last = ci;
1433 #endif
1435 npair++;
1439 #if PRUNE_LIST_CPU_ONE
1440 /* If we only found 1 pair, check if any atoms are actually
1441 * within the cut-off, so we could get rid of it.
1443 if (npair == 1 && d2l[ci_last] >= rbb2 &&
1444 !clusterpair_in_range(work, ci_last, cj_gl, stride, x, rlist2))
1446 imask &= ~(1U << (cj_offset*c_gpuNumClusterPerCell + ci_last));
1447 npair--;
1449 #endif
1451 if (npair > 0)
1453 /* We have a useful sj entry, close it now */
1455 /* Set the exclusions for the ci==sj entry.
1456 * Here we don't bother to check if this entry is actually flagged,
1457 * as it will nearly always be in the list.
1459 if (sci_equals_scj)
1461 set_self_and_newton_excls_supersub(nbl, cj4_ind, cj_offset, subc);
1464 /* Copy the cluster interaction mask to the list */
1465 for (int w = 0; w < c_nbnxnGpuClusterpairSplit; w++)
1467 cj4->imei[w].imask |= imask;
1470 nbl->work->cj_ind++;
1472 /* Keep the count */
1473 nbl->nci_tot += npair;
1475 /* Increase the closing index in i super-cell list */
1476 nbl->sci[nbl->nsci].cj4_ind_end =
1477 (nbl->work->cj_ind + c_nbnxnGpuJgroupSize - 1)/c_nbnxnGpuJgroupSize;
1482 /* Returns how many contiguous j-clusters we have starting in the i-list */
1483 template <typename CjListType>
1484 static int numContiguousJClusters(const int cjIndexStart,
1485 const int cjIndexEnd,
1486 const CjListType &cjList)
1488 const int firstJCluster = nblCj(cjList, cjIndexStart);
1490 int numContiguous = 0;
1492 while (cjIndexStart + numContiguous < cjIndexEnd &&
1493 nblCj(cjList, cjIndexStart + numContiguous) == firstJCluster + numContiguous)
1495 numContiguous++;
1498 return numContiguous;
1501 /* Helper struct for efficient searching for excluded atoms in a j-list */
1502 struct JListRanges
1504 /* Constructor */
1505 template <typename CjListType>
1506 JListRanges(int cjIndexStart,
1507 int cjIndexEnd,
1508 const CjListType &cjList);
1510 int cjIndexStart; // The start index in the j-list
1511 int cjIndexEnd; // The end index in the j-list
1512 int cjFirst; // The j-cluster with index cjIndexStart
1513 int cjLast; // The j-cluster with index cjIndexEnd-1
1514 int numDirect; // Up to cjIndexStart+numDirect the j-clusters are cjFirst + the index offset
1517 template <typename CjListType>
1518 JListRanges::JListRanges(int cjIndexStart,
1519 int cjIndexEnd,
1520 const CjListType &cjList) :
1521 cjIndexStart(cjIndexStart),
1522 cjIndexEnd(cjIndexEnd)
1524 GMX_ASSERT(cjIndexEnd > cjIndexStart, "JListRanges should only be called with non-empty lists");
1526 cjFirst = nblCj(cjList, cjIndexStart);
1527 cjLast = nblCj(cjList, cjIndexEnd - 1);
1529 /* Determine how many contiguous j-cells we have starting
1530 * from the first i-cell. This number can be used to directly
1531 * calculate j-cell indices for excluded atoms.
1533 numDirect = numContiguousJClusters(cjIndexStart, cjIndexEnd, cjList);
1536 /* Return the index of \p jCluster in the given range or -1 when not present
1538 * Note: This code is executed very often and therefore performance is
1539 * important. It should be inlined and fully optimized.
1541 template <typename CjListType>
1542 static inline int findJClusterInJList(int jCluster,
1543 const JListRanges &ranges,
1544 const CjListType &cjList)
1546 int index;
1548 if (jCluster < ranges.cjFirst + ranges.numDirect)
1550 /* We can calculate the index directly using the offset */
1551 index = ranges.cjIndexStart + jCluster - ranges.cjFirst;
1553 else
1555 /* Search for jCluster using bisection */
1556 index = -1;
1557 int rangeStart = ranges.cjIndexStart + ranges.numDirect;
1558 int rangeEnd = ranges.cjIndexEnd;
1559 int rangeMiddle;
1560 while (index == -1 && rangeStart < rangeEnd)
1562 rangeMiddle = (rangeStart + rangeEnd) >> 1;
1564 const int clusterMiddle = nblCj(cjList, rangeMiddle);
1566 if (jCluster == clusterMiddle)
1568 index = rangeMiddle;
1570 else if (jCluster < clusterMiddle)
1572 rangeEnd = rangeMiddle;
1574 else
1576 rangeStart = rangeMiddle + 1;
1581 return index;
1584 /* Set all atom-pair exclusions for a simple type list i-entry
1586 * Set all atom-pair exclusions from the topology stored in exclusions
1587 * as masks in the pair-list for simple list entry iEntry.
1589 static void
1590 setExclusionsForSimpleIentry(const nbnxn_search_t nbs,
1591 nbnxn_pairlist_t *nbl,
1592 gmx_bool diagRemoved,
1593 int na_cj_2log,
1594 const nbnxn_ci_t &iEntry,
1595 const t_blocka &exclusions)
1597 if (iEntry.cj_ind_end == iEntry.cj_ind_start)
1599 /* Empty list: no exclusions */
1600 return;
1603 const JListRanges ranges(iEntry.cj_ind_start, iEntry.cj_ind_end, nbl->cj);
1605 const int iCluster = iEntry.ci;
1607 gmx::ArrayRef<const int> cell = nbs->cell;
1609 /* Loop over the atoms in the i-cluster */
1610 for (int i = 0; i < nbl->na_sc; i++)
1612 const int iIndex = iCluster*nbl->na_sc + i;
1613 const int iAtom = nbs->a[iIndex];
1614 if (iAtom >= 0)
1616 /* Loop over the topology-based exclusions for this i-atom */
1617 for (int exclIndex = exclusions.index[iAtom]; exclIndex < exclusions.index[iAtom + 1]; exclIndex++)
1619 const int jAtom = exclusions.a[exclIndex];
1621 if (jAtom == iAtom)
1623 /* The self exclusion are already set, save some time */
1624 continue;
1627 /* Get the index of the j-atom in the nbnxn atom data */
1628 const int jIndex = cell[jAtom];
1630 /* Without shifts we only calculate interactions j>i
1631 * for one-way pair-lists.
1633 if (diagRemoved && jIndex <= iIndex)
1635 continue;
1638 const int jCluster = (jIndex >> na_cj_2log);
1640 /* Could the cluster se be in our list? */
1641 if (jCluster >= ranges.cjFirst && jCluster <= ranges.cjLast)
1643 const int index =
1644 findJClusterInJList(jCluster, ranges, nbl->cj);
1646 if (index >= 0)
1648 /* We found an exclusion, clear the corresponding
1649 * interaction bit.
1651 const int innerJ = jIndex - (jCluster << na_cj_2log);
1653 nbl->cj[index].excl &= ~(1U << ((i << na_cj_2log) + innerJ));
1661 /* Add a new i-entry to the FEP list and copy the i-properties */
1662 static inline void fep_list_new_nri_copy(t_nblist *nlist)
1664 /* Add a new i-entry */
1665 nlist->nri++;
1667 assert(nlist->nri < nlist->maxnri);
1669 /* Duplicate the last i-entry, except for jindex, which continues */
1670 nlist->iinr[nlist->nri] = nlist->iinr[nlist->nri-1];
1671 nlist->shift[nlist->nri] = nlist->shift[nlist->nri-1];
1672 nlist->gid[nlist->nri] = nlist->gid[nlist->nri-1];
1673 nlist->jindex[nlist->nri] = nlist->nrj;
1676 /* For load balancing of the free-energy lists over threads, we set
1677 * the maximum nrj size of an i-entry to 40. This leads to good
1678 * load balancing in the worst case scenario of a single perturbed
1679 * particle on 16 threads, while not introducing significant overhead.
1680 * Note that half of the perturbed pairs will anyhow end up in very small lists,
1681 * since non perturbed i-particles will see few perturbed j-particles).
1683 const int max_nrj_fep = 40;
1685 /* Exclude the perturbed pairs from the Verlet list. This is only done to avoid
1686 * singularities for overlapping particles (0/0), since the charges and
1687 * LJ parameters have been zeroed in the nbnxn data structure.
1688 * Simultaneously make a group pair list for the perturbed pairs.
1690 static void make_fep_list(const nbnxn_search_t nbs,
1691 const nbnxn_atomdata_t *nbat,
1692 nbnxn_pairlist_t *nbl,
1693 gmx_bool bDiagRemoved,
1694 nbnxn_ci_t *nbl_ci,
1695 const nbnxn_grid_t *gridi,
1696 const nbnxn_grid_t *gridj,
1697 t_nblist *nlist)
1699 int ci, cj_ind_start, cj_ind_end, cja, cjr;
1700 int nri_max;
1701 int ngid, gid_i = 0, gid_j, gid;
1702 int egp_shift, egp_mask;
1703 int gid_cj = 0;
1704 int ind_i, ind_j, ai, aj;
1705 int nri;
1706 gmx_bool bFEP_i, bFEP_i_all;
1708 if (nbl_ci->cj_ind_end == nbl_ci->cj_ind_start)
1710 /* Empty list */
1711 return;
1714 ci = nbl_ci->ci;
1716 cj_ind_start = nbl_ci->cj_ind_start;
1717 cj_ind_end = nbl_ci->cj_ind_end;
1719 /* In worst case we have alternating energy groups
1720 * and create #atom-pair lists, which means we need the size
1721 * of a cluster pair (na_ci*na_cj) times the number of cj's.
1723 nri_max = nbl->na_ci*nbl->na_cj*(cj_ind_end - cj_ind_start);
1724 if (nlist->nri + nri_max > nlist->maxnri)
1726 nlist->maxnri = over_alloc_large(nlist->nri + nri_max);
1727 reallocate_nblist(nlist);
1730 ngid = nbat->nenergrp;
1732 if (static_cast<std::size_t>(ngid*gridj->na_cj) > sizeof(gid_cj)*8)
1734 gmx_fatal(FARGS, "The Verlet scheme with %dx%d kernels and free-energy only supports up to %d energy groups",
1735 gridi->na_c, gridj->na_cj, (sizeof(gid_cj)*8)/gridj->na_cj);
1738 egp_shift = nbat->neg_2log;
1739 egp_mask = (1<<nbat->neg_2log) - 1;
1741 /* Loop over the atoms in the i sub-cell */
1742 bFEP_i_all = TRUE;
1743 for (int i = 0; i < nbl->na_ci; i++)
1745 ind_i = ci*nbl->na_ci + i;
1746 ai = nbs->a[ind_i];
1747 if (ai >= 0)
1749 nri = nlist->nri;
1750 nlist->jindex[nri+1] = nlist->jindex[nri];
1751 nlist->iinr[nri] = ai;
1752 /* The actual energy group pair index is set later */
1753 nlist->gid[nri] = 0;
1754 nlist->shift[nri] = nbl_ci->shift & NBNXN_CI_SHIFT;
1756 bFEP_i = gridi->fep[ci - gridi->cell0] & (1 << i);
1758 bFEP_i_all = bFEP_i_all && bFEP_i;
1760 if (nlist->nrj + (cj_ind_end - cj_ind_start)*nbl->na_cj > nlist->maxnrj)
1762 nlist->maxnrj = over_alloc_small(nlist->nrj + (cj_ind_end - cj_ind_start)*nbl->na_cj);
1763 srenew(nlist->jjnr, nlist->maxnrj);
1764 srenew(nlist->excl_fep, nlist->maxnrj);
1767 if (ngid > 1)
1769 gid_i = (nbat->energrp[ci] >> (egp_shift*i)) & egp_mask;
1772 for (int cj_ind = cj_ind_start; cj_ind < cj_ind_end; cj_ind++)
1774 unsigned int fep_cj;
1776 cja = nbl->cj[cj_ind].cj;
1778 if (gridj->na_cj == gridj->na_c)
1780 cjr = cja - gridj->cell0;
1781 fep_cj = gridj->fep[cjr];
1782 if (ngid > 1)
1784 gid_cj = nbat->energrp[cja];
1787 else if (2*gridj->na_cj == gridj->na_c)
1789 cjr = cja - gridj->cell0*2;
1790 /* Extract half of the ci fep/energrp mask */
1791 fep_cj = (gridj->fep[cjr>>1] >> ((cjr&1)*gridj->na_cj)) & ((1<<gridj->na_cj) - 1);
1792 if (ngid > 1)
1794 gid_cj = nbat->energrp[cja>>1] >> ((cja&1)*gridj->na_cj*egp_shift) & ((1<<(gridj->na_cj*egp_shift)) - 1);
1797 else
1799 cjr = cja - (gridj->cell0>>1);
1800 /* Combine two ci fep masks/energrp */
1801 fep_cj = gridj->fep[cjr*2] + (gridj->fep[cjr*2+1] << gridj->na_c);
1802 if (ngid > 1)
1804 gid_cj = nbat->energrp[cja*2] + (nbat->energrp[cja*2+1] << (gridj->na_c*egp_shift));
1808 if (bFEP_i || fep_cj != 0)
1810 for (int j = 0; j < nbl->na_cj; j++)
1812 /* Is this interaction perturbed and not excluded? */
1813 ind_j = cja*nbl->na_cj + j;
1814 aj = nbs->a[ind_j];
1815 if (aj >= 0 &&
1816 (bFEP_i || (fep_cj & (1 << j))) &&
1817 (!bDiagRemoved || ind_j >= ind_i))
1819 if (ngid > 1)
1821 gid_j = (gid_cj >> (j*egp_shift)) & egp_mask;
1822 gid = GID(gid_i, gid_j, ngid);
1824 if (nlist->nrj > nlist->jindex[nri] &&
1825 nlist->gid[nri] != gid)
1827 /* Energy group pair changed: new list */
1828 fep_list_new_nri_copy(nlist);
1829 nri = nlist->nri;
1831 nlist->gid[nri] = gid;
1834 if (nlist->nrj - nlist->jindex[nri] >= max_nrj_fep)
1836 fep_list_new_nri_copy(nlist);
1837 nri = nlist->nri;
1840 /* Add it to the FEP list */
1841 nlist->jjnr[nlist->nrj] = aj;
1842 nlist->excl_fep[nlist->nrj] = (nbl->cj[cj_ind].excl >> (i*nbl->na_cj + j)) & 1;
1843 nlist->nrj++;
1845 /* Exclude it from the normal list.
1846 * Note that the charge has been set to zero,
1847 * but we need to avoid 0/0, as perturbed atoms
1848 * can be on top of each other.
1850 nbl->cj[cj_ind].excl &= ~(1U << (i*nbl->na_cj + j));
1856 if (nlist->nrj > nlist->jindex[nri])
1858 /* Actually add this new, non-empty, list */
1859 nlist->nri++;
1860 nlist->jindex[nlist->nri] = nlist->nrj;
1865 if (bFEP_i_all)
1867 /* All interactions are perturbed, we can skip this entry */
1868 nbl_ci->cj_ind_end = cj_ind_start;
1869 nbl->ncjInUse -= cj_ind_end - cj_ind_start;
1873 /* Return the index of atom a within a cluster */
1874 static inline int cj_mod_cj4(int cj)
1876 return cj & (c_nbnxnGpuJgroupSize - 1);
1879 /* Convert a j-cluster to a cj4 group */
1880 static inline int cj_to_cj4(int cj)
1882 return cj/c_nbnxnGpuJgroupSize;
1885 /* Return the index of an j-atom within a warp */
1886 static inline int a_mod_wj(int a)
1888 return a & (c_nbnxnGpuClusterSize/c_nbnxnGpuClusterpairSplit - 1);
1891 /* As make_fep_list above, but for super/sub lists. */
1892 static void make_fep_list_supersub(const nbnxn_search_t nbs,
1893 const nbnxn_atomdata_t *nbat,
1894 nbnxn_pairlist_t *nbl,
1895 gmx_bool bDiagRemoved,
1896 const nbnxn_sci_t *nbl_sci,
1897 real shx,
1898 real shy,
1899 real shz,
1900 real rlist_fep2,
1901 const nbnxn_grid_t *gridi,
1902 const nbnxn_grid_t *gridj,
1903 t_nblist *nlist)
1905 int sci, cj4_ind_start, cj4_ind_end, cjr;
1906 int nri_max;
1907 int c_abs;
1908 int ind_i, ind_j, ai, aj;
1909 int nri;
1910 gmx_bool bFEP_i;
1911 real xi, yi, zi;
1912 const nbnxn_cj4_t *cj4;
1914 if (nbl_sci->cj4_ind_end == nbl_sci->cj4_ind_start)
1916 /* Empty list */
1917 return;
1920 sci = nbl_sci->sci;
1922 cj4_ind_start = nbl_sci->cj4_ind_start;
1923 cj4_ind_end = nbl_sci->cj4_ind_end;
1925 /* Here we process one super-cell, max #atoms na_sc, versus a list
1926 * cj4 entries, each with max c_nbnxnGpuJgroupSize cj's, each
1927 * of size na_cj atoms.
1928 * On the GPU we don't support energy groups (yet).
1929 * So for each of the na_sc i-atoms, we need max one FEP list
1930 * for each max_nrj_fep j-atoms.
1932 nri_max = nbl->na_sc*nbl->na_cj*(1 + ((cj4_ind_end - cj4_ind_start)*c_nbnxnGpuJgroupSize)/max_nrj_fep);
1933 if (nlist->nri + nri_max > nlist->maxnri)
1935 nlist->maxnri = over_alloc_large(nlist->nri + nri_max);
1936 reallocate_nblist(nlist);
1939 /* Loop over the atoms in the i super-cluster */
1940 for (int c = 0; c < c_gpuNumClusterPerCell; c++)
1942 c_abs = sci*c_gpuNumClusterPerCell + c;
1944 for (int i = 0; i < nbl->na_ci; i++)
1946 ind_i = c_abs*nbl->na_ci + i;
1947 ai = nbs->a[ind_i];
1948 if (ai >= 0)
1950 nri = nlist->nri;
1951 nlist->jindex[nri+1] = nlist->jindex[nri];
1952 nlist->iinr[nri] = ai;
1953 /* With GPUs, energy groups are not supported */
1954 nlist->gid[nri] = 0;
1955 nlist->shift[nri] = nbl_sci->shift & NBNXN_CI_SHIFT;
1957 bFEP_i = (gridi->fep[c_abs - gridi->cell0*c_gpuNumClusterPerCell] & (1 << i));
1959 xi = nbat->x[ind_i*nbat->xstride+XX] + shx;
1960 yi = nbat->x[ind_i*nbat->xstride+YY] + shy;
1961 zi = nbat->x[ind_i*nbat->xstride+ZZ] + shz;
1963 if ((nlist->nrj + cj4_ind_end - cj4_ind_start)*c_nbnxnGpuJgroupSize*nbl->na_cj > nlist->maxnrj)
1965 nlist->maxnrj = over_alloc_small((nlist->nrj + cj4_ind_end - cj4_ind_start)*c_nbnxnGpuJgroupSize*nbl->na_cj);
1966 srenew(nlist->jjnr, nlist->maxnrj);
1967 srenew(nlist->excl_fep, nlist->maxnrj);
1970 for (int cj4_ind = cj4_ind_start; cj4_ind < cj4_ind_end; cj4_ind++)
1972 cj4 = &nbl->cj4[cj4_ind];
1974 for (int gcj = 0; gcj < c_nbnxnGpuJgroupSize; gcj++)
1976 unsigned int fep_cj;
1978 if ((cj4->imei[0].imask & (1U << (gcj*c_gpuNumClusterPerCell + c))) == 0)
1980 /* Skip this ci for this cj */
1981 continue;
1984 cjr = cj4->cj[gcj] - gridj->cell0*c_gpuNumClusterPerCell;
1986 fep_cj = gridj->fep[cjr];
1988 if (bFEP_i || fep_cj != 0)
1990 for (int j = 0; j < nbl->na_cj; j++)
1992 /* Is this interaction perturbed and not excluded? */
1993 ind_j = (gridj->cell0*c_gpuNumClusterPerCell + cjr)*nbl->na_cj + j;
1994 aj = nbs->a[ind_j];
1995 if (aj >= 0 &&
1996 (bFEP_i || (fep_cj & (1 << j))) &&
1997 (!bDiagRemoved || ind_j >= ind_i))
1999 nbnxn_excl_t *excl;
2000 int excl_pair;
2001 unsigned int excl_bit;
2002 real dx, dy, dz;
2004 const int jHalf = j/(c_nbnxnGpuClusterSize/c_nbnxnGpuClusterpairSplit);
2005 get_nbl_exclusions_1(nbl, cj4_ind, jHalf, &excl);
2007 excl_pair = a_mod_wj(j)*nbl->na_ci + i;
2008 excl_bit = (1U << (gcj*c_gpuNumClusterPerCell + c));
2010 dx = nbat->x[ind_j*nbat->xstride+XX] - xi;
2011 dy = nbat->x[ind_j*nbat->xstride+YY] - yi;
2012 dz = nbat->x[ind_j*nbat->xstride+ZZ] - zi;
2014 /* The unpruned GPU list has more than 2/3
2015 * of the atom pairs beyond rlist. Using
2016 * this list will cause a lot of overhead
2017 * in the CPU FEP kernels, especially
2018 * relative to the fast GPU kernels.
2019 * So we prune the FEP list here.
2021 if (dx*dx + dy*dy + dz*dz < rlist_fep2)
2023 if (nlist->nrj - nlist->jindex[nri] >= max_nrj_fep)
2025 fep_list_new_nri_copy(nlist);
2026 nri = nlist->nri;
2029 /* Add it to the FEP list */
2030 nlist->jjnr[nlist->nrj] = aj;
2031 nlist->excl_fep[nlist->nrj] = (excl->pair[excl_pair] & excl_bit) ? 1 : 0;
2032 nlist->nrj++;
2035 /* Exclude it from the normal list.
2036 * Note that the charge and LJ parameters have
2037 * been set to zero, but we need to avoid 0/0,
2038 * as perturbed atoms can be on top of each other.
2040 excl->pair[excl_pair] &= ~excl_bit;
2044 /* Note that we could mask out this pair in imask
2045 * if all i- and/or all j-particles are perturbed.
2046 * But since the perturbed pairs on the CPU will
2047 * take an order of magnitude more time, the GPU
2048 * will finish before the CPU and there is no gain.
2054 if (nlist->nrj > nlist->jindex[nri])
2056 /* Actually add this new, non-empty, list */
2057 nlist->nri++;
2058 nlist->jindex[nlist->nri] = nlist->nrj;
2065 /* Set all atom-pair exclusions for a GPU type list i-entry
2067 * Sets all atom-pair exclusions from the topology stored in exclusions
2068 * as masks in the pair-list for i-super-cluster list entry iEntry.
2070 static void
2071 setExclusionsForGpuIentry(const nbnxn_search_t nbs,
2072 nbnxn_pairlist_t *nbl,
2073 gmx_bool diagRemoved,
2074 const nbnxn_sci_t &iEntry,
2075 const t_blocka &exclusions)
2077 if (iEntry.cj4_ind_end == iEntry.cj4_ind_start)
2079 /* Empty list */
2080 return;
2083 /* Set the search ranges using start and end j-cluster indices.
2084 * Note that here we can not use cj4_ind_end, since the last cj4
2085 * can be only partially filled, so we use cj_ind.
2087 const JListRanges ranges(iEntry.cj4_ind_start*c_nbnxnGpuJgroupSize,
2088 nbl->work->cj_ind,
2089 nbl->cj4);
2091 GMX_ASSERT(nbl->na_ci == c_nbnxnGpuClusterSize, "na_ci should match the GPU cluster size");
2092 constexpr int c_clusterSize = c_nbnxnGpuClusterSize;
2093 constexpr int c_superClusterSize = c_nbnxnGpuNumClusterPerSupercluster*c_nbnxnGpuClusterSize;
2095 const int iSuperCluster = iEntry.sci;
2097 gmx::ArrayRef<const int> cell = nbs->cell;
2099 /* Loop over the atoms in the i super-cluster */
2100 for (int i = 0; i < c_superClusterSize; i++)
2102 const int iIndex = iSuperCluster*c_superClusterSize + i;
2103 const int iAtom = nbs->a[iIndex];
2104 if (iAtom >= 0)
2106 const int iCluster = i/c_clusterSize;
2108 /* Loop over the topology-based exclusions for this i-atom */
2109 for (int exclIndex = exclusions.index[iAtom]; exclIndex < exclusions.index[iAtom + 1]; exclIndex++)
2111 const int jAtom = exclusions.a[exclIndex];
2113 if (jAtom == iAtom)
2115 /* The self exclusions are already set, save some time */
2116 continue;
2119 /* Get the index of the j-atom in the nbnxn atom data */
2120 const int jIndex = cell[jAtom];
2122 /* Without shifts we only calculate interactions j>i
2123 * for one-way pair-lists.
2125 /* NOTE: We would like to use iIndex on the right hand side,
2126 * but that makes this routine 25% slower with gcc6/7.
2127 * Even using c_superClusterSize makes it slower.
2128 * Either of these changes triggers peeling of the exclIndex
2129 * loop, which apparently leads to far less efficient code.
2131 if (diagRemoved && jIndex <= iSuperCluster*nbl->na_sc + i)
2133 continue;
2136 const int jCluster = jIndex/c_clusterSize;
2138 /* Check whether the cluster is in our list? */
2139 if (jCluster >= ranges.cjFirst && jCluster <= ranges.cjLast)
2141 const int index =
2142 findJClusterInJList(jCluster, ranges, nbl->cj4);
2144 if (index >= 0)
2146 /* We found an exclusion, clear the corresponding
2147 * interaction bit.
2149 const unsigned int pairMask = (1U << (cj_mod_cj4(index)*c_gpuNumClusterPerCell + iCluster));
2150 /* Check if the i-cluster interacts with the j-cluster */
2151 if (nbl_imask0(nbl, index) & pairMask)
2153 const int innerI = (i & (c_clusterSize - 1));
2154 const int innerJ = (jIndex & (c_clusterSize - 1));
2156 /* Determine which j-half (CUDA warp) we are in */
2157 const int jHalf = innerJ/(c_clusterSize/c_nbnxnGpuClusterpairSplit);
2159 nbnxn_excl_t *interactionMask;
2160 get_nbl_exclusions_1(nbl, cj_to_cj4(index), jHalf, &interactionMask);
2162 interactionMask->pair[a_mod_wj(innerJ)*c_clusterSize + innerI] &= ~pairMask;
2171 /* Reallocate the simple ci list for at least n entries */
2172 static void nb_realloc_ci(nbnxn_pairlist_t *nbl, int n)
2174 nbl->ci_nalloc = over_alloc_small(n);
2175 nbnxn_realloc_void((void **)&nbl->ci,
2176 nbl->nci*sizeof(*nbl->ci),
2177 nbl->ci_nalloc*sizeof(*nbl->ci),
2178 nbl->alloc, nbl->free);
2180 nbnxn_realloc_void((void **)&nbl->ciOuter,
2181 nbl->nci*sizeof(*nbl->ciOuter),
2182 nbl->ci_nalloc*sizeof(*nbl->ciOuter),
2183 nbl->alloc, nbl->free);
2186 /* Reallocate the super-cell sci list for at least n entries */
2187 static void nb_realloc_sci(nbnxn_pairlist_t *nbl, int n)
2189 nbl->sci_nalloc = over_alloc_small(n);
2190 nbnxn_realloc_void((void **)&nbl->sci,
2191 nbl->nsci*sizeof(*nbl->sci),
2192 nbl->sci_nalloc*sizeof(*nbl->sci),
2193 nbl->alloc, nbl->free);
2196 /* Make a new ci entry at index nbl->nci */
2197 static void new_ci_entry(nbnxn_pairlist_t *nbl, int ci, int shift, int flags)
2199 if (nbl->nci + 1 > nbl->ci_nalloc)
2201 nb_realloc_ci(nbl, nbl->nci+1);
2203 nbl->ci[nbl->nci].ci = ci;
2204 nbl->ci[nbl->nci].shift = shift;
2205 /* Store the interaction flags along with the shift */
2206 nbl->ci[nbl->nci].shift |= flags;
2207 nbl->ci[nbl->nci].cj_ind_start = nbl->ncj;
2208 nbl->ci[nbl->nci].cj_ind_end = nbl->ncj;
2211 /* Make a new sci entry at index nbl->nsci */
2212 static void new_sci_entry(nbnxn_pairlist_t *nbl, int sci, int shift)
2214 if (nbl->nsci + 1 > nbl->sci_nalloc)
2216 nb_realloc_sci(nbl, nbl->nsci+1);
2218 nbl->sci[nbl->nsci].sci = sci;
2219 nbl->sci[nbl->nsci].shift = shift;
2220 nbl->sci[nbl->nsci].cj4_ind_start = nbl->ncj4;
2221 nbl->sci[nbl->nsci].cj4_ind_end = nbl->ncj4;
2224 /* Sort the simple j-list cj on exclusions.
2225 * Entries with exclusions will all be sorted to the beginning of the list.
2227 static void sort_cj_excl(nbnxn_cj_t *cj, int ncj,
2228 nbnxn_list_work_t *work)
2230 int jnew;
2232 if (ncj > work->cj_nalloc)
2234 work->cj_nalloc = over_alloc_large(ncj);
2235 srenew(work->cj, work->cj_nalloc);
2238 /* Make a list of the j-cells involving exclusions */
2239 jnew = 0;
2240 for (int j = 0; j < ncj; j++)
2242 if (cj[j].excl != NBNXN_INTERACTION_MASK_ALL)
2244 work->cj[jnew++] = cj[j];
2247 /* Check if there are exclusions at all or not just the first entry */
2248 if (!((jnew == 0) ||
2249 (jnew == 1 && cj[0].excl != NBNXN_INTERACTION_MASK_ALL)))
2251 for (int j = 0; j < ncj; j++)
2253 if (cj[j].excl == NBNXN_INTERACTION_MASK_ALL)
2255 work->cj[jnew++] = cj[j];
2258 for (int j = 0; j < ncj; j++)
2260 cj[j] = work->cj[j];
2265 /* Close this simple list i entry */
2266 static void close_ci_entry_simple(nbnxn_pairlist_t *nbl)
2268 int jlen;
2270 /* All content of the new ci entry have already been filled correctly,
2271 * we only need to increase the count here (for non empty lists).
2273 jlen = nbl->ci[nbl->nci].cj_ind_end - nbl->ci[nbl->nci].cj_ind_start;
2274 if (jlen > 0)
2276 sort_cj_excl(nbl->cj+nbl->ci[nbl->nci].cj_ind_start, jlen, nbl->work);
2278 /* The counts below are used for non-bonded pair/flop counts
2279 * and should therefore match the available kernel setups.
2281 if (!(nbl->ci[nbl->nci].shift & NBNXN_CI_DO_COUL(0)))
2283 nbl->work->ncj_noq += jlen;
2285 else if ((nbl->ci[nbl->nci].shift & NBNXN_CI_HALF_LJ(0)) ||
2286 !(nbl->ci[nbl->nci].shift & NBNXN_CI_DO_LJ(0)))
2288 nbl->work->ncj_hlj += jlen;
2291 nbl->nci++;
2295 /* Split sci entry for load balancing on the GPU.
2296 * Splitting ensures we have enough lists to fully utilize the whole GPU.
2297 * With progBal we generate progressively smaller lists, which improves
2298 * load balancing. As we only know the current count on our own thread,
2299 * we will need to estimate the current total amount of i-entries.
2300 * As the lists get concatenated later, this estimate depends
2301 * both on nthread and our own thread index.
2303 static void split_sci_entry(nbnxn_pairlist_t *nbl,
2304 int nsp_target_av,
2305 gmx_bool progBal, float nsp_tot_est,
2306 int thread, int nthread)
2308 int nsp_max;
2309 int cj4_start, cj4_end, j4len;
2310 int sci;
2311 int nsp, nsp_sci, nsp_cj4, nsp_cj4_e, nsp_cj4_p;
2313 if (progBal)
2315 float nsp_est;
2317 /* Estimate the total numbers of ci's of the nblist combined
2318 * over all threads using the target number of ci's.
2320 nsp_est = (nsp_tot_est*thread)/nthread + nbl->nci_tot;
2322 /* The first ci blocks should be larger, to avoid overhead.
2323 * The last ci blocks should be smaller, to improve load balancing.
2324 * The factor 3/2 makes the first block 3/2 times the target average
2325 * and ensures that the total number of blocks end up equal to
2326 * that of equally sized blocks of size nsp_target_av.
2328 nsp_max = static_cast<int>(nsp_target_av*(nsp_tot_est*1.5/(nsp_est + nsp_tot_est)));
2330 else
2332 nsp_max = nsp_target_av;
2335 cj4_start = nbl->sci[nbl->nsci-1].cj4_ind_start;
2336 cj4_end = nbl->sci[nbl->nsci-1].cj4_ind_end;
2337 j4len = cj4_end - cj4_start;
2339 if (j4len > 1 && j4len*c_gpuNumClusterPerCell*c_nbnxnGpuJgroupSize > nsp_max)
2341 /* Remove the last ci entry and process the cj4's again */
2342 nbl->nsci -= 1;
2344 sci = nbl->nsci;
2345 nsp = 0;
2346 nsp_sci = 0;
2347 nsp_cj4_e = 0;
2348 nsp_cj4 = 0;
2349 for (int cj4 = cj4_start; cj4 < cj4_end; cj4++)
2351 nsp_cj4_p = nsp_cj4;
2352 /* Count the number of cluster pairs in this cj4 group */
2353 nsp_cj4 = 0;
2354 for (int p = 0; p < c_gpuNumClusterPerCell*c_nbnxnGpuJgroupSize; p++)
2356 nsp_cj4 += (nbl->cj4[cj4].imei[0].imask >> p) & 1;
2359 /* If adding the current cj4 with nsp_cj4 pairs get us further
2360 * away from our target nsp_max, split the list before this cj4.
2362 if (nsp > 0 && nsp_max - nsp < nsp + nsp_cj4 - nsp_max)
2364 /* Split the list at cj4 */
2365 nbl->sci[sci].cj4_ind_end = cj4;
2366 /* Create a new sci entry */
2367 sci++;
2368 nbl->nsci++;
2369 if (nbl->nsci+1 > nbl->sci_nalloc)
2371 nb_realloc_sci(nbl, nbl->nsci+1);
2373 nbl->sci[sci].sci = nbl->sci[nbl->nsci-1].sci;
2374 nbl->sci[sci].shift = nbl->sci[nbl->nsci-1].shift;
2375 nbl->sci[sci].cj4_ind_start = cj4;
2376 nsp_sci = nsp;
2377 nsp_cj4_e = nsp_cj4_p;
2378 nsp = 0;
2380 nsp += nsp_cj4;
2383 /* Put the remaining cj4's in the last sci entry */
2384 nbl->sci[sci].cj4_ind_end = cj4_end;
2386 /* Possibly balance out the last two sci's
2387 * by moving the last cj4 of the second last sci.
2389 if (nsp_sci - nsp_cj4_e >= nsp + nsp_cj4_e)
2391 nbl->sci[sci-1].cj4_ind_end--;
2392 nbl->sci[sci].cj4_ind_start--;
2395 nbl->nsci++;
2399 /* Clost this super/sub list i entry */
2400 static void close_ci_entry_supersub(nbnxn_pairlist_t *nbl,
2401 int nsp_max_av,
2402 gmx_bool progBal, float nsp_tot_est,
2403 int thread, int nthread)
2405 /* All content of the new ci entry have already been filled correctly,
2406 * we only need to increase the count here (for non empty lists).
2408 int j4len = nbl->sci[nbl->nsci].cj4_ind_end - nbl->sci[nbl->nsci].cj4_ind_start;
2409 if (j4len > 0)
2411 /* We can only have complete blocks of 4 j-entries in a list,
2412 * so round the count up before closing.
2414 nbl->ncj4 = (nbl->work->cj_ind + c_nbnxnGpuJgroupSize - 1)/c_nbnxnGpuJgroupSize;
2415 nbl->work->cj_ind = nbl->ncj4*c_nbnxnGpuJgroupSize;
2417 nbl->nsci++;
2419 if (nsp_max_av > 0)
2421 /* Measure the size of the new entry and potentially split it */
2422 split_sci_entry(nbl, nsp_max_av, progBal, nsp_tot_est,
2423 thread, nthread);
2428 /* Syncs the working array before adding another grid pair to the list */
2429 static void sync_work(nbnxn_pairlist_t *nbl)
2431 if (!nbl->bSimple)
2433 nbl->work->cj_ind = nbl->ncj4*c_nbnxnGpuJgroupSize;
2434 nbl->work->cj4_init = nbl->ncj4;
2438 /* Clears an nbnxn_pairlist_t data structure */
2439 static void clear_pairlist(nbnxn_pairlist_t *nbl)
2441 nbl->nci = 0;
2442 nbl->nsci = 0;
2443 nbl->ncj = 0;
2444 nbl->ncjInUse = 0;
2445 nbl->ncj4 = 0;
2446 nbl->nci_tot = 0;
2447 nbl->nciOuter = -1;
2448 nbl->nexcl = 1;
2450 nbl->work->ncj_noq = 0;
2451 nbl->work->ncj_hlj = 0;
2454 /* Clears a group scheme pair list */
2455 static void clear_pairlist_fep(t_nblist *nl)
2457 nl->nri = 0;
2458 nl->nrj = 0;
2459 if (nl->jindex == nullptr)
2461 snew(nl->jindex, 1);
2463 nl->jindex[0] = 0;
2466 /* Sets a simple list i-cell bounding box, including PBC shift */
2467 static inline void set_icell_bb_simple(gmx::ArrayRef<const nbnxn_bb_t> bb,
2468 int ci,
2469 real shx, real shy, real shz,
2470 nbnxn_bb_t *bb_ci)
2472 bb_ci->lower[BB_X] = bb[ci].lower[BB_X] + shx;
2473 bb_ci->lower[BB_Y] = bb[ci].lower[BB_Y] + shy;
2474 bb_ci->lower[BB_Z] = bb[ci].lower[BB_Z] + shz;
2475 bb_ci->upper[BB_X] = bb[ci].upper[BB_X] + shx;
2476 bb_ci->upper[BB_Y] = bb[ci].upper[BB_Y] + shy;
2477 bb_ci->upper[BB_Z] = bb[ci].upper[BB_Z] + shz;
2480 #if NBNXN_BBXXXX
2481 /* Sets a super-cell and sub cell bounding boxes, including PBC shift */
2482 static void set_icell_bbxxxx_supersub(gmx::ArrayRef<const float> bb,
2483 int ci,
2484 real shx, real shy, real shz,
2485 float *bb_ci)
2487 int ia = ci*(c_gpuNumClusterPerCell >> STRIDE_PBB_2LOG)*NNBSBB_XXXX;
2488 for (int m = 0; m < (c_gpuNumClusterPerCell >> STRIDE_PBB_2LOG)*NNBSBB_XXXX; m += NNBSBB_XXXX)
2490 for (int i = 0; i < STRIDE_PBB; i++)
2492 bb_ci[m+0*STRIDE_PBB+i] = bb[ia+m+0*STRIDE_PBB+i] + shx;
2493 bb_ci[m+1*STRIDE_PBB+i] = bb[ia+m+1*STRIDE_PBB+i] + shy;
2494 bb_ci[m+2*STRIDE_PBB+i] = bb[ia+m+2*STRIDE_PBB+i] + shz;
2495 bb_ci[m+3*STRIDE_PBB+i] = bb[ia+m+3*STRIDE_PBB+i] + shx;
2496 bb_ci[m+4*STRIDE_PBB+i] = bb[ia+m+4*STRIDE_PBB+i] + shy;
2497 bb_ci[m+5*STRIDE_PBB+i] = bb[ia+m+5*STRIDE_PBB+i] + shz;
2501 #endif
2503 /* Sets a super-cell and sub cell bounding boxes, including PBC shift */
2504 gmx_unused static void set_icell_bb_supersub(gmx::ArrayRef<const nbnxn_bb_t> bb,
2505 int ci,
2506 real shx, real shy, real shz,
2507 nbnxn_bb_t *bb_ci)
2509 for (int i = 0; i < c_gpuNumClusterPerCell; i++)
2511 set_icell_bb_simple(bb, ci*c_gpuNumClusterPerCell+i,
2512 shx, shy, shz,
2513 &bb_ci[i]);
2517 /* Copies PBC shifted i-cell atom coordinates x,y,z to working array */
2518 static void icell_set_x_simple(int ci,
2519 real shx, real shy, real shz,
2520 int stride, const real *x,
2521 nbnxn_list_work_t *work)
2523 int ia = ci*NBNXN_CPU_CLUSTER_I_SIZE;
2525 for (int i = 0; i < NBNXN_CPU_CLUSTER_I_SIZE; i++)
2527 work->x_ci[i*STRIDE_XYZ+XX] = x[(ia+i)*stride+XX] + shx;
2528 work->x_ci[i*STRIDE_XYZ+YY] = x[(ia+i)*stride+YY] + shy;
2529 work->x_ci[i*STRIDE_XYZ+ZZ] = x[(ia+i)*stride+ZZ] + shz;
2533 /* Copies PBC shifted super-cell atom coordinates x,y,z to working array */
2534 static void icell_set_x_supersub(int ci,
2535 real shx, real shy, real shz,
2536 int stride, const real *x,
2537 nbnxn_list_work_t *work)
2539 #if !GMX_SIMD4_HAVE_REAL
2541 real * x_ci = work->x_ci;
2543 int ia = ci*c_gpuNumClusterPerCell*c_nbnxnGpuClusterSize;
2544 for (int i = 0; i < c_gpuNumClusterPerCell*c_nbnxnGpuClusterSize; i++)
2546 x_ci[i*DIM + XX] = x[(ia+i)*stride + XX] + shx;
2547 x_ci[i*DIM + YY] = x[(ia+i)*stride + YY] + shy;
2548 x_ci[i*DIM + ZZ] = x[(ia+i)*stride + ZZ] + shz;
2551 #else /* !GMX_SIMD4_HAVE_REAL */
2553 real * x_ci = work->x_ci_simd;
2555 for (int si = 0; si < c_gpuNumClusterPerCell; si++)
2557 for (int i = 0; i < c_nbnxnGpuClusterSize; i += GMX_SIMD4_WIDTH)
2559 int io = si*c_nbnxnGpuClusterSize + i;
2560 int ia = ci*c_gpuNumClusterPerCell*c_nbnxnGpuClusterSize + io;
2561 for (int j = 0; j < GMX_SIMD4_WIDTH; j++)
2563 x_ci[io*DIM + j + XX*GMX_SIMD4_WIDTH] = x[(ia + j)*stride + XX] + shx;
2564 x_ci[io*DIM + j + YY*GMX_SIMD4_WIDTH] = x[(ia + j)*stride + YY] + shy;
2565 x_ci[io*DIM + j + ZZ*GMX_SIMD4_WIDTH] = x[(ia + j)*stride + ZZ] + shz;
2570 #endif /* !GMX_SIMD4_HAVE_REAL */
2573 static real minimum_subgrid_size_xy(const nbnxn_grid_t *grid)
2575 if (grid->bSimple)
2577 return std::min(grid->cellSize[XX], grid->cellSize[YY]);
2579 else
2581 return std::min(grid->cellSize[XX]/c_gpuNumClusterPerCellX,
2582 grid->cellSize[YY]/c_gpuNumClusterPerCellY);
2586 static real effective_buffer_1x1_vs_MxN(const nbnxn_grid_t *gridi,
2587 const nbnxn_grid_t *gridj)
2589 const real eff_1x1_buffer_fac_overest = 0.1;
2591 /* Determine an atom-pair list cut-off buffer size for atom pairs,
2592 * to be added to rlist (including buffer) used for MxN.
2593 * This is for converting an MxN list to a 1x1 list. This means we can't
2594 * use the normal buffer estimate, as we have an MxN list in which
2595 * some atom pairs beyond rlist are missing. We want to capture
2596 * the beneficial effect of buffering by extra pairs just outside rlist,
2597 * while removing the useless pairs that are further away from rlist.
2598 * (Also the buffer could have been set manually not using the estimate.)
2599 * This buffer size is an overestimate.
2600 * We add 10% of the smallest grid sub-cell dimensions.
2601 * Note that the z-size differs per cell and we don't use this,
2602 * so we overestimate.
2603 * With PME, the 10% value gives a buffer that is somewhat larger
2604 * than the effective buffer with a tolerance of 0.005 kJ/mol/ps.
2605 * Smaller tolerances or using RF lead to a smaller effective buffer,
2606 * so 10% gives a safe overestimate.
2608 return eff_1x1_buffer_fac_overest*(minimum_subgrid_size_xy(gridi) +
2609 minimum_subgrid_size_xy(gridj));
2612 /* Clusters at the cut-off only increase rlist by 60% of their size */
2613 static real nbnxn_rlist_inc_outside_fac = 0.6;
2615 /* Due to the cluster size the effective pair-list is longer than
2616 * that of a simple atom pair-list. This function gives the extra distance.
2618 real nbnxn_get_rlist_effective_inc(int cluster_size_j, real atom_density)
2620 int cluster_size_i;
2621 real vol_inc_i, vol_inc_j;
2623 /* We should get this from the setup, but currently it's the same for
2624 * all setups, including GPUs.
2626 cluster_size_i = NBNXN_CPU_CLUSTER_I_SIZE;
2628 vol_inc_i = (cluster_size_i - 1)/atom_density;
2629 vol_inc_j = (cluster_size_j - 1)/atom_density;
2631 return nbnxn_rlist_inc_outside_fac*std::cbrt(vol_inc_i + vol_inc_j);
2634 /* Estimates the interaction volume^2 for non-local interactions */
2635 static real nonlocal_vol2(const struct gmx_domdec_zones_t *zones, rvec ls, real r)
2637 real cl, ca, za;
2638 real vold_est;
2639 real vol2_est_tot;
2641 vol2_est_tot = 0;
2643 /* Here we simply add up the volumes of 1, 2 or 3 1D decomposition
2644 * not home interaction volume^2. As these volumes are not additive,
2645 * this is an overestimate, but it would only be significant in the limit
2646 * of small cells, where we anyhow need to split the lists into
2647 * as small parts as possible.
2650 for (int z = 0; z < zones->n; z++)
2652 if (zones->shift[z][XX] + zones->shift[z][YY] + zones->shift[z][ZZ] == 1)
2654 cl = 0;
2655 ca = 1;
2656 za = 1;
2657 for (int d = 0; d < DIM; d++)
2659 if (zones->shift[z][d] == 0)
2661 cl += 0.5*ls[d];
2662 ca *= ls[d];
2663 za *= zones->size[z].x1[d] - zones->size[z].x0[d];
2667 /* 4 octants of a sphere */
2668 vold_est = 0.25*M_PI*r*r*r*r;
2669 /* 4 quarter pie slices on the edges */
2670 vold_est += 4*cl*M_PI/6.0*r*r*r;
2671 /* One rectangular volume on a face */
2672 vold_est += ca*0.5*r*r;
2674 vol2_est_tot += vold_est*za;
2678 return vol2_est_tot;
2681 /* Estimates the average size of a full j-list for super/sub setup */
2682 static void get_nsubpair_target(const nbnxn_search_t nbs,
2683 int iloc,
2684 real rlist,
2685 int min_ci_balanced,
2686 int *nsubpair_target,
2687 float *nsubpair_tot_est)
2689 /* The target value of 36 seems to be the optimum for Kepler.
2690 * Maxwell is less sensitive to the exact value.
2692 const int nsubpair_target_min = 36;
2693 const nbnxn_grid_t *grid;
2694 rvec ls;
2695 real r_eff_sup, vol_est, nsp_est, nsp_est_nl;
2697 grid = &nbs->grid[0];
2699 /* We don't need to balance list sizes if:
2700 * - We didn't request balancing.
2701 * - The number of grid cells >= the number of lists requested,
2702 * since we will always generate at least #cells lists.
2703 * - We don't have any cells, since then there won't be any lists.
2705 if (min_ci_balanced <= 0 || grid->nc >= min_ci_balanced || grid->nc == 0)
2707 /* nsubpair_target==0 signals no balancing */
2708 *nsubpair_target = 0;
2709 *nsubpair_tot_est = 0;
2711 return;
2714 ls[XX] = (grid->c1[XX] - grid->c0[XX])/(grid->numCells[XX]*c_gpuNumClusterPerCellX);
2715 ls[YY] = (grid->c1[YY] - grid->c0[YY])/(grid->numCells[YY]*c_gpuNumClusterPerCellY);
2716 ls[ZZ] = grid->na_c/(grid->atom_density*ls[XX]*ls[YY]);
2718 /* The average length of the diagonal of a sub cell */
2719 real diagonal = std::sqrt(ls[XX]*ls[XX] + ls[YY]*ls[YY] + ls[ZZ]*ls[ZZ]);
2721 /* The formulas below are a heuristic estimate of the average nsj per si*/
2722 r_eff_sup = rlist + nbnxn_rlist_inc_outside_fac*gmx::square((grid->na_c - 1.0)/grid->na_c)*0.5*diagonal;
2724 if (!nbs->DomDec || nbs->zones->n == 1)
2726 nsp_est_nl = 0;
2728 else
2730 nsp_est_nl =
2731 gmx::square(grid->atom_density/grid->na_c)*
2732 nonlocal_vol2(nbs->zones, ls, r_eff_sup);
2735 if (LOCAL_I(iloc))
2737 /* Sub-cell interacts with itself */
2738 vol_est = ls[XX]*ls[YY]*ls[ZZ];
2739 /* 6/2 rectangular volume on the faces */
2740 vol_est += (ls[XX]*ls[YY] + ls[XX]*ls[ZZ] + ls[YY]*ls[ZZ])*r_eff_sup;
2741 /* 12/2 quarter pie slices on the edges */
2742 vol_est += 2*(ls[XX] + ls[YY] + ls[ZZ])*0.25*M_PI*gmx::square(r_eff_sup);
2743 /* 4 octants of a sphere */
2744 vol_est += 0.5*4.0/3.0*M_PI*gmx::power3(r_eff_sup);
2746 /* Estimate the number of cluster pairs as the local number of
2747 * clusters times the volume they interact with times the density.
2749 nsp_est = grid->nsubc_tot*vol_est*grid->atom_density/grid->na_c;
2751 /* Subtract the non-local pair count */
2752 nsp_est -= nsp_est_nl;
2754 /* For small cut-offs nsp_est will be an underesimate.
2755 * With DD nsp_est_nl is an overestimate so nsp_est can get negative.
2756 * So to avoid too small or negative nsp_est we set a minimum of
2757 * all cells interacting with all 3^3 direct neighbors (3^3-1)/2+1=14.
2758 * This might be a slight overestimate for small non-periodic groups of
2759 * atoms as will occur for a local domain with DD, but for small
2760 * groups of atoms we'll anyhow be limited by nsubpair_target_min,
2761 * so this overestimation will not matter.
2763 nsp_est = std::max(nsp_est, grid->nsubc_tot*static_cast<real>(14));
2765 if (debug)
2767 fprintf(debug, "nsp_est local %5.1f non-local %5.1f\n",
2768 nsp_est, nsp_est_nl);
2771 else
2773 nsp_est = nsp_est_nl;
2776 /* Thus the (average) maximum j-list size should be as follows.
2777 * Since there is overhead, we shouldn't make the lists too small
2778 * (and we can't chop up j-groups) so we use a minimum target size of 36.
2780 *nsubpair_target = std::max(nsubpair_target_min,
2781 static_cast<int>(nsp_est/min_ci_balanced + 0.5));
2782 *nsubpair_tot_est = static_cast<int>(nsp_est);
2784 if (debug)
2786 fprintf(debug, "nbl nsp estimate %.1f, nsubpair_target %d\n",
2787 nsp_est, *nsubpair_target);
2791 /* Debug list print function */
2792 static void print_nblist_ci_cj(FILE *fp, const nbnxn_pairlist_t *nbl)
2794 for (int i = 0; i < nbl->nci; i++)
2796 fprintf(fp, "ci %4d shift %2d ncj %3d\n",
2797 nbl->ci[i].ci, nbl->ci[i].shift,
2798 nbl->ci[i].cj_ind_end - nbl->ci[i].cj_ind_start);
2800 for (int j = nbl->ci[i].cj_ind_start; j < nbl->ci[i].cj_ind_end; j++)
2802 fprintf(fp, " cj %5d imask %x\n",
2803 nbl->cj[j].cj,
2804 nbl->cj[j].excl);
2809 /* Debug list print function */
2810 static void print_nblist_sci_cj(FILE *fp, const nbnxn_pairlist_t *nbl)
2812 for (int i = 0; i < nbl->nsci; i++)
2814 fprintf(fp, "ci %4d shift %2d ncj4 %2d\n",
2815 nbl->sci[i].sci, nbl->sci[i].shift,
2816 nbl->sci[i].cj4_ind_end - nbl->sci[i].cj4_ind_start);
2818 int ncp = 0;
2819 for (int j4 = nbl->sci[i].cj4_ind_start; j4 < nbl->sci[i].cj4_ind_end; j4++)
2821 for (int j = 0; j < c_nbnxnGpuJgroupSize; j++)
2823 fprintf(fp, " sj %5d imask %x\n",
2824 nbl->cj4[j4].cj[j],
2825 nbl->cj4[j4].imei[0].imask);
2826 for (int si = 0; si < c_gpuNumClusterPerCell; si++)
2828 if (nbl->cj4[j4].imei[0].imask & (1U << (j*c_gpuNumClusterPerCell + si)))
2830 ncp++;
2835 fprintf(fp, "ci %4d shift %2d ncj4 %2d ncp %3d\n",
2836 nbl->sci[i].sci, nbl->sci[i].shift,
2837 nbl->sci[i].cj4_ind_end - nbl->sci[i].cj4_ind_start,
2838 ncp);
2842 /* Combine pair lists *nbl generated on multiple threads nblc */
2843 static void combine_nblists(int nnbl, nbnxn_pairlist_t **nbl,
2844 nbnxn_pairlist_t *nblc)
2846 int nsci, ncj4, nexcl;
2848 if (nblc->bSimple)
2850 gmx_incons("combine_nblists does not support simple lists");
2853 nsci = nblc->nsci;
2854 ncj4 = nblc->ncj4;
2855 nexcl = nblc->nexcl;
2856 for (int i = 0; i < nnbl; i++)
2858 nsci += nbl[i]->nsci;
2859 ncj4 += nbl[i]->ncj4;
2860 nexcl += nbl[i]->nexcl;
2863 if (nsci > nblc->sci_nalloc)
2865 nb_realloc_sci(nblc, nsci);
2867 if (ncj4 > nblc->cj4_nalloc)
2869 nblc->cj4_nalloc = over_alloc_small(ncj4);
2870 nbnxn_realloc_void((void **)&nblc->cj4,
2871 nblc->ncj4*sizeof(*nblc->cj4),
2872 nblc->cj4_nalloc*sizeof(*nblc->cj4),
2873 nblc->alloc, nblc->free);
2875 if (nexcl > nblc->excl_nalloc)
2877 nblc->excl_nalloc = over_alloc_small(nexcl);
2878 nbnxn_realloc_void((void **)&nblc->excl,
2879 nblc->nexcl*sizeof(*nblc->excl),
2880 nblc->excl_nalloc*sizeof(*nblc->excl),
2881 nblc->alloc, nblc->free);
2884 /* Each thread should copy its own data to the combined arrays,
2885 * as otherwise data will go back and forth between different caches.
2887 #if GMX_OPENMP && !(defined __clang_analyzer__)
2888 // cppcheck-suppress unreadVariable
2889 int nthreads = gmx_omp_nthreads_get(emntPairsearch);
2890 #endif
2892 #pragma omp parallel for num_threads(nthreads) schedule(static)
2893 for (int n = 0; n < nnbl; n++)
2897 int sci_offset;
2898 int cj4_offset;
2899 int excl_offset;
2900 const nbnxn_pairlist_t *nbli;
2902 /* Determine the offset in the combined data for our thread */
2903 sci_offset = nblc->nsci;
2904 cj4_offset = nblc->ncj4;
2905 excl_offset = nblc->nexcl;
2907 for (int i = 0; i < n; i++)
2909 sci_offset += nbl[i]->nsci;
2910 cj4_offset += nbl[i]->ncj4;
2911 excl_offset += nbl[i]->nexcl;
2914 nbli = nbl[n];
2916 for (int i = 0; i < nbli->nsci; i++)
2918 nblc->sci[sci_offset+i] = nbli->sci[i];
2919 nblc->sci[sci_offset+i].cj4_ind_start += cj4_offset;
2920 nblc->sci[sci_offset+i].cj4_ind_end += cj4_offset;
2923 for (int j4 = 0; j4 < nbli->ncj4; j4++)
2925 nblc->cj4[cj4_offset+j4] = nbli->cj4[j4];
2926 nblc->cj4[cj4_offset+j4].imei[0].excl_ind += excl_offset;
2927 nblc->cj4[cj4_offset+j4].imei[1].excl_ind += excl_offset;
2930 for (int j4 = 0; j4 < nbli->nexcl; j4++)
2932 nblc->excl[excl_offset+j4] = nbli->excl[j4];
2935 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
2938 for (int n = 0; n < nnbl; n++)
2940 nblc->nsci += nbl[n]->nsci;
2941 nblc->ncj4 += nbl[n]->ncj4;
2942 nblc->nci_tot += nbl[n]->nci_tot;
2943 nblc->nexcl += nbl[n]->nexcl;
2947 static void balance_fep_lists(const nbnxn_search_t nbs,
2948 nbnxn_pairlist_set_t *nbl_lists)
2950 int nnbl;
2951 int nri_tot, nrj_tot, nrj_target;
2952 int th_dest;
2953 t_nblist *nbld;
2955 nnbl = nbl_lists->nnbl;
2957 if (nnbl == 1)
2959 /* Nothing to balance */
2960 return;
2963 /* Count the total i-lists and pairs */
2964 nri_tot = 0;
2965 nrj_tot = 0;
2966 for (int th = 0; th < nnbl; th++)
2968 nri_tot += nbl_lists->nbl_fep[th]->nri;
2969 nrj_tot += nbl_lists->nbl_fep[th]->nrj;
2972 nrj_target = (nrj_tot + nnbl - 1)/nnbl;
2974 assert(gmx_omp_nthreads_get(emntNonbonded) == nnbl);
2976 #pragma omp parallel for schedule(static) num_threads(nnbl)
2977 for (int th = 0; th < nnbl; th++)
2981 t_nblist *nbl = nbs->work[th].nbl_fep.get();
2983 /* Note that here we allocate for the total size, instead of
2984 * a per-thread esimate (which is hard to obtain).
2986 if (nri_tot > nbl->maxnri)
2988 nbl->maxnri = over_alloc_large(nri_tot);
2989 reallocate_nblist(nbl);
2991 if (nri_tot > nbl->maxnri || nrj_tot > nbl->maxnrj)
2993 nbl->maxnrj = over_alloc_small(nrj_tot);
2994 srenew(nbl->jjnr, nbl->maxnrj);
2995 srenew(nbl->excl_fep, nbl->maxnrj);
2998 clear_pairlist_fep(nbl);
3000 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
3003 /* Loop over the source lists and assign and copy i-entries */
3004 th_dest = 0;
3005 nbld = nbs->work[th_dest].nbl_fep.get();
3006 for (int th = 0; th < nnbl; th++)
3008 t_nblist *nbls;
3010 nbls = nbl_lists->nbl_fep[th];
3012 for (int i = 0; i < nbls->nri; i++)
3014 int nrj;
3016 /* The number of pairs in this i-entry */
3017 nrj = nbls->jindex[i+1] - nbls->jindex[i];
3019 /* Decide if list th_dest is too large and we should procede
3020 * to the next destination list.
3022 if (th_dest+1 < nnbl && nbld->nrj > 0 &&
3023 nbld->nrj + nrj - nrj_target > nrj_target - nbld->nrj)
3025 th_dest++;
3026 nbld = nbs->work[th_dest].nbl_fep.get();
3029 nbld->iinr[nbld->nri] = nbls->iinr[i];
3030 nbld->gid[nbld->nri] = nbls->gid[i];
3031 nbld->shift[nbld->nri] = nbls->shift[i];
3033 for (int j = nbls->jindex[i]; j < nbls->jindex[i+1]; j++)
3035 nbld->jjnr[nbld->nrj] = nbls->jjnr[j];
3036 nbld->excl_fep[nbld->nrj] = nbls->excl_fep[j];
3037 nbld->nrj++;
3039 nbld->nri++;
3040 nbld->jindex[nbld->nri] = nbld->nrj;
3044 /* Swap the list pointers */
3045 for (int th = 0; th < nnbl; th++)
3047 t_nblist *nbl_tmp = nbs->work[th].nbl_fep.release();
3048 nbs->work[th].nbl_fep.reset(nbl_lists->nbl_fep[th]);
3049 nbl_lists->nbl_fep[th] = nbl_tmp;
3051 if (debug)
3053 fprintf(debug, "nbl_fep[%d] nri %4d nrj %4d\n",
3055 nbl_lists->nbl_fep[th]->nri,
3056 nbl_lists->nbl_fep[th]->nrj);
3061 /* Returns the next ci to be processes by our thread */
3062 static gmx_bool next_ci(const nbnxn_grid_t *grid,
3063 int nth, int ci_block,
3064 int *ci_x, int *ci_y,
3065 int *ci_b, int *ci)
3067 (*ci_b)++;
3068 (*ci)++;
3070 if (*ci_b == ci_block)
3072 /* Jump to the next block assigned to this task */
3073 *ci += (nth - 1)*ci_block;
3074 *ci_b = 0;
3077 if (*ci >= grid->nc)
3079 return FALSE;
3082 while (*ci >= grid->cxy_ind[*ci_x*grid->numCells[YY] + *ci_y + 1])
3084 *ci_y += 1;
3085 if (*ci_y == grid->numCells[YY])
3087 *ci_x += 1;
3088 *ci_y = 0;
3092 return TRUE;
3095 /* Returns the distance^2 for which we put cell pairs in the list
3096 * without checking atom pair distances. This is usually < rlist^2.
3098 static float boundingbox_only_distance2(const nbnxn_grid_t *gridi,
3099 const nbnxn_grid_t *gridj,
3100 real rlist,
3101 gmx_bool simple)
3103 /* If the distance between two sub-cell bounding boxes is less
3104 * than this distance, do not check the distance between
3105 * all particle pairs in the sub-cell, since then it is likely
3106 * that the box pair has atom pairs within the cut-off.
3107 * We use the nblist cut-off minus 0.5 times the average x/y diagonal
3108 * spacing of the sub-cells. Around 40% of the checked pairs are pruned.
3109 * Using more than 0.5 gains at most 0.5%.
3110 * If forces are calculated more than twice, the performance gain
3111 * in the force calculation outweighs the cost of checking.
3112 * Note that with subcell lists, the atom-pair distance check
3113 * is only performed when only 1 out of 8 sub-cells in within range,
3114 * this is because the GPU is much faster than the cpu.
3116 real bbx, bby;
3117 real rbb2;
3119 bbx = 0.5*(gridi->cellSize[XX] + gridj->cellSize[XX]);
3120 bby = 0.5*(gridi->cellSize[YY] + gridj->cellSize[YY]);
3121 if (!simple)
3123 bbx /= c_gpuNumClusterPerCellX;
3124 bby /= c_gpuNumClusterPerCellY;
3127 rbb2 = std::max(0.0, rlist - 0.5*std::sqrt(bbx*bbx + bby*bby));
3128 rbb2 = rbb2 * rbb2;
3130 #if !GMX_DOUBLE
3131 return rbb2;
3132 #else
3133 return (float)((1+GMX_FLOAT_EPS)*rbb2);
3134 #endif
3137 static int get_ci_block_size(const nbnxn_grid_t *gridi,
3138 gmx_bool bDomDec, int nth)
3140 const int ci_block_enum = 5;
3141 const int ci_block_denom = 11;
3142 const int ci_block_min_atoms = 16;
3143 int ci_block;
3145 /* Here we decide how to distribute the blocks over the threads.
3146 * We use prime numbers to try to avoid that the grid size becomes
3147 * a multiple of the number of threads, which would lead to some
3148 * threads getting "inner" pairs and others getting boundary pairs,
3149 * which in turns will lead to load imbalance between threads.
3150 * Set the block size as 5/11/ntask times the average number of cells
3151 * in a y,z slab. This should ensure a quite uniform distribution
3152 * of the grid parts of the different thread along all three grid
3153 * zone boundaries with 3D domain decomposition. At the same time
3154 * the blocks will not become too small.
3156 ci_block = (gridi->nc*ci_block_enum)/(ci_block_denom*gridi->numCells[XX]*nth);
3158 /* Ensure the blocks are not too small: avoids cache invalidation */
3159 if (ci_block*gridi->na_sc < ci_block_min_atoms)
3161 ci_block = (ci_block_min_atoms + gridi->na_sc - 1)/gridi->na_sc;
3164 /* Without domain decomposition
3165 * or with less than 3 blocks per task, divide in nth blocks.
3167 if (!bDomDec || nth*3*ci_block > gridi->nc)
3169 ci_block = (gridi->nc + nth - 1)/nth;
3172 if (ci_block > 1 && (nth - 1)*ci_block >= gridi->nc)
3174 /* Some threads have no work. Although reducing the block size
3175 * does not decrease the block count on the first few threads,
3176 * with GPUs better mixing of "upper" cells that have more empty
3177 * clusters results in a somewhat lower max load over all threads.
3178 * Without GPUs the regime of so few atoms per thread is less
3179 * performance relevant, but with 8-wide SIMD the same reasoning
3180 * applies, since the pair list uses 4 i-atom "sub-clusters".
3182 ci_block--;
3185 return ci_block;
3188 /* Returns the number of bits to right-shift a cluster index to obtain
3189 * the corresponding force buffer flag index.
3191 static int getBufferFlagShift(int numAtomsPerCluster)
3193 int bufferFlagShift = 0;
3194 while ((numAtomsPerCluster << bufferFlagShift) < NBNXN_BUFFERFLAG_SIZE)
3196 bufferFlagShift++;
3199 return bufferFlagShift;
3202 /* Generates the part of pair-list nbl assigned to our thread */
3203 static void nbnxn_make_pairlist_part(const nbnxn_search_t nbs,
3204 const nbnxn_grid_t *gridi,
3205 const nbnxn_grid_t *gridj,
3206 nbnxn_search_work_t *work,
3207 const nbnxn_atomdata_t *nbat,
3208 const t_blocka &exclusions,
3209 real rlist,
3210 int nb_kernel_type,
3211 int ci_block,
3212 gmx_bool bFBufferFlag,
3213 int nsubpair_max,
3214 gmx_bool progBal,
3215 float nsubpair_tot_est,
3216 int th, int nth,
3217 nbnxn_pairlist_t *nbl,
3218 t_nblist *nbl_fep)
3220 int na_cj_2log;
3221 matrix box;
3222 real rlist2, rl_fep2 = 0;
3223 float rbb2;
3224 int ci_b, ci, ci_x, ci_y, ci_xy, cj;
3225 ivec shp;
3226 int shift;
3227 real shx, shy, shz;
3228 real bx0, bx1, by0, by1, bz0, bz1;
3229 real bz1_frac;
3230 real d2cx, d2z, d2z_cx, d2z_cy, d2zx, d2zxy, d2xy;
3231 int cxf, cxl, cyf, cyf_x, cyl;
3232 int numDistanceChecks;
3233 int gridi_flag_shift = 0, gridj_flag_shift = 0;
3234 gmx_bitmask_t *gridj_flag = nullptr;
3235 int ncj_old_i, ncj_old_j;
3237 nbs_cycle_start(&work->cc[enbsCCsearch]);
3239 if (gridj->bSimple != nbl->bSimple)
3241 gmx_incons("Grid incompatible with pair-list");
3244 sync_work(nbl);
3245 nbl->na_sc = gridj->na_sc;
3246 nbl->na_ci = gridj->na_c;
3247 nbl->na_cj = nbnxn_kernel_to_cluster_j_size(nb_kernel_type);
3248 na_cj_2log = get_2log(nbl->na_cj);
3250 nbl->rlist = rlist;
3252 if (bFBufferFlag)
3254 /* Determine conversion of clusters to flag blocks */
3255 gridi_flag_shift = getBufferFlagShift(nbl->na_ci);
3256 gridj_flag_shift = getBufferFlagShift(nbl->na_cj);
3258 gridj_flag = work->buffer_flags.flag;
3261 copy_mat(nbs->box, box);
3263 rlist2 = nbl->rlist*nbl->rlist;
3265 if (nbs->bFEP && !nbl->bSimple)
3267 /* Determine an atom-pair list cut-off distance for FEP atom pairs.
3268 * We should not simply use rlist, since then we would not have
3269 * the small, effective buffering of the NxN lists.
3270 * The buffer is on overestimate, but the resulting cost for pairs
3271 * beyond rlist is neglible compared to the FEP pairs within rlist.
3273 rl_fep2 = nbl->rlist + effective_buffer_1x1_vs_MxN(gridi, gridj);
3275 if (debug)
3277 fprintf(debug, "nbl_fep atom-pair rlist %f\n", rl_fep2);
3279 rl_fep2 = rl_fep2*rl_fep2;
3282 rbb2 = boundingbox_only_distance2(gridi, gridj, nbl->rlist, nbl->bSimple);
3284 if (debug)
3286 fprintf(debug, "nbl bounding box only distance %f\n", std::sqrt(rbb2));
3289 /* Set the shift range */
3290 for (int d = 0; d < DIM; d++)
3292 /* Check if we need periodicity shifts.
3293 * Without PBC or with domain decomposition we don't need them.
3295 if (d >= ePBC2npbcdim(nbs->ePBC) || nbs->dd_dim[d])
3297 shp[d] = 0;
3299 else
3301 if (d == XX &&
3302 box[XX][XX] - fabs(box[YY][XX]) - fabs(box[ZZ][XX]) < std::sqrt(rlist2))
3304 shp[d] = 2;
3306 else
3308 shp[d] = 1;
3313 gmx::ArrayRef<const nbnxn_bb_t> bb_i;
3314 #if NBNXN_BBXXXX
3315 gmx::ArrayRef<const float> pbb_i;
3316 if (gridi->bSimple)
3318 bb_i = gridi->bb;
3320 else
3322 pbb_i = gridi->pbb;
3324 #else
3325 /* We use the normal bounding box format for both grid types */
3326 bb_i = gridi->bb;
3327 #endif
3328 gmx::ArrayRef<const float> bbcz_i = gridi->bbcz;
3329 gmx::ArrayRef<const int> flags_i = gridi->flags;
3330 gmx::ArrayRef<const float> bbcz_j = gridj->bbcz;
3331 int cell0_i = gridi->cell0;
3333 if (debug)
3335 fprintf(debug, "nbl nc_i %d col.av. %.1f ci_block %d\n",
3336 gridi->nc, gridi->nc/(double)(gridi->numCells[XX]*gridi->numCells[YY]), ci_block);
3339 numDistanceChecks = 0;
3341 /* Initially ci_b and ci to 1 before where we want them to start,
3342 * as they will both be incremented in next_ci.
3344 ci_b = -1;
3345 ci = th*ci_block - 1;
3346 ci_x = 0;
3347 ci_y = 0;
3348 while (next_ci(gridi, nth, ci_block, &ci_x, &ci_y, &ci_b, &ci))
3350 if (nbl->bSimple && flags_i[ci] == 0)
3352 continue;
3355 ncj_old_i = nbl->ncj;
3357 d2cx = 0;
3358 if (gridj != gridi && shp[XX] == 0)
3360 if (nbl->bSimple)
3362 bx1 = bb_i[ci].upper[BB_X];
3364 else
3366 bx1 = gridi->c0[XX] + (ci_x+1)*gridi->cellSize[XX];
3368 if (bx1 < gridj->c0[XX])
3370 d2cx = gmx::square(gridj->c0[XX] - bx1);
3372 if (d2cx >= rlist2)
3374 continue;
3379 ci_xy = ci_x*gridi->numCells[YY] + ci_y;
3381 /* Loop over shift vectors in three dimensions */
3382 for (int tz = -shp[ZZ]; tz <= shp[ZZ]; tz++)
3384 shz = tz*box[ZZ][ZZ];
3386 bz0 = bbcz_i[ci*NNBSBB_D ] + shz;
3387 bz1 = bbcz_i[ci*NNBSBB_D+1] + shz;
3389 if (tz == 0)
3391 d2z = 0;
3393 else if (tz < 0)
3395 d2z = gmx::square(bz1);
3397 else
3399 d2z = gmx::square(bz0 - box[ZZ][ZZ]);
3402 d2z_cx = d2z + d2cx;
3404 if (d2z_cx >= rlist2)
3406 continue;
3409 bz1_frac = bz1/(gridi->cxy_ind[ci_xy+1] - gridi->cxy_ind[ci_xy]);
3410 if (bz1_frac < 0)
3412 bz1_frac = 0;
3414 /* The check with bz1_frac close to or larger than 1 comes later */
3416 for (int ty = -shp[YY]; ty <= shp[YY]; ty++)
3418 shy = ty*box[YY][YY] + tz*box[ZZ][YY];
3420 if (nbl->bSimple)
3422 by0 = bb_i[ci].lower[BB_Y] + shy;
3423 by1 = bb_i[ci].upper[BB_Y] + shy;
3425 else
3427 by0 = gridi->c0[YY] + (ci_y )*gridi->cellSize[YY] + shy;
3428 by1 = gridi->c0[YY] + (ci_y+1)*gridi->cellSize[YY] + shy;
3431 get_cell_range<YY>(by0, by1,
3432 *gridj,
3433 d2z_cx, rlist2,
3434 &cyf, &cyl);
3436 if (cyf > cyl)
3438 continue;
3441 d2z_cy = d2z;
3442 if (by1 < gridj->c0[YY])
3444 d2z_cy += gmx::square(gridj->c0[YY] - by1);
3446 else if (by0 > gridj->c1[YY])
3448 d2z_cy += gmx::square(by0 - gridj->c1[YY]);
3451 for (int tx = -shp[XX]; tx <= shp[XX]; tx++)
3453 shift = XYZ2IS(tx, ty, tz);
3455 if (c_pbcShiftBackward && gridi == gridj && shift > CENTRAL)
3457 continue;
3460 shx = tx*box[XX][XX] + ty*box[YY][XX] + tz*box[ZZ][XX];
3462 if (nbl->bSimple)
3464 bx0 = bb_i[ci].lower[BB_X] + shx;
3465 bx1 = bb_i[ci].upper[BB_X] + shx;
3467 else
3469 bx0 = gridi->c0[XX] + (ci_x )*gridi->cellSize[XX] + shx;
3470 bx1 = gridi->c0[XX] + (ci_x+1)*gridi->cellSize[XX] + shx;
3473 get_cell_range<XX>(bx0, bx1,
3474 *gridj,
3475 d2z_cy, rlist2,
3476 &cxf, &cxl);
3478 if (cxf > cxl)
3480 continue;
3483 if (nbl->bSimple)
3485 new_ci_entry(nbl, cell0_i+ci, shift, flags_i[ci]);
3487 else
3489 new_sci_entry(nbl, cell0_i+ci, shift);
3492 if ((!c_pbcShiftBackward || (shift == CENTRAL &&
3493 gridi == gridj)) &&
3494 cxf < ci_x)
3496 /* Leave the pairs with i > j.
3497 * x is the major index, so skip half of it.
3499 cxf = ci_x;
3502 if (nbl->bSimple)
3504 set_icell_bb_simple(bb_i, ci, shx, shy, shz,
3505 nbl->work->bb_ci);
3507 else
3509 #if NBNXN_BBXXXX
3510 set_icell_bbxxxx_supersub(pbb_i, ci, shx, shy, shz,
3511 nbl->work->pbb_ci);
3512 #else
3513 set_icell_bb_supersub(bb_i, ci, shx, shy, shz,
3514 nbl->work->bb_ci);
3515 #endif
3518 nbs->icell_set_x(cell0_i+ci, shx, shy, shz,
3519 nbat->xstride, nbat->x,
3520 nbl->work);
3522 for (int cx = cxf; cx <= cxl; cx++)
3524 d2zx = d2z;
3525 if (gridj->c0[XX] + cx*gridj->cellSize[XX] > bx1)
3527 d2zx += gmx::square(gridj->c0[XX] + cx*gridj->cellSize[XX] - bx1);
3529 else if (gridj->c0[XX] + (cx+1)*gridj->cellSize[XX] < bx0)
3531 d2zx += gmx::square(gridj->c0[XX] + (cx+1)*gridj->cellSize[XX] - bx0);
3534 if (gridi == gridj &&
3535 cx == 0 &&
3536 (!c_pbcShiftBackward || shift == CENTRAL) &&
3537 cyf < ci_y)
3539 /* Leave the pairs with i > j.
3540 * Skip half of y when i and j have the same x.
3542 cyf_x = ci_y;
3544 else
3546 cyf_x = cyf;
3549 for (int cy = cyf_x; cy <= cyl; cy++)
3551 const int columnStart = gridj->cxy_ind[cx*gridj->numCells[YY] + cy];
3552 const int columnEnd = gridj->cxy_ind[cx*gridj->numCells[YY] + cy + 1];
3554 d2zxy = d2zx;
3555 if (gridj->c0[YY] + cy*gridj->cellSize[YY] > by1)
3557 d2zxy += gmx::square(gridj->c0[YY] + cy*gridj->cellSize[YY] - by1);
3559 else if (gridj->c0[YY] + (cy+1)*gridj->cellSize[YY] < by0)
3561 d2zxy += gmx::square(gridj->c0[YY] + (cy+1)*gridj->cellSize[YY] - by0);
3563 if (columnStart < columnEnd && d2zxy < rlist2)
3565 /* To improve efficiency in the common case
3566 * of a homogeneous particle distribution,
3567 * we estimate the index of the middle cell
3568 * in range (midCell). We search down and up
3569 * starting from this index.
3571 * Note that the bbcz_j array contains bounds
3572 * for i-clusters, thus for clusters of 4 atoms.
3573 * For the common case where the j-cluster size
3574 * is 8, we could step with a stride of 2,
3575 * but we do not do this because it would
3576 * complicate this code even more.
3578 int midCell = columnStart + static_cast<int>(bz1_frac*(columnEnd - columnStart));
3579 if (midCell >= columnEnd)
3581 midCell = columnEnd - 1;
3584 d2xy = d2zxy - d2z;
3586 /* Find the lowest cell that can possibly
3587 * be within range.
3588 * Check if we hit the bottom of the grid,
3589 * if the j-cell is below the i-cell and if so,
3590 * if it is within range.
3592 int downTestCell = midCell;
3593 while (downTestCell >= columnStart &&
3594 (bbcz_j[downTestCell*NNBSBB_D + 1] >= bz0 ||
3595 d2xy + gmx::square(bbcz_j[downTestCell*NNBSBB_D + 1] - bz0) < rlist2))
3597 downTestCell--;
3599 int firstCell = downTestCell + 1;
3601 /* Find the highest cell that can possibly
3602 * be within range.
3603 * Check if we hit the top of the grid,
3604 * if the j-cell is above the i-cell and if so,
3605 * if it is within range.
3607 int upTestCell = midCell + 1;
3608 while (upTestCell < columnEnd &&
3609 (bbcz_j[upTestCell*NNBSBB_D] <= bz1 ||
3610 d2xy + gmx::square(bbcz_j[upTestCell*NNBSBB_D] - bz1) < rlist2))
3612 upTestCell++;
3614 int lastCell = upTestCell - 1;
3616 #define NBNXN_REFCODE 0
3617 #if NBNXN_REFCODE
3619 /* Simple reference code, for debugging,
3620 * overrides the more complex code above.
3622 firstCell = columnEnd;
3623 lastCell = -1;
3624 for (int k = columnStart; k < columnEnd; k++)
3626 if (d2xy + gmx::square(bbcz_j[k*NNBSBB_D + 1] - bz0) < rlist2 &&
3627 k < firstCell)
3629 firstCell = k;
3631 if (d2xy + gmx::square(bbcz_j[k*NNBSBB_D] - bz1) < rlist2 &&
3632 k > lastCell)
3634 lastCell = k;
3638 #endif
3640 if (gridi == gridj)
3642 /* We want each atom/cell pair only once,
3643 * only use cj >= ci.
3645 if (!c_pbcShiftBackward || shift == CENTRAL)
3647 firstCell = std::max(firstCell, ci);
3651 if (firstCell <= lastCell)
3653 GMX_ASSERT(firstCell >= columnStart && lastCell < columnEnd, "The range should reside within the current grid column");
3655 /* For f buffer flags with simple lists */
3656 ncj_old_j = nbl->ncj;
3658 if (nbl->bSimple)
3660 /* We have a maximum of 2 j-clusters
3661 * per i-cluster sized cell.
3663 check_cell_list_space_simple(nbl, 2*(lastCell - firstCell + 1));
3665 else
3667 check_cell_list_space_supersub(nbl, lastCell - firstCell + 1);
3670 switch (nb_kernel_type)
3672 case nbnxnk4x4_PlainC:
3673 makeClusterListSimple(gridj,
3674 nbl, ci, firstCell, lastCell,
3675 (gridi == gridj && shift == CENTRAL),
3676 nbat->x,
3677 rlist2, rbb2,
3678 &numDistanceChecks);
3679 break;
3680 #ifdef GMX_NBNXN_SIMD_4XN
3681 case nbnxnk4xN_SIMD_4xN:
3682 makeClusterListSimd4xn(gridj,
3683 nbl, ci, firstCell, lastCell,
3684 (gridi == gridj && shift == CENTRAL),
3685 nbat->x,
3686 rlist2, rbb2,
3687 &numDistanceChecks);
3688 break;
3689 #endif
3690 #ifdef GMX_NBNXN_SIMD_2XNN
3691 case nbnxnk4xN_SIMD_2xNN:
3692 makeClusterListSimd2xnn(gridj,
3693 nbl, ci, firstCell, lastCell,
3694 (gridi == gridj && shift == CENTRAL),
3695 nbat->x,
3696 rlist2, rbb2,
3697 &numDistanceChecks);
3698 break;
3699 #endif
3700 case nbnxnk8x8x8_PlainC:
3701 case nbnxnk8x8x8_GPU:
3702 for (cj = firstCell; cj <= lastCell; cj++)
3704 make_cluster_list_supersub(gridi, gridj,
3705 nbl, ci, cj,
3706 (gridi == gridj && shift == CENTRAL && ci == cj),
3707 nbat->xstride, nbat->x,
3708 rlist2, rbb2,
3709 &numDistanceChecks);
3711 break;
3714 if (bFBufferFlag && nbl->ncj > ncj_old_j)
3716 int cbf = nbl->cj[ncj_old_j].cj >> gridj_flag_shift;
3717 int cbl = nbl->cj[nbl->ncj-1].cj >> gridj_flag_shift;
3718 for (int cb = cbf; cb <= cbl; cb++)
3720 bitmask_init_bit(&gridj_flag[cb], th);
3724 nbl->ncjInUse += nbl->ncj - ncj_old_j;
3730 /* Set the exclusions for this ci list */
3731 if (nbl->bSimple)
3733 setExclusionsForSimpleIentry(nbs,
3734 nbl,
3735 shift == CENTRAL && gridi == gridj,
3736 na_cj_2log,
3737 nbl->ci[nbl->nci],
3738 exclusions);
3740 if (nbs->bFEP)
3742 make_fep_list(nbs, nbat, nbl,
3743 shift == CENTRAL && gridi == gridj,
3744 &(nbl->ci[nbl->nci]),
3745 gridi, gridj, nbl_fep);
3748 else
3750 setExclusionsForGpuIentry(nbs,
3751 nbl,
3752 shift == CENTRAL && gridi == gridj,
3753 nbl->sci[nbl->nsci],
3754 exclusions);
3756 if (nbs->bFEP)
3758 make_fep_list_supersub(nbs, nbat, nbl,
3759 shift == CENTRAL && gridi == gridj,
3760 &(nbl->sci[nbl->nsci]),
3761 shx, shy, shz,
3762 rl_fep2,
3763 gridi, gridj, nbl_fep);
3767 /* Close this ci list */
3768 if (nbl->bSimple)
3770 close_ci_entry_simple(nbl);
3772 else
3774 close_ci_entry_supersub(nbl,
3775 nsubpair_max,
3776 progBal, nsubpair_tot_est,
3777 th, nth);
3783 if (bFBufferFlag && nbl->ncj > ncj_old_i)
3785 bitmask_init_bit(&(work->buffer_flags.flag[(gridi->cell0+ci)>>gridi_flag_shift]), th);
3789 work->ndistc = numDistanceChecks;
3791 nbs_cycle_stop(&work->cc[enbsCCsearch]);
3793 GMX_ASSERT(nbl->ncjInUse == nbl->ncj || nbs->bFEP, "Without free-energy all cj pair-list entries should be in use. Note that subsequent code does not make use of the equality, this check is only here to catch bugs");
3795 if (debug)
3797 fprintf(debug, "number of distance checks %d\n", numDistanceChecks);
3799 if (nbl->bSimple)
3801 print_nblist_statistics_simple(debug, nbl, nbs, rlist);
3803 else
3805 print_nblist_statistics_supersub(debug, nbl, nbs, rlist);
3808 if (nbs->bFEP)
3810 fprintf(debug, "nbl FEP list pairs: %d\n", nbl_fep->nrj);
3815 static void reduce_buffer_flags(const nbnxn_search_t nbs,
3816 int nsrc,
3817 const nbnxn_buffer_flags_t *dest)
3819 for (int s = 0; s < nsrc; s++)
3821 gmx_bitmask_t * flag = nbs->work[s].buffer_flags.flag;
3823 for (int b = 0; b < dest->nflag; b++)
3825 bitmask_union(&(dest->flag[b]), flag[b]);
3830 static void print_reduction_cost(const nbnxn_buffer_flags_t *flags, int nout)
3832 int nelem, nkeep, ncopy, nred, out;
3833 gmx_bitmask_t mask_0;
3835 nelem = 0;
3836 nkeep = 0;
3837 ncopy = 0;
3838 nred = 0;
3839 bitmask_init_bit(&mask_0, 0);
3840 for (int b = 0; b < flags->nflag; b++)
3842 if (bitmask_is_equal(flags->flag[b], mask_0))
3844 /* Only flag 0 is set, no copy of reduction required */
3845 nelem++;
3846 nkeep++;
3848 else if (!bitmask_is_zero(flags->flag[b]))
3850 int c = 0;
3851 for (out = 0; out < nout; out++)
3853 if (bitmask_is_set(flags->flag[b], out))
3855 c++;
3858 nelem += c;
3859 if (c == 1)
3861 ncopy++;
3863 else
3865 nred += c;
3870 fprintf(debug, "nbnxn reduction: #flag %d #list %d elem %4.2f, keep %4.2f copy %4.2f red %4.2f\n",
3871 flags->nflag, nout,
3872 nelem/(double)(flags->nflag),
3873 nkeep/(double)(flags->nflag),
3874 ncopy/(double)(flags->nflag),
3875 nred/(double)(flags->nflag));
3878 /* Copies the list entries from src to dest when cjStart <= *cjGlobal < cjEnd.
3879 * *cjGlobal is updated with the cj count in src.
3880 * When setFlags==true, flag bit t is set in flag for all i and j clusters.
3882 template<bool setFlags>
3883 static void copySelectedListRange(const nbnxn_ci_t * gmx_restrict srcCi,
3884 const nbnxn_pairlist_t * gmx_restrict src,
3885 nbnxn_pairlist_t * gmx_restrict dest,
3886 gmx_bitmask_t *flag,
3887 int iFlagShift, int jFlagShift, int t)
3889 int ncj = srcCi->cj_ind_end - srcCi->cj_ind_start;
3891 if (dest->nci + 1 >= dest->ci_nalloc)
3893 nb_realloc_ci(dest, dest->nci + 1);
3895 check_cell_list_space_simple(dest, ncj);
3897 dest->ci[dest->nci] = *srcCi;
3898 dest->ci[dest->nci].cj_ind_start = dest->ncj;
3899 dest->ci[dest->nci].cj_ind_end = dest->ncj + ncj;
3901 if (setFlags)
3903 bitmask_init_bit(&flag[srcCi->ci >> iFlagShift], t);
3906 for (int j = srcCi->cj_ind_start; j < srcCi->cj_ind_end; j++)
3908 dest->cj[dest->ncj++] = src->cj[j];
3910 if (setFlags)
3912 /* NOTE: This is relatively expensive, since this
3913 * operation is done for all elements in the list,
3914 * whereas at list generation this is done only
3915 * once for each flag entry.
3917 bitmask_init_bit(&flag[src->cj[j].cj >> jFlagShift], t);
3921 dest->nci++;
3924 /* This routine re-balances the pairlists such that all are nearly equally
3925 * sized. Only whole i-entries are moved between lists. These are moved
3926 * between the ends of the lists, such that the buffer reduction cost should
3927 * not change significantly.
3928 * Note that all original reduction flags are currently kept. This can lead
3929 * to reduction of parts of the force buffer that could be avoided. But since
3930 * the original lists are quite balanced, this will only give minor overhead.
3932 static void rebalanceSimpleLists(int numLists,
3933 nbnxn_pairlist_t * const * const srcSet,
3934 nbnxn_pairlist_t **destSet,
3935 gmx::ArrayRef<nbnxn_search_work_t> searchWork)
3937 int ncjTotal = 0;
3938 for (int s = 0; s < numLists; s++)
3940 ncjTotal += srcSet[s]->ncjInUse;
3942 int ncjTarget = (ncjTotal + numLists - 1)/numLists;
3944 #pragma omp parallel num_threads(numLists)
3946 int t = gmx_omp_get_thread_num();
3948 int cjStart = ncjTarget* t;
3949 int cjEnd = ncjTarget*(t + 1);
3951 /* The destination pair-list for task/thread t */
3952 nbnxn_pairlist_t *dest = destSet[t];
3954 clear_pairlist(dest);
3955 dest->bSimple = srcSet[0]->bSimple;
3956 dest->na_ci = srcSet[0]->na_ci;
3957 dest->na_cj = srcSet[0]->na_cj;
3959 /* Note that the flags in the work struct (still) contain flags
3960 * for all entries that are present in srcSet->nbl[t].
3962 gmx_bitmask_t *flag = searchWork[t].buffer_flags.flag;
3964 int iFlagShift = getBufferFlagShift(dest->na_ci);
3965 int jFlagShift = getBufferFlagShift(dest->na_cj);
3967 int cjGlobal = 0;
3968 for (int s = 0; s < numLists && cjGlobal < cjEnd; s++)
3970 const nbnxn_pairlist_t *src = srcSet[s];
3972 if (cjGlobal + src->ncjInUse > cjStart)
3974 for (int i = 0; i < src->nci && cjGlobal < cjEnd; i++)
3976 const nbnxn_ci_t *srcCi = &src->ci[i];
3977 int ncj = srcCi->cj_ind_end - srcCi->cj_ind_start;
3978 if (cjGlobal >= cjStart)
3980 /* If the source list is not our own, we need to set
3981 * extra flags (the template bool parameter).
3983 if (s != t)
3985 copySelectedListRange
3986 <true>
3987 (srcCi, src, dest,
3988 flag, iFlagShift, jFlagShift, t);
3990 else
3992 copySelectedListRange
3993 <false>
3994 (srcCi, src,
3995 dest, flag, iFlagShift, jFlagShift, t);
3998 cjGlobal += ncj;
4001 else
4003 cjGlobal += src->ncjInUse;
4007 dest->ncjInUse = dest->ncj;
4010 #ifndef NDEBUG
4011 int ncjTotalNew = 0;
4012 for (int s = 0; s < numLists; s++)
4014 ncjTotalNew += destSet[s]->ncjInUse;
4016 GMX_RELEASE_ASSERT(ncjTotalNew == ncjTotal, "The total size of the lists before and after rebalancing should match");
4017 #endif
4020 /* Returns if the pairlists are so imbalanced that it is worth rebalancing. */
4021 static bool checkRebalanceSimpleLists(const nbnxn_pairlist_set_t *listSet)
4023 int numLists = listSet->nnbl;
4024 int ncjMax = 0;
4025 int ncjTotal = 0;
4026 for (int s = 0; s < numLists; s++)
4028 ncjMax = std::max(ncjMax, listSet->nbl[s]->ncjInUse);
4029 ncjTotal += listSet->nbl[s]->ncjInUse;
4031 if (debug)
4033 fprintf(debug, "Pair-list ncjMax %d ncjTotal %d\n", ncjMax, ncjTotal);
4035 /* The rebalancing adds 3% extra time to the search. Heuristically we
4036 * determined that under common conditions the non-bonded kernel balance
4037 * improvement will outweigh this when the imbalance is more than 3%.
4038 * But this will, obviously, depend on search vs kernel time and nstlist.
4040 const real rebalanceTolerance = 1.03;
4042 return numLists*ncjMax > ncjTotal*rebalanceTolerance;
4045 /* Perform a count (linear) sort to sort the smaller lists to the end.
4046 * This avoids load imbalance on the GPU, as large lists will be
4047 * scheduled and executed first and the smaller lists later.
4048 * Load balancing between multi-processors only happens at the end
4049 * and there smaller lists lead to more effective load balancing.
4050 * The sorting is done on the cj4 count, not on the actual pair counts.
4051 * Not only does this make the sort faster, but it also results in
4052 * better load balancing than using a list sorted on exact load.
4053 * This function swaps the pointer in the pair list to avoid a copy operation.
4055 static void sort_sci(nbnxn_pairlist_t *nbl)
4057 nbnxn_list_work_t *work;
4058 int m, s0, s1;
4059 nbnxn_sci_t *sci_sort;
4061 if (nbl->ncj4 <= nbl->nsci)
4063 /* nsci = 0 or all sci have size 1, sorting won't change the order */
4064 return;
4067 work = nbl->work;
4069 /* We will distinguish differences up to double the average */
4070 m = (2*nbl->ncj4)/nbl->nsci;
4072 if (m + 1 > work->sort_nalloc)
4074 work->sort_nalloc = over_alloc_large(m + 1);
4075 srenew(work->sort, work->sort_nalloc);
4078 if (work->sci_sort_nalloc != nbl->sci_nalloc)
4080 work->sci_sort_nalloc = nbl->sci_nalloc;
4081 nbnxn_realloc_void((void **)&work->sci_sort,
4083 work->sci_sort_nalloc*sizeof(*work->sci_sort),
4084 nbl->alloc, nbl->free);
4087 /* Count the entries of each size */
4088 for (int i = 0; i <= m; i++)
4090 work->sort[i] = 0;
4092 for (int s = 0; s < nbl->nsci; s++)
4094 int i = std::min(m, nbl->sci[s].cj4_ind_end - nbl->sci[s].cj4_ind_start);
4095 work->sort[i]++;
4097 /* Calculate the offset for each count */
4098 s0 = work->sort[m];
4099 work->sort[m] = 0;
4100 for (int i = m - 1; i >= 0; i--)
4102 s1 = work->sort[i];
4103 work->sort[i] = work->sort[i + 1] + s0;
4104 s0 = s1;
4107 /* Sort entries directly into place */
4108 sci_sort = work->sci_sort;
4109 for (int s = 0; s < nbl->nsci; s++)
4111 int i = std::min(m, nbl->sci[s].cj4_ind_end - nbl->sci[s].cj4_ind_start);
4112 sci_sort[work->sort[i]++] = nbl->sci[s];
4115 /* Swap the sci pointers so we use the new, sorted list */
4116 work->sci_sort = nbl->sci;
4117 nbl->sci = sci_sort;
4120 /* Make a local or non-local pair-list, depending on iloc */
4121 void nbnxn_make_pairlist(const nbnxn_search_t nbs,
4122 nbnxn_atomdata_t *nbat,
4123 const t_blocka *excl,
4124 real rlist,
4125 int min_ci_balanced,
4126 nbnxn_pairlist_set_t *nbl_list,
4127 int iloc,
4128 int nb_kernel_type,
4129 t_nrnb *nrnb)
4131 nbnxn_grid_t *gridi, *gridj;
4132 int nzi, zj0, zj1;
4133 int nsubpair_target;
4134 float nsubpair_tot_est;
4135 int nnbl;
4136 nbnxn_pairlist_t **nbl;
4137 int ci_block;
4138 gmx_bool CombineNBLists;
4139 gmx_bool progBal;
4140 int np_tot, np_noq, np_hlj, nap;
4142 nnbl = nbl_list->nnbl;
4143 nbl = nbl_list->nbl;
4144 CombineNBLists = nbl_list->bCombined;
4146 if (debug)
4148 fprintf(debug, "ns making %d nblists\n", nnbl);
4151 nbat->bUseBufferFlags = (nbat->nout > 1);
4152 /* We should re-init the flags before making the first list */
4153 if (nbat->bUseBufferFlags && LOCAL_I(iloc))
4155 init_buffer_flags(&nbat->buffer_flags, nbat->natoms);
4158 if (nbl_list->bSimple)
4160 #if GMX_SIMD
4161 switch (nb_kernel_type)
4163 #ifdef GMX_NBNXN_SIMD_4XN
4164 case nbnxnk4xN_SIMD_4xN:
4165 nbs->icell_set_x = icell_set_x_simd_4xn;
4166 break;
4167 #endif
4168 #ifdef GMX_NBNXN_SIMD_2XNN
4169 case nbnxnk4xN_SIMD_2xNN:
4170 nbs->icell_set_x = icell_set_x_simd_2xnn;
4171 break;
4172 #endif
4173 default:
4174 nbs->icell_set_x = icell_set_x_simple;
4175 break;
4177 #else // GMX_SIMD
4178 /* MSVC 2013 complains about switch statements without case */
4179 nbs->icell_set_x = icell_set_x_simple;
4180 #endif // GMX_SIMD
4182 else
4184 nbs->icell_set_x = icell_set_x_supersub;
4187 if (LOCAL_I(iloc))
4189 /* Only zone (grid) 0 vs 0 */
4190 nzi = 1;
4191 zj0 = 0;
4192 zj1 = 1;
4194 else
4196 nzi = nbs->zones->nizone;
4199 if (!nbl_list->bSimple && min_ci_balanced > 0)
4201 get_nsubpair_target(nbs, iloc, rlist, min_ci_balanced,
4202 &nsubpair_target, &nsubpair_tot_est);
4204 else
4206 nsubpair_target = 0;
4207 nsubpair_tot_est = 0;
4210 /* Clear all pair-lists */
4211 for (int th = 0; th < nnbl; th++)
4213 clear_pairlist(nbl[th]);
4215 if (nbs->bFEP)
4217 clear_pairlist_fep(nbl_list->nbl_fep[th]);
4221 for (int zi = 0; zi < nzi; zi++)
4223 gridi = &nbs->grid[zi];
4225 if (NONLOCAL_I(iloc))
4227 zj0 = nbs->zones->izone[zi].j0;
4228 zj1 = nbs->zones->izone[zi].j1;
4229 if (zi == 0)
4231 zj0++;
4234 for (int zj = zj0; zj < zj1; zj++)
4236 gridj = &nbs->grid[zj];
4238 if (debug)
4240 fprintf(debug, "ns search grid %d vs %d\n", zi, zj);
4243 nbs_cycle_start(&nbs->cc[enbsCCsearch]);
4245 ci_block = get_ci_block_size(gridi, nbs->DomDec, nnbl);
4247 /* With GPU: generate progressively smaller lists for
4248 * load balancing for local only or non-local with 2 zones.
4250 progBal = (LOCAL_I(iloc) || nbs->zones->n <= 2);
4252 #pragma omp parallel for num_threads(nnbl) schedule(static)
4253 for (int th = 0; th < nnbl; th++)
4257 /* Re-init the thread-local work flag data before making
4258 * the first list (not an elegant conditional).
4260 if (nbat->bUseBufferFlags && ((zi == 0 && zj == 0)))
4262 init_buffer_flags(&nbs->work[th].buffer_flags, nbat->natoms);
4265 if (CombineNBLists && th > 0)
4267 clear_pairlist(nbl[th]);
4270 /* Divide the i super cell equally over the nblists */
4271 nbnxn_make_pairlist_part(nbs, gridi, gridj,
4272 &nbs->work[th], nbat, *excl,
4273 rlist,
4274 nb_kernel_type,
4275 ci_block,
4276 nbat->bUseBufferFlags,
4277 nsubpair_target,
4278 progBal, nsubpair_tot_est,
4279 th, nnbl,
4280 nbl[th],
4281 nbl_list->nbl_fep[th]);
4283 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
4285 nbs_cycle_stop(&nbs->cc[enbsCCsearch]);
4287 np_tot = 0;
4288 np_noq = 0;
4289 np_hlj = 0;
4290 for (int th = 0; th < nnbl; th++)
4292 inc_nrnb(nrnb, eNR_NBNXN_DIST2, nbs->work[th].ndistc);
4294 if (nbl_list->bSimple)
4296 np_tot += nbl[th]->ncj;
4297 np_noq += nbl[th]->work->ncj_noq;
4298 np_hlj += nbl[th]->work->ncj_hlj;
4300 else
4302 /* This count ignores potential subsequent pair pruning */
4303 np_tot += nbl[th]->nci_tot;
4306 nap = nbl[0]->na_ci*nbl[0]->na_cj;
4307 nbl_list->natpair_ljq = (np_tot - np_noq)*nap - np_hlj*nap/2;
4308 nbl_list->natpair_lj = np_noq*nap;
4309 nbl_list->natpair_q = np_hlj*nap/2;
4311 if (CombineNBLists && nnbl > 1)
4313 nbs_cycle_start(&nbs->cc[enbsCCcombine]);
4315 combine_nblists(nnbl-1, nbl+1, nbl[0]);
4317 nbs_cycle_stop(&nbs->cc[enbsCCcombine]);
4322 if (nbl_list->bSimple)
4324 if (nnbl > 1 && checkRebalanceSimpleLists(nbl_list))
4326 rebalanceSimpleLists(nbl_list->nnbl, nbl_list->nbl, nbl_list->nbl_work, nbs->work);
4328 /* Swap the pointer of the sets of pair lists */
4329 nbnxn_pairlist_t **tmp = nbl_list->nbl;
4330 nbl_list->nbl = nbl_list->nbl_work;
4331 nbl_list->nbl_work = tmp;
4334 else
4336 /* Sort the entries on size, large ones first */
4337 if (CombineNBLists || nnbl == 1)
4339 sort_sci(nbl[0]);
4341 else
4343 #pragma omp parallel for num_threads(nnbl) schedule(static)
4344 for (int th = 0; th < nnbl; th++)
4348 sort_sci(nbl[th]);
4350 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
4355 if (nbat->bUseBufferFlags)
4357 reduce_buffer_flags(nbs, nbl_list->nnbl, &nbat->buffer_flags);
4360 if (nbs->bFEP)
4362 /* Balance the free-energy lists over all the threads */
4363 balance_fep_lists(nbs, nbl_list);
4366 /* This is a fresh list, so not pruned, stored using ci and nci.
4367 * ciOuter and nciOuter are invalid at this point.
4369 GMX_ASSERT(nbl_list->nbl[0]->nciOuter == -1, "nciOuter should have been set to -1 to signal that it is invalid");
4371 /* Special performance logging stuff (env.var. GMX_NBNXN_CYCLE) */
4372 if (LOCAL_I(iloc))
4374 nbs->search_count++;
4376 if (nbs->print_cycles &&
4377 (!nbs->DomDec || !LOCAL_I(iloc)) &&
4378 nbs->search_count % 100 == 0)
4380 nbs_cycle_print(stderr, nbs);
4383 /* If we have more than one list, they either got rebalancing (CPU)
4384 * or combined (GPU), so we should dump the final result to debug.
4386 if (debug && nbl_list->nnbl > 1)
4388 if (nbl_list->bSimple)
4390 for (int t = 0; t < nbl_list->nnbl; t++)
4392 print_nblist_statistics_simple(debug, nbl_list->nbl[t], nbs, rlist);
4395 else
4397 print_nblist_statistics_supersub(debug, nbl_list->nbl[0], nbs, rlist);
4401 if (debug)
4403 if (gmx_debug_at)
4405 if (nbl_list->bSimple)
4407 for (int t = 0; t < nbl_list->nnbl; t++)
4409 print_nblist_ci_cj(debug, nbl_list->nbl[t]);
4412 else
4414 print_nblist_sci_cj(debug, nbl_list->nbl[0]);
4418 if (nbat->bUseBufferFlags)
4420 print_reduction_cost(&nbat->buffer_flags, nbl_list->nnbl);
4425 void nbnxnPrepareListForDynamicPruning(nbnxn_pairlist_set_t *listSet)
4427 /* TODO: Restructure the lists so we have actual outer and inner
4428 * list objects so we can set a single pointer instead of
4429 * swapping several pointers.
4432 for (int i = 0; i < listSet->nnbl; i++)
4434 /* The search produced a list in ci/cj.
4435 * Swap the list pointers so we get the outer list is ciOuter,cjOuter
4436 * and we can prune that to get an inner list in ci/cj.
4438 nbnxn_pairlist_t *list = listSet->nbl[i];
4439 list->nciOuter = list->nci;
4441 nbnxn_ci_t *ciTmp = list->ciOuter;
4442 list->ciOuter = list->ci;
4443 list->ci = ciTmp;
4445 nbnxn_cj_t *cjTmp = list->cjOuter;
4446 list->cjOuter = list->cj;
4447 list->cj = cjTmp;
4449 /* Signal that this inner list is currently invalid */
4450 list->nci = -1;