added Verlet scheme and NxN non-bonded functionality
[gromacs.git] / src / gmxlib / maths.c
blob13388c5d937ba1a2c2416d6223be368e8207b682
1 /*
2 *
3 * This source code is part of
4 *
5 * G R O M A C S
6 *
7 * GROningen MAchine for Chemical Simulations
8 *
9 * VERSION 3.2.0
10 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
11 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
12 * Copyright (c) 2001-2004, The GROMACS development team,
13 * check out http://www.gromacs.org for more information.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * If you want to redistribute modifications, please consider that
21 * scientific software is very special. Version control is crucial -
22 * bugs must be traceable. We will be happy to consider code for
23 * inclusion in the official distribution, but derived work must not
24 * be called official GROMACS. Details are found in the README & COPYING
25 * files - if they are missing, get the official version at www.gromacs.org.
27 * To help us fund GROMACS development, we humbly ask that you cite
28 * the papers on the package - you can find them in the top README file.
30 * For more info, check our website at http://www.gromacs.org
32 * And Hey:
33 * GROningen Mixture of Alchemy and Childrens' Stories
35 #ifdef HAVE_CONFIG_H
36 #include <config.h>
37 #endif
40 #include <math.h>
41 #include <limits.h>
42 #include "maths.h"
43 #ifdef HAVE__FINITE
44 #include "float.h"
45 #endif
47 int gmx_nint(real a)
49 const real half = .5;
50 int result;
52 result = (a < 0.) ? ((int)(a - half)) : ((int)(a + half));
53 return result;
56 real cuberoot (real x)
58 if (x < 0)
60 return (-pow(-x,1.0/DIM));
62 else
64 return (pow(x,1.0/DIM));
68 real sign(real x,real y)
70 if (y < 0)
71 return -fabs(x);
72 else
73 return +fabs(x);
76 /* Double and single precision erf() and erfc() from
77 * the Sun Freely Distributable Math Library FDLIBM.
78 * See http://www.netlib.org/fdlibm
79 * Specific file used: s_erf.c, version 1.3 95/01/18
82 * ====================================================
83 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
85 * Developed at SunSoft, a Sun Microsystems, Inc. business.
86 * Permission to use, copy, modify, and distribute this
87 * software is freely granted, provided that this notice
88 * is preserved.
89 * ====================================================
92 #if ( (defined SIZEOF_INT && SIZEOF_INT==4) || (SIZEOF_INT_MAX == 2147483647) )
93 typedef int erf_int32_t;
94 typedef unsigned int erf_u_int32_t;
95 #elif (LONG_MAX == 2147483647L)
96 typedef long erf_int32_t;
97 typedef unsigned long erf_u_int32_t;
98 #elif (SHRT_MAX == 2147483647)
99 typedef short erf_int32_t;
100 typedef unsigned short erf_u_int32_t;
101 #else
102 # error ERROR: No 32 bit wide integer type found!
103 #endif
106 static const double
107 tiny = 1e-300,
108 half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
109 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
110 two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
111 /* c = (float)0.84506291151 */
112 erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
114 * Coefficients for approximation to erf on [0,0.84375]
116 efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
117 efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
118 pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
119 pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
120 pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
121 pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
122 pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
123 qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
124 qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
125 qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
126 qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
127 qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
129 * Coefficients for approximation to erf in [0.84375,1.25]
131 pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
132 pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
133 pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
134 pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
135 pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
136 pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
137 pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
138 qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
139 qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
140 qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
141 qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
142 qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
143 qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
145 * Coefficients for approximation to erfc in [1.25,1/0.35]
147 ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
148 ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
149 ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
150 ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
151 ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
152 ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
153 ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
154 ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
155 sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
156 sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
157 sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
158 sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
159 sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
160 sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
161 sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
162 sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
164 * Coefficients for approximation to erfc in [1/.35,28]
166 rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
167 rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
168 rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
169 rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
170 rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
171 rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
172 rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
173 sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
174 sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
175 sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
176 sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
177 sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
178 sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
179 sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
181 double gmx_erfd(double x)
184 erf_int32_t hx,ix,i;
185 double R,S,P,Q,s,y,z,r;
187 union
189 double d;
190 int i[2];
192 conv;
194 conv.d=x;
196 /* In release-4-6 and later branches, only the test for
197 * GMX_IEEE754_BIG_ENDIAN_WORD_ORDER will be required. */
198 #if defined(IEEE754_BIG_ENDIAN_WORD_ORDER) || defined(GMX_IEEE754_BIG_ENDIAN_WORD_ORDER)
199 hx=conv.i[0];
200 #else
201 hx=conv.i[1];
202 #endif
204 ix = hx&0x7fffffff;
205 if(ix>=0x7ff00000)
207 /* erf(nan)=nan */
208 i = ((erf_u_int32_t)hx>>31)<<1;
209 return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
212 if(ix < 0x3feb0000)
214 /* |x|<0.84375 */
215 if(ix < 0x3e300000)
217 /* |x|<2**-28 */
218 if (ix < 0x00800000)
219 return 0.125*(8.0*x+efx8*x); /*avoid underflow */
220 return x + efx*x;
222 z = x*x;
223 r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
224 s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
225 y = r/s;
226 return x + x*y;
228 if(ix < 0x3ff40000)
230 /* 0.84375 <= |x| < 1.25 */
231 s = fabs(x)-one;
232 P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
233 Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
234 if(hx>=0) return erx + P/Q; else return -erx - P/Q;
236 if (ix >= 0x40180000)
238 /* inf>|x|>=6 */
239 if(hx>=0) return one-tiny; else return tiny-one;
241 x = fabs(x);
242 s = one/(x*x);
243 if(ix< 0x4006DB6E)
245 /* |x| < 1/0.35 */
246 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))));
247 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))));
249 else
251 /* |x| >= 1/0.35 */
252 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))));
253 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))));
256 conv.d = x;
258 /* In release-4-6 and later branches, only the test for
259 * GMX_IEEE754_BIG_ENDIAN_WORD_ORDER will be required. */
260 #if defined(IEEE754_BIG_ENDIAN_WORD_ORDER) || defined(GMX_IEEE754_BIG_ENDIAN_WORD_ORDER)
261 conv.i[1] = 0;
262 #else
263 conv.i[0] = 0;
264 #endif
266 z = conv.d;
268 r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
269 if(hx>=0)
270 return one-r/x;
271 else
272 return r/x-one;
276 double gmx_erfcd(double x)
278 erf_int32_t hx,ix;
279 double R,S,P,Q,s,y,z,r;
281 union
283 double d;
284 int i[2];
286 conv;
288 conv.d = x;
290 /* In release-4-6 and later branches, only the test for
291 * GMX_IEEE754_BIG_ENDIAN_WORD_ORDER will be required. */
292 #if defined(IEEE754_BIG_ENDIAN_WORD_ORDER) || defined(GMX_IEEE754_BIG_ENDIAN_WORD_ORDER)
293 hx=conv.i[0];
294 #else
295 hx=conv.i[1];
296 #endif
298 ix = hx&0x7fffffff;
299 if(ix>=0x7ff00000)
301 /* erfc(nan)=nan */
302 /* erfc(+-inf)=0,2 */
303 return (double)(((erf_u_int32_t)hx>>31)<<1)+one/x;
306 if(ix < 0x3feb0000)
308 /* |x|<0.84375 */
309 double r1,r2,s1,s2,s3,z2,z4;
310 if(ix < 0x3c700000) /* |x|<2**-56 */
311 return one-x;
312 z = x*x;
313 r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
314 s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
315 y = r/s;
316 if(hx < 0x3fd00000)
318 /* x<1/4 */
319 return one-(x+x*y);
321 else
323 r = x*y;
324 r += (x-half);
325 return half - r ;
329 if(ix < 0x3ff40000)
331 /* 0.84375 <= |x| < 1.25 */
332 s = fabs(x)-one;
333 P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
334 Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
335 if(hx>=0) {
336 z = one-erx; return z - P/Q;
337 } else {
338 z = erx+P/Q; return one+z;
341 if (ix < 0x403c0000)
343 /* |x|<28 */
344 x = fabs(x);
345 s = one/(x*x);
346 if(ix< 0x4006DB6D)
348 /* |x| < 1/.35 ~ 2.857143*/
349 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))));
350 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))));
352 else
354 /* |x| >= 1/.35 ~ 2.857143 */
355 if(hx<0&&ix>=0x40180000)
356 return two-tiny; /* x < -6 */
357 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))));
358 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))));
361 conv.d = x;
363 /* In release-4-6 and later branches, only the test for
364 * GMX_IEEE754_BIG_ENDIAN_WORD_ORDER will be required. */
365 #if defined(IEEE754_BIG_ENDIAN_WORD_ORDER) || defined(GMX_IEEE754_BIG_ENDIAN_WORD_ORDER)
366 conv.i[1] = 0;
367 #else
368 conv.i[0] = 0;
369 #endif
371 z = conv.d;
373 r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
375 if(hx>0)
376 return r/x;
377 else
378 return two-r/x;
380 else
382 if(hx>0)
383 return tiny*tiny;
384 else
385 return two-tiny;
390 static const float
391 tinyf= 1e-30,
392 halff= 5.0000000000e-01, /* 0x3F000000 */
393 onef = 1.0000000000e+00, /* 0x3F800000 */
394 twof = 2.0000000000e+00, /* 0x40000000 */
395 /* c = (subfloat)0.84506291151 */
396 erxf = 8.4506291151e-01, /* 0x3f58560b */
398 * Coefficients for approximation to erf on [0,0.84375]
400 efxf = 1.2837916613e-01, /* 0x3e0375d4 */
401 efx8f= 1.0270333290e+00, /* 0x3f8375d4 */
402 pp0f = 1.2837916613e-01, /* 0x3e0375d4 */
403 pp1f = -3.2504209876e-01, /* 0xbea66beb */
404 pp2f = -2.8481749818e-02, /* 0xbce9528f */
405 pp3f = -5.7702702470e-03, /* 0xbbbd1489 */
406 pp4f = -2.3763017452e-05, /* 0xb7c756b1 */
407 qq1f = 3.9791721106e-01, /* 0x3ecbbbce */
408 qq2f = 6.5022252500e-02, /* 0x3d852a63 */
409 qq3f = 5.0813062117e-03, /* 0x3ba68116 */
410 qq4f = 1.3249473704e-04, /* 0x390aee49 */
411 qq5f = -3.9602282413e-06, /* 0xb684e21a */
413 * Coefficients for approximation to erf in [0.84375,1.25]
415 pa0f = -2.3621185683e-03, /* 0xbb1acdc6 */
416 pa1f = 4.1485610604e-01, /* 0x3ed46805 */
417 pa2f = -3.7220788002e-01, /* 0xbebe9208 */
418 pa3f = 3.1834661961e-01, /* 0x3ea2fe54 */
419 pa4f = -1.1089469492e-01, /* 0xbde31cc2 */
420 pa5f = 3.5478305072e-02, /* 0x3d1151b3 */
421 pa6f = -2.1663755178e-03, /* 0xbb0df9c0 */
422 qa1f = 1.0642088205e-01, /* 0x3dd9f331 */
423 qa2f = 5.4039794207e-01, /* 0x3f0a5785 */
424 qa3f = 7.1828655899e-02, /* 0x3d931ae7 */
425 qa4f = 1.2617121637e-01, /* 0x3e013307 */
426 qa5f = 1.3637083583e-02, /* 0x3c5f6e13 */
427 qa6f = 1.1984500103e-02, /* 0x3c445aa3 */
429 * Coefficients for approximation to erfc in [1.25,1/0.35]
431 ra0f = -9.8649440333e-03, /* 0xbc21a093 */
432 ra1f = -6.9385856390e-01, /* 0xbf31a0b7 */
433 ra2f = -1.0558626175e+01, /* 0xc128f022 */
434 ra3f = -6.2375331879e+01, /* 0xc2798057 */
435 ra4f = -1.6239666748e+02, /* 0xc322658c */
436 ra5f = -1.8460508728e+02, /* 0xc3389ae7 */
437 ra6f = -8.1287437439e+01, /* 0xc2a2932b */
438 ra7f = -9.8143291473e+00, /* 0xc11d077e */
439 sa1f = 1.9651271820e+01, /* 0x419d35ce */
440 sa2f = 1.3765776062e+02, /* 0x4309a863 */
441 sa3f = 4.3456588745e+02, /* 0x43d9486f */
442 sa4f = 6.4538726807e+02, /* 0x442158c9 */
443 sa5f = 4.2900814819e+02, /* 0x43d6810b */
444 sa6f = 1.0863500214e+02, /* 0x42d9451f */
445 sa7f = 6.5702495575e+00, /* 0x40d23f7c */
446 sa8f = -6.0424413532e-02, /* 0xbd777f97 */
448 * Coefficients for approximation to erfc in [1/.35,28]
450 rb0f = -9.8649431020e-03, /* 0xbc21a092 */
451 rb1f = -7.9928326607e-01, /* 0xbf4c9dd4 */
452 rb2f = -1.7757955551e+01, /* 0xc18e104b */
453 rb3f = -1.6063638306e+02, /* 0xc320a2ea */
454 rb4f = -6.3756646729e+02, /* 0xc41f6441 */
455 rb5f = -1.0250950928e+03, /* 0xc480230b */
456 rb6f = -4.8351919556e+02, /* 0xc3f1c275 */
457 sb1f = 3.0338060379e+01, /* 0x41f2b459 */
458 sb2f = 3.2579251099e+02, /* 0x43a2e571 */
459 sb3f = 1.5367296143e+03, /* 0x44c01759 */
460 sb4f = 3.1998581543e+03, /* 0x4547fdbb */
461 sb5f = 2.5530502930e+03, /* 0x451f90ce */
462 sb6f = 4.7452853394e+02, /* 0x43ed43a7 */
463 sb7f = -2.2440952301e+01; /* 0xc1b38712 */
466 typedef union
468 float value;
469 erf_u_int32_t word;
470 } ieee_float_shape_type;
472 #define GET_FLOAT_WORD(i,d) \
473 do { \
474 ieee_float_shape_type gf_u; \
475 gf_u.value = (d); \
476 (i) = gf_u.word; \
477 } while (0)
480 #define SET_FLOAT_WORD(d,i) \
481 do { \
482 ieee_float_shape_type sf_u; \
483 sf_u.word = (i); \
484 (d) = sf_u.value; \
485 } while (0)
488 float gmx_erff(float x)
490 erf_int32_t hx,ix,i;
491 float R,S,P,Q,s,y,z,r;
493 union
495 float f;
496 int i;
498 conv;
500 conv.f=x;
501 hx=conv.i;
503 ix = hx&0x7fffffff;
504 if(ix>=0x7f800000)
506 /* erf(nan)=nan */
507 i = ((erf_u_int32_t)hx>>31)<<1;
508 return (float)(1-i)+onef/x; /* erf(+-inf)=+-1 */
511 if(ix < 0x3f580000)
513 /* |x|<0.84375 */
514 if(ix < 0x31800000)
516 /* |x|<2**-28 */
517 if (ix < 0x04000000)
518 return (float)0.125*((float)8.0*x+efx8f*x); /*avoid underflow */
519 return x + efxf*x;
521 z = x*x;
522 r = pp0f+z*(pp1f+z*(pp2f+z*(pp3f+z*pp4f)));
523 s = onef+z*(qq1f+z*(qq2f+z*(qq3f+z*(qq4f+z*qq5f))));
524 y = r/s;
525 return x + x*y;
527 if(ix < 0x3fa00000)
529 /* 0.84375 <= |x| < 1.25 */
530 s = fabs(x)-onef;
531 P = pa0f+s*(pa1f+s*(pa2f+s*(pa3f+s*(pa4f+s*(pa5f+s*pa6f)))));
532 Q = onef+s*(qa1f+s*(qa2f+s*(qa3f+s*(qa4f+s*(qa5f+s*qa6f)))));
533 if(hx>=0) return erxf + P/Q; else return -erxf - P/Q;
535 if (ix >= 0x40c00000)
537 /* inf>|x|>=6 */
538 if(hx>=0) return onef-tinyf; else return tinyf-onef;
540 x = fabs(x);
541 s = onef/(x*x);
542 if(ix< 0x4036DB6E)
544 /* |x| < 1/0.35 */
545 R=ra0f+s*(ra1f+s*(ra2f+s*(ra3f+s*(ra4f+s*(ra5f+s*(ra6f+s*ra7f))))));
546 S=onef+s*(sa1f+s*(sa2f+s*(sa3f+s*(sa4f+s*(sa5f+s*(sa6f+s*(sa7f+s*sa8f)))))));
548 else
550 /* |x| >= 1/0.35 */
551 R=rb0f+s*(rb1f+s*(rb2f+s*(rb3f+s*(rb4f+s*(rb5f+s*rb6f)))));
552 S=onef+s*(sb1f+s*(sb2f+s*(sb3f+s*(sb4f+s*(sb5f+s*(sb6f+s*sb7f))))));
555 conv.f = x;
556 conv.i = conv.i & 0xfffff000;
557 z = conv.f;
559 r = exp(-z*z-(float)0.5625)*exp((z-x)*(z+x)+R/S);
560 if(hx>=0) return onef-r/x; else return r/x-onef;
563 float gmx_erfcf(float x)
565 erf_int32_t hx,ix;
566 float R,S,P,Q,s,y,z,r;
568 union
570 float f;
571 int i;
573 conv;
575 conv.f=x;
576 hx=conv.i;
578 ix = hx&0x7fffffff;
579 if(ix>=0x7f800000)
581 /* erfc(nan)=nan */
582 /* erfc(+-inf)=0,2 */
583 return (float)(((erf_u_int32_t)hx>>31)<<1)+onef/x;
586 if(ix < 0x3f580000)
588 /* |x|<0.84375 */
589 if(ix < 0x23800000)
590 return onef-x; /* |x|<2**-56 */
591 z = x*x;
592 r = pp0f+z*(pp1f+z*(pp2f+z*(pp3f+z*pp4f)));
593 s = onef+z*(qq1f+z*(qq2f+z*(qq3f+z*(qq4f+z*qq5f))));
594 y = r/s;
595 if(hx < 0x3e800000)
597 /* x<1/4 */
598 return onef-(x+x*y);
599 } else {
600 r = x*y;
601 r += (x-halff);
602 return halff - r ;
605 if(ix < 0x3fa00000)
607 /* 0.84375 <= |x| < 1.25 */
608 s = fabs(x)-onef;
609 P = pa0f+s*(pa1f+s*(pa2f+s*(pa3f+s*(pa4f+s*(pa5f+s*pa6f)))));
610 Q = onef+s*(qa1f+s*(qa2f+s*(qa3f+s*(qa4f+s*(qa5f+s*qa6f)))));
611 if(hx>=0) {
612 z = onef-erxf; return z - P/Q;
613 } else {
614 z = erxf+P/Q; return onef+z;
617 if (ix < 0x41e00000)
619 /* |x|<28 */
620 x = fabs(x);
621 s = onef/(x*x);
622 if(ix< 0x4036DB6D)
624 /* |x| < 1/.35 ~ 2.857143*/
625 R=ra0f+s*(ra1f+s*(ra2f+s*(ra3f+s*(ra4f+s*(ra5f+s*(ra6f+s*ra7f))))));
626 S=onef+s*(sa1f+s*(sa2f+s*(sa3f+s*(sa4f+s*(sa5f+s*(sa6f+s*(sa7f+s*sa8f)))))));
627 } else {
628 /* |x| >= 1/.35 ~ 2.857143 */
629 if(hx<0&&ix>=0x40c00000) return twof-tinyf;/* x < -6 */
630 R=rb0f+s*(rb1f+s*(rb2f+s*(rb3f+s*(rb4f+s*(rb5f+s*rb6f)))));
631 S=onef+s*(sb1f+s*(sb2f+s*(sb3f+s*(sb4f+s*(sb5f+s*(sb6f+s*sb7f))))));
634 conv.f = x;
635 conv.i = conv.i & 0xfffff000;
636 z = conv.f;
638 r = exp(-z*z-(float)0.5625)*exp((z-x)*(z+x)+R/S);
639 if(hx>0) return r/x; else return twof-r/x;
640 } else {
641 if(hx>0) return tinyf*tinyf; else return twof-tinyf;
646 gmx_bool gmx_isfinite(real x)
648 gmx_bool returnval = TRUE;
649 /* If no suitable function was found, assume the value is
650 * finite. */
652 #ifdef HAVE_ISFINITE
653 returnval = isfinite(x);
654 #elif defined HAVE__ISFINITE
655 returnval = _isfinite(x);
656 #elif defined HAVE__FINITE
657 returnval = _finite(x);
658 #endif
659 return returnval;
662 gmx_bool
663 check_int_multiply_for_overflow(gmx_large_int_t a,
664 gmx_large_int_t b,
665 gmx_large_int_t *result)
667 gmx_large_int_t sign = 1;
668 if((0 == a) || (0 == b))
670 *result = 0;
671 return TRUE;
673 if(a < 0)
675 a = -a;
676 sign = -sign;
678 if(b < 0)
680 b = -b;
681 sign = -sign;
683 if(GMX_LARGE_INT_MAX / b < a)
685 *result = (sign > 0) ? GMX_LARGE_INT_MAX : GMX_LARGE_INT_MIN;
686 return FALSE;
688 *result = sign * a * b;
689 return TRUE;