added Verlet scheme and NxN non-bonded functionality
[gromacs.git] / src / mdlib / tpi.c
bloba5a2a71893bba4bf96061f4ee1e420b4b73888d2
1 /* -*- mode: c; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; c-file-style: "stroustrup"; -*-
3 *
4 * This source code is part of
5 *
6 * G R O M A C S
7 *
8 * GROningen MAchine for Chemical Simulations
9 *
10 * VERSION 3.2.0
11 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
12 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
13 * Copyright (c) 2001-2004, The GROMACS development team,
14 * check out http://www.gromacs.org for more information.
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version 2
19 * of the License, or (at your option) any later version.
21 * If you want to redistribute modifications, please consider that
22 * scientific software is very special. Version control is crucial -
23 * bugs must be traceable. We will be happy to consider code for
24 * inclusion in the official distribution, but derived work must not
25 * be called official GROMACS. Details are found in the README & COPYING
26 * files - if they are missing, get the official version at www.gromacs.org.
28 * To help us fund GROMACS development, we humbly ask that you cite
29 * the papers on the package - you can find them in the top README file.
31 * For more info, check our website at http://www.gromacs.org
33 * And Hey:
34 * GROwing Monsters And Cloning Shrimps
36 #ifdef HAVE_CONFIG_H
37 #include <config.h>
38 #endif
40 #include <string.h>
41 #include <time.h>
42 #include <math.h>
43 #include "sysstuff.h"
44 #include "string2.h"
45 #include "network.h"
46 #include "confio.h"
47 #include "copyrite.h"
48 #include "smalloc.h"
49 #include "nrnb.h"
50 #include "main.h"
51 #include "chargegroup.h"
52 #include "force.h"
53 #include "macros.h"
54 #include "random.h"
55 #include "names.h"
56 #include "gmx_fatal.h"
57 #include "txtdump.h"
58 #include "typedefs.h"
59 #include "update.h"
60 #include "random.h"
61 #include "constr.h"
62 #include "vec.h"
63 #include "statutil.h"
64 #include "tgroup.h"
65 #include "mdebin.h"
66 #include "vsite.h"
67 #include "force.h"
68 #include "mdrun.h"
69 #include "domdec.h"
70 #include "partdec.h"
71 #include "gmx_random.h"
72 #include "physics.h"
73 #include "xvgr.h"
74 #include "mdatoms.h"
75 #include "ns.h"
76 #include "gmx_wallcycle.h"
77 #include "mtop_util.h"
78 #include "gmxfio.h"
79 #include "pme.h"
80 #include "gbutil.h"
82 #ifdef GMX_X86_SSE2
83 #include "gmx_x86_sse2.h"
84 #endif
87 static void global_max(t_commrec *cr,int *n)
89 int *sum,i;
91 snew(sum,cr->nnodes);
92 sum[cr->nodeid] = *n;
93 gmx_sumi(cr->nnodes,sum,cr);
94 for(i=0; i<cr->nnodes; i++)
95 *n = max(*n,sum[i]);
97 sfree(sum);
100 static void realloc_bins(double **bin,int *nbin,int nbin_new)
102 int i;
104 if (nbin_new != *nbin) {
105 srenew(*bin,nbin_new);
106 for(i=*nbin; i<nbin_new; i++)
107 (*bin)[i] = 0;
108 *nbin = nbin_new;
112 double do_tpi(FILE *fplog,t_commrec *cr,
113 int nfile, const t_filenm fnm[],
114 const output_env_t oenv, gmx_bool bVerbose,gmx_bool bCompact,
115 int nstglobalcomm,
116 gmx_vsite_t *vsite,gmx_constr_t constr,
117 int stepout,
118 t_inputrec *inputrec,
119 gmx_mtop_t *top_global,t_fcdata *fcd,
120 t_state *state,
121 t_mdatoms *mdatoms,
122 t_nrnb *nrnb,gmx_wallcycle_t wcycle,
123 gmx_edsam_t ed,
124 t_forcerec *fr,
125 int repl_ex_nst, int repl_ex_nex, int repl_ex_seed,
126 gmx_membed_t membed,
127 real cpt_period,real max_hours,
128 const char *deviceOptions,
129 unsigned long Flags,
130 gmx_runtime_t *runtime)
132 const char *TPI="Test Particle Insertion";
133 gmx_localtop_t *top;
134 gmx_groups_t *groups;
135 gmx_enerdata_t *enerd;
136 rvec *f;
137 real lambda,t,temp,beta,drmax,epot;
138 double embU,sum_embU,*sum_UgembU,V,V_all,VembU_all;
139 t_trxstatus *status;
140 t_trxframe rerun_fr;
141 gmx_bool bDispCorr,bCharge,bRFExcl,bNotLastFrame,bStateChanged,bNS,bOurStep;
142 tensor force_vir,shake_vir,vir,pres;
143 int cg_tp,a_tp0,a_tp1,ngid,gid_tp,nener,e;
144 rvec *x_mol;
145 rvec mu_tot,x_init,dx,x_tp;
146 int nnodes,frame,nsteps,step;
147 int i,start,end;
148 gmx_rng_t tpi_rand;
149 FILE *fp_tpi=NULL;
150 char *ptr,*dump_pdb,**leg,str[STRLEN],str2[STRLEN];
151 double dbl,dump_ener;
152 gmx_bool bCavity;
153 int nat_cavity=0,d;
154 real *mass_cavity=NULL,mass_tot;
155 int nbin;
156 double invbinw,*bin,refvolshift,logV,bUlogV;
157 real dvdl,prescorr,enercorr,dvdlcorr;
158 gmx_bool bEnergyOutOfBounds;
159 const char *tpid_leg[2]={"direct","reweighted"};
161 /* Since there is no upper limit to the insertion energies,
162 * we need to set an upper limit for the distribution output.
164 real bU_bin_limit = 50;
165 real bU_logV_bin_limit = bU_bin_limit + 10;
167 nnodes = cr->nnodes;
169 top = gmx_mtop_generate_local_top(top_global,inputrec);
171 groups = &top_global->groups;
173 bCavity = (inputrec->eI == eiTPIC);
174 if (bCavity) {
175 ptr = getenv("GMX_TPIC_MASSES");
176 if (ptr == NULL) {
177 nat_cavity = 1;
178 } else {
179 /* Read (multiple) masses from env var GMX_TPIC_MASSES,
180 * The center of mass of the last atoms is then used for TPIC.
182 nat_cavity = 0;
183 while (sscanf(ptr,"%lf%n",&dbl,&i) > 0) {
184 srenew(mass_cavity,nat_cavity+1);
185 mass_cavity[nat_cavity] = dbl;
186 fprintf(fplog,"mass[%d] = %f\n",
187 nat_cavity+1,mass_cavity[nat_cavity]);
188 nat_cavity++;
189 ptr += i;
191 if (nat_cavity == 0)
192 gmx_fatal(FARGS,"Found %d masses in GMX_TPIC_MASSES",nat_cavity);
197 init_em(fplog,TPI,inputrec,&lambda,nrnb,mu_tot,
198 state->box,fr,mdatoms,top,cr,nfile,fnm,NULL,NULL);*/
199 /* We never need full pbc for TPI */
200 fr->ePBC = epbcXYZ;
201 /* Determine the temperature for the Boltzmann weighting */
202 temp = inputrec->opts.ref_t[0];
203 if (fplog) {
204 for(i=1; (i<inputrec->opts.ngtc); i++) {
205 if (inputrec->opts.ref_t[i] != temp) {
206 fprintf(fplog,"\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
207 fprintf(stderr,"\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
210 fprintf(fplog,
211 "\n The temperature for test particle insertion is %.3f K\n\n",
212 temp);
214 beta = 1.0/(BOLTZ*temp);
216 /* Number of insertions per frame */
217 nsteps = inputrec->nsteps;
219 /* Use the same neighborlist with more insertions points
220 * in a sphere of radius drmax around the initial point
222 /* This should be a proper mdp parameter */
223 drmax = inputrec->rtpi;
225 /* An environment variable can be set to dump all configurations
226 * to pdb with an insertion energy <= this value.
228 dump_pdb = getenv("GMX_TPI_DUMP");
229 dump_ener = 0;
230 if (dump_pdb)
231 sscanf(dump_pdb,"%lf",&dump_ener);
233 atoms2md(top_global,inputrec,0,NULL,0,top_global->natoms,mdatoms);
234 update_mdatoms(mdatoms,inputrec->fepvals->init_lambda);
236 snew(enerd,1);
237 init_enerdata(groups->grps[egcENER].nr,inputrec->fepvals->n_lambda,enerd);
238 snew(f,top_global->natoms);
240 /* Print to log file */
241 runtime_start(runtime);
242 print_date_and_time(fplog,cr->nodeid,
243 "Started Test Particle Insertion",runtime);
244 wallcycle_start(wcycle,ewcRUN);
246 /* The last charge group is the group to be inserted */
247 cg_tp = top->cgs.nr - 1;
248 a_tp0 = top->cgs.index[cg_tp];
249 a_tp1 = top->cgs.index[cg_tp+1];
250 if (debug)
251 fprintf(debug,"TPI cg %d, atoms %d-%d\n",cg_tp,a_tp0,a_tp1);
252 if (a_tp1 - a_tp0 > 1 &&
253 (inputrec->rlist < inputrec->rcoulomb ||
254 inputrec->rlist < inputrec->rvdw))
255 gmx_fatal(FARGS,"Can not do TPI for multi-atom molecule with a twin-range cut-off");
256 snew(x_mol,a_tp1-a_tp0);
258 bDispCorr = (inputrec->eDispCorr != edispcNO);
259 bCharge = FALSE;
260 for(i=a_tp0; i<a_tp1; i++) {
261 /* Copy the coordinates of the molecule to be insterted */
262 copy_rvec(state->x[i],x_mol[i-a_tp0]);
263 /* Check if we need to print electrostatic energies */
264 bCharge |= (mdatoms->chargeA[i] != 0 ||
265 (mdatoms->chargeB && mdatoms->chargeB[i] != 0));
267 bRFExcl = (bCharge && EEL_RF(fr->eeltype) && fr->eeltype!=eelRF_NEC);
269 calc_cgcm(fplog,cg_tp,cg_tp+1,&(top->cgs),state->x,fr->cg_cm);
270 if (bCavity) {
271 if (norm(fr->cg_cm[cg_tp]) > 0.5*inputrec->rlist && fplog) {
272 fprintf(fplog, "WARNING: Your TPI molecule is not centered at 0,0,0\n");
273 fprintf(stderr,"WARNING: Your TPI molecule is not centered at 0,0,0\n");
275 } else {
276 /* Center the molecule to be inserted at zero */
277 for(i=0; i<a_tp1-a_tp0; i++)
278 rvec_dec(x_mol[i],fr->cg_cm[cg_tp]);
281 if (fplog) {
282 fprintf(fplog,"\nWill insert %d atoms %s partial charges\n",
283 a_tp1-a_tp0,bCharge ? "with" : "without");
285 fprintf(fplog,"\nWill insert %d times in each frame of %s\n",
286 nsteps,opt2fn("-rerun",nfile,fnm));
289 if (!bCavity)
291 if (inputrec->nstlist > 1)
293 if (drmax==0 && a_tp1-a_tp0==1)
295 gmx_fatal(FARGS,"Re-using the neighborlist %d times for insertions of a single atom in a sphere of radius %f does not make sense",inputrec->nstlist,drmax);
297 if (fplog)
299 fprintf(fplog,"Will use the same neighborlist for %d insertions in a sphere of radius %f\n",inputrec->nstlist,drmax);
303 else
305 if (fplog)
307 fprintf(fplog,"Will insert randomly in a sphere of radius %f around the center of the cavity\n",drmax);
311 ngid = groups->grps[egcENER].nr;
312 gid_tp = GET_CGINFO_GID(fr->cginfo[cg_tp]);
313 nener = 1 + ngid;
314 if (bDispCorr)
315 nener += 1;
316 if (bCharge) {
317 nener += ngid;
318 if (bRFExcl)
319 nener += 1;
320 if (EEL_FULL(fr->eeltype))
321 nener += 1;
323 snew(sum_UgembU,nener);
325 /* Initialize random generator */
326 tpi_rand = gmx_rng_init(inputrec->ld_seed);
328 if (MASTER(cr)) {
329 fp_tpi = xvgropen(opt2fn("-tpi",nfile,fnm),
330 "TPI energies","Time (ps)",
331 "(kJ mol\\S-1\\N) / (nm\\S3\\N)",oenv);
332 xvgr_subtitle(fp_tpi,"f. are averages over one frame",oenv);
333 snew(leg,4+nener);
334 e = 0;
335 sprintf(str,"-kT log(<Ve\\S-\\betaU\\N>/<V>)");
336 leg[e++] = strdup(str);
337 sprintf(str,"f. -kT log<e\\S-\\betaU\\N>");
338 leg[e++] = strdup(str);
339 sprintf(str,"f. <e\\S-\\betaU\\N>");
340 leg[e++] = strdup(str);
341 sprintf(str,"f. V");
342 leg[e++] = strdup(str);
343 sprintf(str,"f. <Ue\\S-\\betaU\\N>");
344 leg[e++] = strdup(str);
345 for(i=0; i<ngid; i++) {
346 sprintf(str,"f. <U\\sVdW %s\\Ne\\S-\\betaU\\N>",
347 *(groups->grpname[groups->grps[egcENER].nm_ind[i]]));
348 leg[e++] = strdup(str);
350 if (bDispCorr) {
351 sprintf(str,"f. <U\\sdisp c\\Ne\\S-\\betaU\\N>");
352 leg[e++] = strdup(str);
354 if (bCharge) {
355 for(i=0; i<ngid; i++) {
356 sprintf(str,"f. <U\\sCoul %s\\Ne\\S-\\betaU\\N>",
357 *(groups->grpname[groups->grps[egcENER].nm_ind[i]]));
358 leg[e++] = strdup(str);
360 if (bRFExcl) {
361 sprintf(str,"f. <U\\sRF excl\\Ne\\S-\\betaU\\N>");
362 leg[e++] = strdup(str);
364 if (EEL_FULL(fr->eeltype)) {
365 sprintf(str,"f. <U\\sCoul recip\\Ne\\S-\\betaU\\N>");
366 leg[e++] = strdup(str);
369 xvgr_legend(fp_tpi,4+nener,(const char**)leg,oenv);
370 for(i=0; i<4+nener; i++)
371 sfree(leg[i]);
372 sfree(leg);
374 clear_rvec(x_init);
375 V_all = 0;
376 VembU_all = 0;
378 invbinw = 10;
379 nbin = 10;
380 snew(bin,nbin);
382 bNotLastFrame = read_first_frame(oenv,&status,opt2fn("-rerun",nfile,fnm),
383 &rerun_fr,TRX_NEED_X);
384 frame = 0;
386 if (rerun_fr.natoms - (bCavity ? nat_cavity : 0) !=
387 mdatoms->nr - (a_tp1 - a_tp0))
388 gmx_fatal(FARGS,"Number of atoms in trajectory (%d)%s "
389 "is not equal the number in the run input file (%d) "
390 "minus the number of atoms to insert (%d)\n",
391 rerun_fr.natoms,bCavity ? " minus one" : "",
392 mdatoms->nr,a_tp1-a_tp0);
394 refvolshift = log(det(rerun_fr.box));
396 #ifdef GMX_X86_SSE2
397 /* Make sure we don't detect SSE overflow generated before this point */
398 gmx_mm_check_and_reset_overflow();
399 #endif
401 while (bNotLastFrame)
403 lambda = rerun_fr.lambda;
404 t = rerun_fr.time;
406 sum_embU = 0;
407 for(e=0; e<nener; e++)
409 sum_UgembU[e] = 0;
412 /* Copy the coordinates from the input trajectory */
413 for(i=0; i<rerun_fr.natoms; i++)
415 copy_rvec(rerun_fr.x[i],state->x[i]);
417 copy_mat(rerun_fr.box,state->box);
419 V = det(state->box);
420 logV = log(V);
422 bStateChanged = TRUE;
423 bNS = TRUE;
424 for(step=0; step<nsteps; step++)
426 /* In parallel all nodes generate all random configurations.
427 * In that way the result is identical to a single cpu tpi run.
429 if (!bCavity)
431 /* Random insertion in the whole volume */
432 bNS = (step % inputrec->nstlist == 0);
433 if (bNS)
435 /* Generate a random position in the box */
436 x_init[XX] = gmx_rng_uniform_real(tpi_rand)*state->box[XX][XX];
437 x_init[YY] = gmx_rng_uniform_real(tpi_rand)*state->box[YY][YY];
438 x_init[ZZ] = gmx_rng_uniform_real(tpi_rand)*state->box[ZZ][ZZ];
440 if (inputrec->nstlist == 1)
442 copy_rvec(x_init,x_tp);
444 else
446 /* Generate coordinates within |dx|=drmax of x_init */
449 dx[XX] = (2*gmx_rng_uniform_real(tpi_rand) - 1)*drmax;
450 dx[YY] = (2*gmx_rng_uniform_real(tpi_rand) - 1)*drmax;
451 dx[ZZ] = (2*gmx_rng_uniform_real(tpi_rand) - 1)*drmax;
453 while (norm2(dx) > drmax*drmax);
454 rvec_add(x_init,dx,x_tp);
457 else
459 /* Random insertion around a cavity location
460 * given by the last coordinate of the trajectory.
462 if (step == 0)
464 if (nat_cavity == 1)
466 /* Copy the location of the cavity */
467 copy_rvec(rerun_fr.x[rerun_fr.natoms-1],x_init);
469 else
471 /* Determine the center of mass of the last molecule */
472 clear_rvec(x_init);
473 mass_tot = 0;
474 for(i=0; i<nat_cavity; i++)
476 for(d=0; d<DIM; d++)
478 x_init[d] +=
479 mass_cavity[i]*rerun_fr.x[rerun_fr.natoms-nat_cavity+i][d];
481 mass_tot += mass_cavity[i];
483 for(d=0; d<DIM; d++)
485 x_init[d] /= mass_tot;
489 /* Generate coordinates within |dx|=drmax of x_init */
492 dx[XX] = (2*gmx_rng_uniform_real(tpi_rand) - 1)*drmax;
493 dx[YY] = (2*gmx_rng_uniform_real(tpi_rand) - 1)*drmax;
494 dx[ZZ] = (2*gmx_rng_uniform_real(tpi_rand) - 1)*drmax;
496 while (norm2(dx) > drmax*drmax);
497 rvec_add(x_init,dx,x_tp);
500 if (a_tp1 - a_tp0 == 1)
502 /* Insert a single atom, just copy the insertion location */
503 copy_rvec(x_tp,state->x[a_tp0]);
505 else
507 /* Copy the coordinates from the top file */
508 for(i=a_tp0; i<a_tp1; i++)
510 copy_rvec(x_mol[i-a_tp0],state->x[i]);
512 /* Rotate the molecule randomly */
513 rotate_conf(a_tp1-a_tp0,state->x+a_tp0,NULL,
514 2*M_PI*gmx_rng_uniform_real(tpi_rand),
515 2*M_PI*gmx_rng_uniform_real(tpi_rand),
516 2*M_PI*gmx_rng_uniform_real(tpi_rand));
517 /* Shift to the insertion location */
518 for(i=a_tp0; i<a_tp1; i++)
520 rvec_inc(state->x[i],x_tp);
524 /* Check if this insertion belongs to this node */
525 bOurStep = TRUE;
526 if (PAR(cr))
528 switch (inputrec->eI)
530 case eiTPI:
531 bOurStep = ((step / inputrec->nstlist) % nnodes == cr->nodeid);
532 break;
533 case eiTPIC:
534 bOurStep = (step % nnodes == cr->nodeid);
535 break;
536 default:
537 gmx_fatal(FARGS,"Unknown integrator %s",ei_names[inputrec->eI]);
540 if (bOurStep)
542 /* Clear some matrix variables */
543 clear_mat(force_vir);
544 clear_mat(shake_vir);
545 clear_mat(vir);
546 clear_mat(pres);
548 /* Set the charge group center of mass of the test particle */
549 copy_rvec(x_init,fr->cg_cm[top->cgs.nr-1]);
551 /* Calc energy (no forces) on new positions.
552 * Since we only need the intermolecular energy
553 * and the RF exclusion terms of the inserted molecule occur
554 * within a single charge group we can pass NULL for the graph.
555 * This also avoids shifts that would move charge groups
556 * out of the box.
558 * Some checks above ensure than we can not have
559 * twin-range interactions together with nstlist > 1,
560 * therefore we do not need to remember the LR energies.
562 /* Make do_force do a single node force calculation */
563 cr->nnodes = 1;
564 do_force(fplog,cr,inputrec,
565 step,nrnb,wcycle,top,top_global,&top_global->groups,
566 state->box,state->x,&state->hist,
567 f,force_vir,mdatoms,enerd,fcd,
568 state->lambda,
569 NULL,fr,NULL,mu_tot,t,NULL,NULL,FALSE,
570 GMX_FORCE_NONBONDED | GMX_FORCE_ENERGY |
571 (bNS ? GMX_FORCE_DYNAMICBOX | GMX_FORCE_NS | GMX_FORCE_DOLR : 0) |
572 (bStateChanged ? GMX_FORCE_STATECHANGED : 0));
573 cr->nnodes = nnodes;
574 bStateChanged = FALSE;
575 bNS = FALSE;
577 /* Calculate long range corrections to pressure and energy */
578 calc_dispcorr(fplog,inputrec,fr,step,top_global->natoms,state->box,
579 lambda,pres,vir,&prescorr,&enercorr,&dvdlcorr);
580 /* figure out how to rearrange the next 4 lines MRS 8/4/2009 */
581 enerd->term[F_DISPCORR] = enercorr;
582 enerd->term[F_EPOT] += enercorr;
583 enerd->term[F_PRES] += prescorr;
584 enerd->term[F_DVDL_VDW] += dvdlcorr;
586 epot = enerd->term[F_EPOT];
587 bEnergyOutOfBounds = FALSE;
588 #ifdef GMX_X86_SSE2
589 /* With SSE the energy can overflow, check for this */
590 if (gmx_mm_check_and_reset_overflow())
592 if (debug)
594 fprintf(debug,"Found an SSE overflow, assuming the energy is out of bounds\n");
596 bEnergyOutOfBounds = TRUE;
598 #endif
599 /* If the compiler doesn't optimize this check away
600 * we catch the NAN energies.
601 * The epot>GMX_REAL_MAX check catches inf values,
602 * which should nicely result in embU=0 through the exp below,
603 * but it does not hurt to check anyhow.
605 /* Non-bonded Interaction usually diverge at r=0.
606 * With tabulated interaction functions the first few entries
607 * should be capped in a consistent fashion between
608 * repulsion, dispersion and Coulomb to avoid accidental
609 * negative values in the total energy.
610 * The table generation code in tables.c does this.
611 * With user tbales the user should take care of this.
613 if (epot != epot || epot > GMX_REAL_MAX)
615 bEnergyOutOfBounds = TRUE;
617 if (bEnergyOutOfBounds)
619 if (debug)
621 fprintf(debug,"\n time %.3f, step %d: non-finite energy %f, using exp(-bU)=0\n",t,step,epot);
623 embU = 0;
625 else
627 embU = exp(-beta*epot);
628 sum_embU += embU;
629 /* Determine the weighted energy contributions of each energy group */
630 e = 0;
631 sum_UgembU[e++] += epot*embU;
632 if (fr->bBHAM)
634 for(i=0; i<ngid; i++)
636 sum_UgembU[e++] +=
637 (enerd->grpp.ener[egBHAMSR][GID(i,gid_tp,ngid)] +
638 enerd->grpp.ener[egBHAMLR][GID(i,gid_tp,ngid)])*embU;
641 else
643 for(i=0; i<ngid; i++)
645 sum_UgembU[e++] +=
646 (enerd->grpp.ener[egLJSR][GID(i,gid_tp,ngid)] +
647 enerd->grpp.ener[egLJLR][GID(i,gid_tp,ngid)])*embU;
650 if (bDispCorr)
652 sum_UgembU[e++] += enerd->term[F_DISPCORR]*embU;
654 if (bCharge)
656 for(i=0; i<ngid; i++)
658 sum_UgembU[e++] +=
659 (enerd->grpp.ener[egCOULSR][GID(i,gid_tp,ngid)] +
660 enerd->grpp.ener[egCOULLR][GID(i,gid_tp,ngid)])*embU;
662 if (bRFExcl)
664 sum_UgembU[e++] += enerd->term[F_RF_EXCL]*embU;
666 if (EEL_FULL(fr->eeltype))
668 sum_UgembU[e++] += enerd->term[F_COUL_RECIP]*embU;
673 if (embU == 0 || beta*epot > bU_bin_limit)
675 bin[0]++;
677 else
679 i = (int)((bU_logV_bin_limit
680 - (beta*epot - logV + refvolshift))*invbinw
681 + 0.5);
682 if (i < 0)
684 i = 0;
686 if (i >= nbin)
688 realloc_bins(&bin,&nbin,i+10);
690 bin[i]++;
693 if (debug)
695 fprintf(debug,"TPI %7d %12.5e %12.5f %12.5f %12.5f\n",
696 step,epot,x_tp[XX],x_tp[YY],x_tp[ZZ]);
699 if (dump_pdb && epot <= dump_ener)
701 sprintf(str,"t%g_step%d.pdb",t,step);
702 sprintf(str2,"t: %f step %d ener: %f",t,step,epot);
703 write_sto_conf_mtop(str,str2,top_global,state->x,state->v,
704 inputrec->ePBC,state->box);
709 if (PAR(cr))
711 /* When running in parallel sum the energies over the processes */
712 gmx_sumd(1, &sum_embU, cr);
713 gmx_sumd(nener,sum_UgembU,cr);
716 frame++;
717 V_all += V;
718 VembU_all += V*sum_embU/nsteps;
720 if (fp_tpi)
722 if (bVerbose || frame%10==0 || frame<10)
724 fprintf(stderr,"mu %10.3e <mu> %10.3e\n",
725 -log(sum_embU/nsteps)/beta,-log(VembU_all/V_all)/beta);
728 fprintf(fp_tpi,"%10.3f %12.5e %12.5e %12.5e %12.5e",
730 VembU_all==0 ? 20/beta : -log(VembU_all/V_all)/beta,
731 sum_embU==0 ? 20/beta : -log(sum_embU/nsteps)/beta,
732 sum_embU/nsteps,V);
733 for(e=0; e<nener; e++)
735 fprintf(fp_tpi," %12.5e",sum_UgembU[e]/nsteps);
737 fprintf(fp_tpi,"\n");
738 fflush(fp_tpi);
741 bNotLastFrame = read_next_frame(oenv, status,&rerun_fr);
742 } /* End of the loop */
743 runtime_end(runtime);
745 close_trj(status);
747 if (fp_tpi != NULL)
749 gmx_fio_fclose(fp_tpi);
752 if (fplog != NULL)
754 fprintf(fplog,"\n");
755 fprintf(fplog," <V> = %12.5e nm^3\n",V_all/frame);
756 fprintf(fplog," <mu> = %12.5e kJ/mol\n",-log(VembU_all/V_all)/beta);
759 /* Write the Boltzmann factor histogram */
760 if (PAR(cr))
762 /* When running in parallel sum the bins over the processes */
763 i = nbin;
764 global_max(cr,&i);
765 realloc_bins(&bin,&nbin,i);
766 gmx_sumd(nbin,bin,cr);
768 if (MASTER(cr))
770 fp_tpi = xvgropen(opt2fn("-tpid",nfile,fnm),
771 "TPI energy distribution",
772 "\\betaU - log(V/<V>)","count",oenv);
773 sprintf(str,"number \\betaU > %g: %9.3e",bU_bin_limit,bin[0]);
774 xvgr_subtitle(fp_tpi,str,oenv);
775 xvgr_legend(fp_tpi,2,(const char **)tpid_leg,oenv);
776 for(i=nbin-1; i>0; i--)
778 bUlogV = -i/invbinw + bU_logV_bin_limit - refvolshift + log(V_all/frame);
779 fprintf(fp_tpi,"%6.2f %10d %12.5e\n",
780 bUlogV,
781 (int)(bin[i]+0.5),
782 bin[i]*exp(-bUlogV)*V_all/VembU_all);
784 gmx_fio_fclose(fp_tpi);
786 sfree(bin);
788 sfree(sum_UgembU);
790 runtime->nsteps_done = frame*inputrec->nsteps;
792 return 0;