Split txtdump.*, part 1
[gromacs.git] / src / gromacs / mdlib / minimize.cpp
blob2b64a8c6f7bfa301c93f0dd93413a51322b59409
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 /*! \internal \file
39 * \brief This file defines integrators for energy minimization
41 * \author Berk Hess <hess@kth.se>
42 * \author Erik Lindahl <erik@kth.se>
43 * \ingroup module_mdlib
45 #include "gmxpre.h"
47 #include "minimize.h"
49 #include "config.h"
51 #include <cmath>
52 #include <cstring>
53 #include <ctime>
55 #include <algorithm>
57 #include "gromacs/commandline/filenm.h"
58 #include "gromacs/domdec/domdec.h"
59 #include "gromacs/domdec/domdec_struct.h"
60 #include "gromacs/ewald/pme.h"
61 #include "gromacs/fileio/confio.h"
62 #include "gromacs/fileio/mtxio.h"
63 #include "gromacs/gmxlib/gmx_omp_nthreads.h"
64 #include "gromacs/gmxlib/md_logging.h"
65 #include "gromacs/gmxlib/network.h"
66 #include "gromacs/gmxlib/nrnb.h"
67 #include "gromacs/imd/imd.h"
68 #include "gromacs/linearalgebra/sparsematrix.h"
69 #include "gromacs/listed-forces/manage-threading.h"
70 #include "gromacs/math/vec.h"
71 #include "gromacs/mdlib/constr.h"
72 #include "gromacs/mdlib/force.h"
73 #include "gromacs/mdlib/forcerec.h"
74 #include "gromacs/mdlib/md_support.h"
75 #include "gromacs/mdlib/mdatoms.h"
76 #include "gromacs/mdlib/mdebin.h"
77 #include "gromacs/mdlib/mdrun.h"
78 #include "gromacs/mdlib/ns.h"
79 #include "gromacs/mdlib/sim_util.h"
80 #include "gromacs/mdlib/tgroup.h"
81 #include "gromacs/mdlib/trajectory_writing.h"
82 #include "gromacs/mdlib/update.h"
83 #include "gromacs/mdlib/vsite.h"
84 #include "gromacs/mdtypes/commrec.h"
85 #include "gromacs/mdtypes/inputrec.h"
86 #include "gromacs/mdtypes/md_enums.h"
87 #include "gromacs/pbcutil/mshift.h"
88 #include "gromacs/pbcutil/pbc.h"
89 #include "gromacs/timing/wallcycle.h"
90 #include "gromacs/timing/walltime_accounting.h"
91 #include "gromacs/topology/mtop_util.h"
92 #include "gromacs/utility/cstringutil.h"
93 #include "gromacs/utility/exceptions.h"
94 #include "gromacs/utility/fatalerror.h"
95 #include "gromacs/utility/smalloc.h"
97 //! Utility structure for manipulating states during EM
98 typedef struct {
99 //! Copy of the global state
100 t_state s;
101 //! Force array
102 rvec *f;
103 //! Potential energy
104 real epot;
105 //! Norm of the force
106 real fnorm;
107 //! Maximum force
108 real fmax;
109 //! Direction
110 int a_fmax;
111 } em_state_t;
113 //! Initiate em_state_t structure and return pointer to it
114 static em_state_t *init_em_state()
116 em_state_t *ems;
118 snew(ems, 1);
120 /* does this need to be here? Should the array be declared differently (staticaly)in the state definition? */
121 snew(ems->s.lambda, efptNR);
123 return ems;
126 //! Print the EM starting conditions
127 static void print_em_start(FILE *fplog,
128 t_commrec *cr,
129 gmx_walltime_accounting_t walltime_accounting,
130 gmx_wallcycle_t wcycle,
131 const char *name)
133 walltime_accounting_start(walltime_accounting);
134 wallcycle_start(wcycle, ewcRUN);
135 print_start(fplog, cr, walltime_accounting, name);
138 //! Stop counting time for EM
139 static void em_time_end(gmx_walltime_accounting_t walltime_accounting,
140 gmx_wallcycle_t wcycle)
142 wallcycle_stop(wcycle, ewcRUN);
144 walltime_accounting_end(walltime_accounting);
147 //! Printing a log file and console header
148 static void sp_header(FILE *out, const char *minimizer, real ftol, int nsteps)
150 fprintf(out, "\n");
151 fprintf(out, "%s:\n", minimizer);
152 fprintf(out, " Tolerance (Fmax) = %12.5e\n", ftol);
153 fprintf(out, " Number of steps = %12d\n", nsteps);
156 //! Print warning message
157 static void warn_step(FILE *fp, real ftol, gmx_bool bLastStep, gmx_bool bConstrain)
159 char buffer[2048];
160 if (bLastStep)
162 sprintf(buffer,
163 "\nEnergy minimization reached the maximum number "
164 "of steps before the forces reached the requested "
165 "precision Fmax < %g.\n", ftol);
167 else
169 sprintf(buffer,
170 "\nEnergy minimization has stopped, but the forces have "
171 "not converged to the requested precision Fmax < %g (which "
172 "may not be possible for your system). It stopped "
173 "because the algorithm tried to make a new step whose size "
174 "was too small, or there was no change in the energy since "
175 "last step. Either way, we regard the minimization as "
176 "converged to within the available machine precision, "
177 "given your starting configuration and EM parameters.\n%s%s",
178 ftol,
179 sizeof(real) < sizeof(double) ?
180 "\nDouble precision normally gives you higher accuracy, but "
181 "this is often not needed for preparing to run molecular "
182 "dynamics.\n" :
184 bConstrain ?
185 "You might need to increase your constraint accuracy, or turn\n"
186 "off constraints altogether (set constraints = none in mdp file)\n" :
187 "");
189 fputs(wrap_lines(buffer, 78, 0, FALSE), fp);
192 //! Print message about convergence of the EM
193 static void print_converged(FILE *fp, const char *alg, real ftol,
194 gmx_int64_t count, gmx_bool bDone, gmx_int64_t nsteps,
195 real epot, real fmax, int nfmax, real fnorm)
197 char buf[STEPSTRSIZE];
199 if (bDone)
201 fprintf(fp, "\n%s converged to Fmax < %g in %s steps\n",
202 alg, ftol, gmx_step_str(count, buf));
204 else if (count < nsteps)
206 fprintf(fp, "\n%s converged to machine precision in %s steps,\n"
207 "but did not reach the requested Fmax < %g.\n",
208 alg, gmx_step_str(count, buf), ftol);
210 else
212 fprintf(fp, "\n%s did not converge to Fmax < %g in %s steps.\n",
213 alg, ftol, gmx_step_str(count, buf));
216 #ifdef GMX_DOUBLE
217 fprintf(fp, "Potential Energy = %21.14e\n", epot);
218 fprintf(fp, "Maximum force = %21.14e on atom %d\n", fmax, nfmax+1);
219 fprintf(fp, "Norm of force = %21.14e\n", fnorm);
220 #else
221 fprintf(fp, "Potential Energy = %14.7e\n", epot);
222 fprintf(fp, "Maximum force = %14.7e on atom %d\n", fmax, nfmax+1);
223 fprintf(fp, "Norm of force = %14.7e\n", fnorm);
224 #endif
227 //! Compute the norm and max of the force array in parallel
228 static void get_f_norm_max(t_commrec *cr,
229 t_grpopts *opts, t_mdatoms *mdatoms, rvec *f,
230 real *fnorm, real *fmax, int *a_fmax)
232 double fnorm2, *sum;
233 real fmax2, fam;
234 int la_max, a_max, start, end, i, m, gf;
236 /* This routine finds the largest force and returns it.
237 * On parallel machines the global max is taken.
239 fnorm2 = 0;
240 fmax2 = 0;
241 la_max = -1;
242 start = 0;
243 end = mdatoms->homenr;
244 if (mdatoms->cFREEZE)
246 for (i = start; i < end; i++)
248 gf = mdatoms->cFREEZE[i];
249 fam = 0;
250 for (m = 0; m < DIM; m++)
252 if (!opts->nFreeze[gf][m])
254 fam += sqr(f[i][m]);
257 fnorm2 += fam;
258 if (fam > fmax2)
260 fmax2 = fam;
261 la_max = i;
265 else
267 for (i = start; i < end; i++)
269 fam = norm2(f[i]);
270 fnorm2 += fam;
271 if (fam > fmax2)
273 fmax2 = fam;
274 la_max = i;
279 if (la_max >= 0 && DOMAINDECOMP(cr))
281 a_max = cr->dd->gatindex[la_max];
283 else
285 a_max = la_max;
287 if (PAR(cr))
289 snew(sum, 2*cr->nnodes+1);
290 sum[2*cr->nodeid] = fmax2;
291 sum[2*cr->nodeid+1] = a_max;
292 sum[2*cr->nnodes] = fnorm2;
293 gmx_sumd(2*cr->nnodes+1, sum, cr);
294 fnorm2 = sum[2*cr->nnodes];
295 /* Determine the global maximum */
296 for (i = 0; i < cr->nnodes; i++)
298 if (sum[2*i] > fmax2)
300 fmax2 = sum[2*i];
301 a_max = (int)(sum[2*i+1] + 0.5);
304 sfree(sum);
307 if (fnorm)
309 *fnorm = sqrt(fnorm2);
311 if (fmax)
313 *fmax = sqrt(fmax2);
315 if (a_fmax)
317 *a_fmax = a_max;
321 //! Compute the norm of the force
322 static void get_state_f_norm_max(t_commrec *cr,
323 t_grpopts *opts, t_mdatoms *mdatoms,
324 em_state_t *ems)
326 get_f_norm_max(cr, opts, mdatoms, ems->f, &ems->fnorm, &ems->fmax, &ems->a_fmax);
329 //! Initialize the energy minimization
330 void init_em(FILE *fplog, const char *title,
331 t_commrec *cr, t_inputrec *ir,
332 t_state *state_global, gmx_mtop_t *top_global,
333 em_state_t *ems, gmx_localtop_t **top,
334 rvec **f, rvec **f_global,
335 t_nrnb *nrnb, rvec mu_tot,
336 t_forcerec *fr, gmx_enerdata_t **enerd,
337 t_graph **graph, t_mdatoms *mdatoms, gmx_global_stat_t *gstat,
338 gmx_vsite_t *vsite, gmx_constr_t constr,
339 int nfile, const t_filenm fnm[],
340 gmx_mdoutf_t *outf, t_mdebin **mdebin,
341 int imdport, unsigned long gmx_unused Flags,
342 gmx_wallcycle_t wcycle)
344 int i;
345 real dvdl_constr;
347 if (fplog)
349 fprintf(fplog, "Initiating %s\n", title);
352 state_global->ngtc = 0;
354 /* Initialize lambda variables */
355 initialize_lambdas(fplog, ir, &(state_global->fep_state), state_global->lambda, NULL);
357 init_nrnb(nrnb);
359 /* Interactive molecular dynamics */
360 init_IMD(ir, cr, top_global, fplog, 1, state_global->x,
361 nfile, fnm, NULL, imdport, Flags);
363 if (DOMAINDECOMP(cr))
365 *top = dd_init_local_top(top_global);
367 dd_init_local_state(cr->dd, state_global, &ems->s);
369 *f = NULL;
371 /* Distribute the charge groups over the nodes from the master node */
372 dd_partition_system(fplog, ir->init_step, cr, TRUE, 1,
373 state_global, top_global, ir,
374 &ems->s, &ems->f, mdatoms, *top,
375 fr, vsite, NULL, constr,
376 nrnb, NULL, FALSE);
377 dd_store_state(cr->dd, &ems->s);
379 if (ir->nstfout)
381 snew(*f_global, top_global->natoms);
383 else
385 *f_global = NULL;
387 *graph = NULL;
389 else
391 snew(*f, top_global->natoms);
393 /* Just copy the state */
394 ems->s = *state_global;
395 snew(ems->s.x, ems->s.nalloc);
396 snew(ems->f, ems->s.nalloc);
397 for (i = 0; i < state_global->natoms; i++)
399 copy_rvec(state_global->x[i], ems->s.x[i]);
401 copy_mat(state_global->box, ems->s.box);
403 *top = gmx_mtop_generate_local_top(top_global, ir->efep != efepNO);
404 *f_global = *f;
406 forcerec_set_excl_load(fr, *top);
408 setup_bonded_threading(fr, &(*top)->idef);
410 if (ir->ePBC != epbcNONE && !fr->bMolPBC)
412 *graph = mk_graph(fplog, &((*top)->idef), 0, top_global->natoms, FALSE, FALSE);
414 else
416 *graph = NULL;
419 atoms2md(top_global, ir, 0, NULL, top_global->natoms, mdatoms);
420 update_mdatoms(mdatoms, state_global->lambda[efptFEP]);
422 if (vsite)
424 set_vsite_top(vsite, *top, mdatoms, cr);
428 if (constr)
430 if (ir->eConstrAlg == econtSHAKE &&
431 gmx_mtop_ftype_count(top_global, F_CONSTR) > 0)
433 gmx_fatal(FARGS, "Can not do energy minimization with %s, use %s\n",
434 econstr_names[econtSHAKE], econstr_names[econtLINCS]);
437 if (!DOMAINDECOMP(cr))
439 set_constraints(constr, *top, ir, mdatoms, cr);
442 if (!ir->bContinuation)
444 /* Constrain the starting coordinates */
445 dvdl_constr = 0;
446 constrain(PAR(cr) ? NULL : fplog, TRUE, TRUE, constr, &(*top)->idef,
447 ir, cr, -1, 0, 1.0, mdatoms,
448 ems->s.x, ems->s.x, NULL, fr->bMolPBC, ems->s.box,
449 ems->s.lambda[efptFEP], &dvdl_constr,
450 NULL, NULL, nrnb, econqCoord);
454 if (PAR(cr))
456 *gstat = global_stat_init(ir);
458 else
460 *gstat = NULL;
463 *outf = init_mdoutf(fplog, nfile, fnm, 0, cr, ir, top_global, NULL, wcycle);
465 snew(*enerd, 1);
466 init_enerdata(top_global->groups.grps[egcENER].nr, ir->fepvals->n_lambda,
467 *enerd);
469 if (mdebin != NULL)
471 /* Init bin for energy stuff */
472 *mdebin = init_mdebin(mdoutf_get_fp_ene(*outf), top_global, ir, NULL);
475 clear_rvec(mu_tot);
476 calc_shifts(ems->s.box, fr->shift_vec);
479 //! Finalize the minimization
480 static void finish_em(t_commrec *cr, gmx_mdoutf_t outf,
481 gmx_walltime_accounting_t walltime_accounting,
482 gmx_wallcycle_t wcycle)
484 if (!(cr->duty & DUTY_PME))
486 /* Tell the PME only node to finish */
487 gmx_pme_send_finish(cr);
490 done_mdoutf(outf);
492 em_time_end(walltime_accounting, wcycle);
495 //! Swap two different EM states during minimization
496 static void swap_em_state(em_state_t *ems1, em_state_t *ems2)
498 em_state_t tmp;
500 tmp = *ems1;
501 *ems1 = *ems2;
502 *ems2 = tmp;
505 //! Copy coordinate from an EM state to a "normal" state structure
506 static void copy_em_coords(em_state_t *ems, t_state *state)
508 int i;
510 for (i = 0; (i < state->natoms); i++)
512 copy_rvec(ems->s.x[i], state->x[i]);
516 //! Save the EM trajectory
517 static void write_em_traj(FILE *fplog, t_commrec *cr,
518 gmx_mdoutf_t outf,
519 gmx_bool bX, gmx_bool bF, const char *confout,
520 gmx_mtop_t *top_global,
521 t_inputrec *ir, gmx_int64_t step,
522 em_state_t *state,
523 t_state *state_global, rvec *f_global)
525 int mdof_flags;
526 gmx_bool bIMDout = FALSE;
529 /* Shall we do IMD output? */
530 if (ir->bIMD)
532 bIMDout = do_per_step(step, IMD_get_step(ir->imd->setup));
535 if ((bX || bF || bIMDout || confout != NULL) && !DOMAINDECOMP(cr))
537 copy_em_coords(state, state_global);
538 f_global = state->f;
541 mdof_flags = 0;
542 if (bX)
544 mdof_flags |= MDOF_X;
546 if (bF)
548 mdof_flags |= MDOF_F;
551 /* If we want IMD output, set appropriate MDOF flag */
552 if (ir->bIMD)
554 mdof_flags |= MDOF_IMD;
557 mdoutf_write_to_trajectory_files(fplog, cr, outf, mdof_flags,
558 top_global, step, (double)step,
559 &state->s, state_global, state->f, f_global);
561 if (confout != NULL && MASTER(cr))
563 if (ir->ePBC != epbcNONE && !ir->bPeriodicMols && DOMAINDECOMP(cr))
565 /* Make molecules whole only for confout writing */
566 do_pbc_mtop(fplog, ir->ePBC, state_global->box, top_global,
567 state_global->x);
570 write_sto_conf_mtop(confout,
571 *top_global->name, top_global,
572 state_global->x, NULL, ir->ePBC, state_global->box);
576 //! Do one minimization step
577 static void do_em_step(t_commrec *cr, t_inputrec *ir, t_mdatoms *md,
578 gmx_bool bMolPBC,
579 em_state_t *ems1, real a, rvec *f, em_state_t *ems2,
580 gmx_constr_t constr, gmx_localtop_t *top,
581 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
582 gmx_int64_t count)
585 t_state *s1, *s2;
586 int i;
587 int start, end;
588 rvec *x1, *x2;
589 real dvdl_constr;
590 int nthreads gmx_unused;
592 s1 = &ems1->s;
593 s2 = &ems2->s;
595 if (DOMAINDECOMP(cr) && s1->ddp_count != cr->dd->ddp_count)
597 gmx_incons("state mismatch in do_em_step");
600 s2->flags = s1->flags;
602 if (s2->nalloc != s1->nalloc)
604 s2->nalloc = s1->nalloc;
605 srenew(s2->x, s1->nalloc);
606 srenew(ems2->f, s1->nalloc);
607 if (s2->flags & (1<<estCGP))
609 srenew(s2->cg_p, s1->nalloc);
613 s2->natoms = s1->natoms;
614 copy_mat(s1->box, s2->box);
615 /* Copy free energy state */
616 for (i = 0; i < efptNR; i++)
618 s2->lambda[i] = s1->lambda[i];
620 copy_mat(s1->box, s2->box);
622 start = 0;
623 end = md->homenr;
625 x1 = s1->x;
626 x2 = s2->x;
628 // cppcheck-suppress unreadVariable
629 nthreads = gmx_omp_nthreads_get(emntUpdate);
630 #pragma omp parallel num_threads(nthreads)
632 int gf, i, m;
634 gf = 0;
635 #pragma omp for schedule(static) nowait
636 for (i = start; i < end; i++)
640 if (md->cFREEZE)
642 gf = md->cFREEZE[i];
644 for (m = 0; m < DIM; m++)
646 if (ir->opts.nFreeze[gf][m])
648 x2[i][m] = x1[i][m];
650 else
652 x2[i][m] = x1[i][m] + a*f[i][m];
656 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
659 if (s2->flags & (1<<estCGP))
661 /* Copy the CG p vector */
662 x1 = s1->cg_p;
663 x2 = s2->cg_p;
664 #pragma omp for schedule(static) nowait
665 for (i = start; i < end; i++)
667 // Trivial OpenMP block that does not throw
668 copy_rvec(x1[i], x2[i]);
672 if (DOMAINDECOMP(cr))
674 s2->ddp_count = s1->ddp_count;
675 if (s2->cg_gl_nalloc < s1->cg_gl_nalloc)
677 #pragma omp barrier
678 s2->cg_gl_nalloc = s1->cg_gl_nalloc;
681 srenew(s2->cg_gl, s2->cg_gl_nalloc);
683 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
684 #pragma omp barrier
686 s2->ncg_gl = s1->ncg_gl;
687 #pragma omp for schedule(static) nowait
688 for (i = 0; i < s2->ncg_gl; i++)
690 s2->cg_gl[i] = s1->cg_gl[i];
692 s2->ddp_count_cg_gl = s1->ddp_count_cg_gl;
696 if (constr)
698 wallcycle_start(wcycle, ewcCONSTR);
699 dvdl_constr = 0;
700 constrain(NULL, TRUE, TRUE, constr, &top->idef,
701 ir, cr, count, 0, 1.0, md,
702 s1->x, s2->x, NULL, bMolPBC, s2->box,
703 s2->lambda[efptBONDED], &dvdl_constr,
704 NULL, NULL, nrnb, econqCoord);
705 wallcycle_stop(wcycle, ewcCONSTR);
709 //! Prepare EM for using domain decomposition parallellization
710 static void em_dd_partition_system(FILE *fplog, int step, t_commrec *cr,
711 gmx_mtop_t *top_global, t_inputrec *ir,
712 em_state_t *ems, gmx_localtop_t *top,
713 t_mdatoms *mdatoms, t_forcerec *fr,
714 gmx_vsite_t *vsite, gmx_constr_t constr,
715 t_nrnb *nrnb, gmx_wallcycle_t wcycle)
717 /* Repartition the domain decomposition */
718 dd_partition_system(fplog, step, cr, FALSE, 1,
719 NULL, top_global, ir,
720 &ems->s, &ems->f,
721 mdatoms, top, fr, vsite, NULL, constr,
722 nrnb, wcycle, FALSE);
723 dd_store_state(cr->dd, &ems->s);
726 //! De one energy evaluation
727 static void evaluate_energy(FILE *fplog, t_commrec *cr,
728 gmx_mtop_t *top_global,
729 em_state_t *ems, gmx_localtop_t *top,
730 t_inputrec *inputrec,
731 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
732 gmx_global_stat_t gstat,
733 gmx_vsite_t *vsite, gmx_constr_t constr,
734 t_fcdata *fcd,
735 t_graph *graph, t_mdatoms *mdatoms,
736 t_forcerec *fr, rvec mu_tot,
737 gmx_enerdata_t *enerd, tensor vir, tensor pres,
738 gmx_int64_t count, gmx_bool bFirst)
740 real t;
741 gmx_bool bNS;
742 tensor force_vir, shake_vir, ekin;
743 real dvdl_constr, prescorr, enercorr, dvdlcorr;
744 real terminate = 0;
746 /* Set the time to the initial time, the time does not change during EM */
747 t = inputrec->init_t;
749 if (bFirst ||
750 (DOMAINDECOMP(cr) && ems->s.ddp_count < cr->dd->ddp_count))
752 /* This is the first state or an old state used before the last ns */
753 bNS = TRUE;
755 else
757 bNS = FALSE;
758 if (inputrec->nstlist > 0)
760 bNS = TRUE;
764 if (vsite)
766 construct_vsites(vsite, ems->s.x, 1, NULL,
767 top->idef.iparams, top->idef.il,
768 fr->ePBC, fr->bMolPBC, cr, ems->s.box);
771 if (DOMAINDECOMP(cr) && bNS)
773 /* Repartition the domain decomposition */
774 em_dd_partition_system(fplog, count, cr, top_global, inputrec,
775 ems, top, mdatoms, fr, vsite, constr,
776 nrnb, wcycle);
779 /* Calc force & energy on new trial position */
780 /* do_force always puts the charge groups in the box and shifts again
781 * We do not unshift, so molecules are always whole in congrad.c
783 do_force(fplog, cr, inputrec,
784 count, nrnb, wcycle, top, &top_global->groups,
785 ems->s.box, ems->s.x, &ems->s.hist,
786 ems->f, force_vir, mdatoms, enerd, fcd,
787 ems->s.lambda, graph, fr, vsite, mu_tot, t, NULL, NULL, TRUE,
788 GMX_FORCE_STATECHANGED | GMX_FORCE_ALLFORCES |
789 GMX_FORCE_VIRIAL | GMX_FORCE_ENERGY |
790 (bNS ? GMX_FORCE_NS : 0));
792 /* Clear the unused shake virial and pressure */
793 clear_mat(shake_vir);
794 clear_mat(pres);
796 /* Communicate stuff when parallel */
797 if (PAR(cr) && inputrec->eI != eiNM)
799 wallcycle_start(wcycle, ewcMoveE);
801 global_stat(fplog, gstat, cr, enerd, force_vir, shake_vir, mu_tot,
802 inputrec, NULL, NULL, NULL, 1, &terminate,
803 top_global, &ems->s, FALSE,
804 CGLO_ENERGY |
805 CGLO_PRESSURE |
806 CGLO_CONSTRAINT);
808 wallcycle_stop(wcycle, ewcMoveE);
811 /* Calculate long range corrections to pressure and energy */
812 calc_dispcorr(inputrec, fr, top_global->natoms, ems->s.box, ems->s.lambda[efptVDW],
813 pres, force_vir, &prescorr, &enercorr, &dvdlcorr);
814 enerd->term[F_DISPCORR] = enercorr;
815 enerd->term[F_EPOT] += enercorr;
816 enerd->term[F_PRES] += prescorr;
817 enerd->term[F_DVDL] += dvdlcorr;
819 ems->epot = enerd->term[F_EPOT];
821 if (constr)
823 /* Project out the constraint components of the force */
824 wallcycle_start(wcycle, ewcCONSTR);
825 dvdl_constr = 0;
826 constrain(NULL, FALSE, FALSE, constr, &top->idef,
827 inputrec, cr, count, 0, 1.0, mdatoms,
828 ems->s.x, ems->f, ems->f, fr->bMolPBC, ems->s.box,
829 ems->s.lambda[efptBONDED], &dvdl_constr,
830 NULL, &shake_vir, nrnb, econqForceDispl);
831 enerd->term[F_DVDL_CONSTR] += dvdl_constr;
832 m_add(force_vir, shake_vir, vir);
833 wallcycle_stop(wcycle, ewcCONSTR);
835 else
837 copy_mat(force_vir, vir);
840 clear_mat(ekin);
841 enerd->term[F_PRES] =
842 calc_pres(fr->ePBC, inputrec->nwall, ems->s.box, ekin, vir, pres);
844 sum_dhdl(enerd, ems->s.lambda, inputrec->fepvals);
846 if (EI_ENERGY_MINIMIZATION(inputrec->eI))
848 get_state_f_norm_max(cr, &(inputrec->opts), mdatoms, ems);
852 //! Parallel utility summing energies and forces
853 static double reorder_partsum(t_commrec *cr, t_grpopts *opts, t_mdatoms *mdatoms,
854 gmx_mtop_t *top_global,
855 em_state_t *s_min, em_state_t *s_b)
857 rvec *fm, *fb, *fmg;
858 t_block *cgs_gl;
859 int ncg, *cg_gl, *index, c, cg, i, a0, a1, a, gf, m;
860 double partsum;
861 unsigned char *grpnrFREEZE;
863 if (debug)
865 fprintf(debug, "Doing reorder_partsum\n");
868 fm = s_min->f;
869 fb = s_b->f;
871 cgs_gl = dd_charge_groups_global(cr->dd);
872 index = cgs_gl->index;
874 /* Collect fm in a global vector fmg.
875 * This conflicts with the spirit of domain decomposition,
876 * but to fully optimize this a much more complicated algorithm is required.
878 snew(fmg, top_global->natoms);
880 ncg = s_min->s.ncg_gl;
881 cg_gl = s_min->s.cg_gl;
882 i = 0;
883 for (c = 0; c < ncg; c++)
885 cg = cg_gl[c];
886 a0 = index[cg];
887 a1 = index[cg+1];
888 for (a = a0; a < a1; a++)
890 copy_rvec(fm[i], fmg[a]);
891 i++;
894 gmx_sum(top_global->natoms*3, fmg[0], cr);
896 /* Now we will determine the part of the sum for the cgs in state s_b */
897 ncg = s_b->s.ncg_gl;
898 cg_gl = s_b->s.cg_gl;
899 partsum = 0;
900 i = 0;
901 gf = 0;
902 grpnrFREEZE = top_global->groups.grpnr[egcFREEZE];
903 for (c = 0; c < ncg; c++)
905 cg = cg_gl[c];
906 a0 = index[cg];
907 a1 = index[cg+1];
908 for (a = a0; a < a1; a++)
910 if (mdatoms->cFREEZE && grpnrFREEZE)
912 gf = grpnrFREEZE[i];
914 for (m = 0; m < DIM; m++)
916 if (!opts->nFreeze[gf][m])
918 partsum += (fb[i][m] - fmg[a][m])*fb[i][m];
921 i++;
925 sfree(fmg);
927 return partsum;
930 //! Print some stuff, like beta, whatever that means.
931 static real pr_beta(t_commrec *cr, t_grpopts *opts, t_mdatoms *mdatoms,
932 gmx_mtop_t *top_global,
933 em_state_t *s_min, em_state_t *s_b)
935 rvec *fm, *fb;
936 double sum;
937 int gf, i, m;
939 /* This is just the classical Polak-Ribiere calculation of beta;
940 * it looks a bit complicated since we take freeze groups into account,
941 * and might have to sum it in parallel runs.
944 if (!DOMAINDECOMP(cr) ||
945 (s_min->s.ddp_count == cr->dd->ddp_count &&
946 s_b->s.ddp_count == cr->dd->ddp_count))
948 fm = s_min->f;
949 fb = s_b->f;
950 sum = 0;
951 gf = 0;
952 /* This part of code can be incorrect with DD,
953 * since the atom ordering in s_b and s_min might differ.
955 for (i = 0; i < mdatoms->homenr; i++)
957 if (mdatoms->cFREEZE)
959 gf = mdatoms->cFREEZE[i];
961 for (m = 0; m < DIM; m++)
963 if (!opts->nFreeze[gf][m])
965 sum += (fb[i][m] - fm[i][m])*fb[i][m];
970 else
972 /* We need to reorder cgs while summing */
973 sum = reorder_partsum(cr, opts, mdatoms, top_global, s_min, s_b);
975 if (PAR(cr))
977 gmx_sumd(1, &sum, cr);
980 return sum/sqr(s_min->fnorm);
983 namespace gmx
986 /*! \brief Do conjugate gradients minimization
987 \copydoc integrator_t(FILE *fplog, t_commrec *cr,
988 int nfile, const t_filenm fnm[],
989 const gmx_output_env_t *oenv, gmx_bool bVerbose,
990 int nstglobalcomm,
991 gmx_vsite_t *vsite, gmx_constr_t constr,
992 int stepout,
993 t_inputrec *inputrec,
994 gmx_mtop_t *top_global, t_fcdata *fcd,
995 t_state *state_global,
996 t_mdatoms *mdatoms,
997 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
998 gmx_edsam_t ed,
999 t_forcerec *fr,
1000 int repl_ex_nst, int repl_ex_nex, int repl_ex_seed,
1001 gmx_membed_t *membed,
1002 real cpt_period, real max_hours,
1003 int imdport,
1004 unsigned long Flags,
1005 gmx_walltime_accounting_t walltime_accounting)
1007 double do_cg(FILE *fplog, t_commrec *cr,
1008 int nfile, const t_filenm fnm[],
1009 const gmx_output_env_t gmx_unused *oenv, gmx_bool bVerbose,
1010 int gmx_unused nstglobalcomm,
1011 gmx_vsite_t *vsite, gmx_constr_t constr,
1012 int gmx_unused stepout,
1013 t_inputrec *inputrec,
1014 gmx_mtop_t *top_global, t_fcdata *fcd,
1015 t_state *state_global,
1016 t_mdatoms *mdatoms,
1017 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
1018 gmx_edsam_t gmx_unused ed,
1019 t_forcerec *fr,
1020 int gmx_unused repl_ex_nst, int gmx_unused repl_ex_nex, int gmx_unused repl_ex_seed,
1021 gmx_membed_t * /*membed*/,
1022 real gmx_unused cpt_period, real gmx_unused max_hours,
1023 int imdport,
1024 unsigned long gmx_unused Flags,
1025 gmx_walltime_accounting_t walltime_accounting)
1027 const char *CG = "Polak-Ribiere Conjugate Gradients";
1029 em_state_t *s_min, *s_a, *s_b, *s_c;
1030 gmx_localtop_t *top;
1031 gmx_enerdata_t *enerd;
1032 rvec *f;
1033 gmx_global_stat_t gstat;
1034 t_graph *graph;
1035 rvec *f_global, *p, *sf;
1036 double gpa, gpb, gpc, tmp, minstep;
1037 real fnormn;
1038 real stepsize;
1039 real a, b, c, beta = 0.0;
1040 real epot_repl = 0;
1041 real pnorm;
1042 t_mdebin *mdebin;
1043 gmx_bool converged, foundlower;
1044 rvec mu_tot;
1045 gmx_bool do_log = FALSE, do_ene = FALSE, do_x, do_f;
1046 tensor vir, pres;
1047 int number_steps, neval = 0, nstcg = inputrec->nstcgsteep;
1048 gmx_mdoutf_t outf;
1049 int i, m, gf, step, nminstep;
1051 step = 0;
1053 s_min = init_em_state();
1054 s_a = init_em_state();
1055 s_b = init_em_state();
1056 s_c = init_em_state();
1058 /* Init em and store the local state in s_min */
1059 init_em(fplog, CG, cr, inputrec,
1060 state_global, top_global, s_min, &top, &f, &f_global,
1061 nrnb, mu_tot, fr, &enerd, &graph, mdatoms, &gstat, vsite, constr,
1062 nfile, fnm, &outf, &mdebin, imdport, Flags, wcycle);
1064 /* Print to log file */
1065 print_em_start(fplog, cr, walltime_accounting, wcycle, CG);
1067 /* Max number of steps */
1068 number_steps = inputrec->nsteps;
1070 if (MASTER(cr))
1072 sp_header(stderr, CG, inputrec->em_tol, number_steps);
1074 if (fplog)
1076 sp_header(fplog, CG, inputrec->em_tol, number_steps);
1079 /* Call the force routine and some auxiliary (neighboursearching etc.) */
1080 /* do_force always puts the charge groups in the box and shifts again
1081 * We do not unshift, so molecules are always whole in congrad.c
1083 evaluate_energy(fplog, cr,
1084 top_global, s_min, top,
1085 inputrec, nrnb, wcycle, gstat,
1086 vsite, constr, fcd, graph, mdatoms, fr,
1087 mu_tot, enerd, vir, pres, -1, TRUE);
1088 where();
1090 if (MASTER(cr))
1092 /* Copy stuff to the energy bin for easy printing etc. */
1093 upd_mdebin(mdebin, FALSE, FALSE, (double)step,
1094 mdatoms->tmass, enerd, &s_min->s, inputrec->fepvals, inputrec->expandedvals, s_min->s.box,
1095 NULL, NULL, vir, pres, NULL, mu_tot, constr);
1097 print_ebin_header(fplog, step, step);
1098 print_ebin(mdoutf_get_fp_ene(outf), TRUE, FALSE, FALSE, fplog, step, step, eprNORMAL,
1099 mdebin, fcd, &(top_global->groups), &(inputrec->opts));
1101 where();
1103 /* Estimate/guess the initial stepsize */
1104 stepsize = inputrec->em_stepsize/s_min->fnorm;
1106 if (MASTER(cr))
1108 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
1109 fprintf(stderr, " F-max = %12.5e on atom %d\n",
1110 s_min->fmax, s_min->a_fmax+1);
1111 fprintf(stderr, " F-Norm = %12.5e\n",
1112 s_min->fnorm/sqrtNumAtoms);
1113 fprintf(stderr, "\n");
1114 /* and copy to the log file too... */
1115 fprintf(fplog, " F-max = %12.5e on atom %d\n",
1116 s_min->fmax, s_min->a_fmax+1);
1117 fprintf(fplog, " F-Norm = %12.5e\n",
1118 s_min->fnorm/sqrtNumAtoms);
1119 fprintf(fplog, "\n");
1121 /* Start the loop over CG steps.
1122 * Each successful step is counted, and we continue until
1123 * we either converge or reach the max number of steps.
1125 converged = FALSE;
1126 for (step = 0; (number_steps < 0 || (number_steps >= 0 && step <= number_steps)) && !converged; step++)
1129 /* start taking steps in a new direction
1130 * First time we enter the routine, beta=0, and the direction is
1131 * simply the negative gradient.
1134 /* Calculate the new direction in p, and the gradient in this direction, gpa */
1135 p = s_min->s.cg_p;
1136 sf = s_min->f;
1137 gpa = 0;
1138 gf = 0;
1139 for (i = 0; i < mdatoms->homenr; i++)
1141 if (mdatoms->cFREEZE)
1143 gf = mdatoms->cFREEZE[i];
1145 for (m = 0; m < DIM; m++)
1147 if (!inputrec->opts.nFreeze[gf][m])
1149 p[i][m] = sf[i][m] + beta*p[i][m];
1150 gpa -= p[i][m]*sf[i][m];
1151 /* f is negative gradient, thus the sign */
1153 else
1155 p[i][m] = 0;
1160 /* Sum the gradient along the line across CPUs */
1161 if (PAR(cr))
1163 gmx_sumd(1, &gpa, cr);
1166 /* Calculate the norm of the search vector */
1167 get_f_norm_max(cr, &(inputrec->opts), mdatoms, p, &pnorm, NULL, NULL);
1169 /* Just in case stepsize reaches zero due to numerical precision... */
1170 if (stepsize <= 0)
1172 stepsize = inputrec->em_stepsize/pnorm;
1176 * Double check the value of the derivative in the search direction.
1177 * If it is positive it must be due to the old information in the
1178 * CG formula, so just remove that and start over with beta=0.
1179 * This corresponds to a steepest descent step.
1181 if (gpa > 0)
1183 beta = 0;
1184 step--; /* Don't count this step since we are restarting */
1185 continue; /* Go back to the beginning of the big for-loop */
1188 /* Calculate minimum allowed stepsize, before the average (norm)
1189 * relative change in coordinate is smaller than precision
1191 minstep = 0;
1192 for (i = 0; i < mdatoms->homenr; i++)
1194 for (m = 0; m < DIM; m++)
1196 tmp = fabs(s_min->s.x[i][m]);
1197 if (tmp < 1.0)
1199 tmp = 1.0;
1201 tmp = p[i][m]/tmp;
1202 minstep += tmp*tmp;
1205 /* Add up from all CPUs */
1206 if (PAR(cr))
1208 gmx_sumd(1, &minstep, cr);
1211 minstep = GMX_REAL_EPS/sqrt(minstep/(3*state_global->natoms));
1213 if (stepsize < minstep)
1215 converged = TRUE;
1216 break;
1219 /* Write coordinates if necessary */
1220 do_x = do_per_step(step, inputrec->nstxout);
1221 do_f = do_per_step(step, inputrec->nstfout);
1223 write_em_traj(fplog, cr, outf, do_x, do_f, NULL,
1224 top_global, inputrec, step,
1225 s_min, state_global, f_global);
1227 /* Take a step downhill.
1228 * In theory, we should minimize the function along this direction.
1229 * That is quite possible, but it turns out to take 5-10 function evaluations
1230 * for each line. However, we dont really need to find the exact minimum -
1231 * it is much better to start a new CG step in a modified direction as soon
1232 * as we are close to it. This will save a lot of energy evaluations.
1234 * In practice, we just try to take a single step.
1235 * If it worked (i.e. lowered the energy), we increase the stepsize but
1236 * the continue straight to the next CG step without trying to find any minimum.
1237 * If it didn't work (higher energy), there must be a minimum somewhere between
1238 * the old position and the new one.
1240 * Due to the finite numerical accuracy, it turns out that it is a good idea
1241 * to even accept a SMALL increase in energy, if the derivative is still downhill.
1242 * This leads to lower final energies in the tests I've done. / Erik
1244 s_a->epot = s_min->epot;
1245 a = 0.0;
1246 c = a + stepsize; /* reference position along line is zero */
1248 if (DOMAINDECOMP(cr) && s_min->s.ddp_count < cr->dd->ddp_count)
1250 em_dd_partition_system(fplog, step, cr, top_global, inputrec,
1251 s_min, top, mdatoms, fr, vsite, constr,
1252 nrnb, wcycle);
1255 /* Take a trial step (new coords in s_c) */
1256 do_em_step(cr, inputrec, mdatoms, fr->bMolPBC, s_min, c, s_min->s.cg_p, s_c,
1257 constr, top, nrnb, wcycle, -1);
1259 neval++;
1260 /* Calculate energy for the trial step */
1261 evaluate_energy(fplog, cr,
1262 top_global, s_c, top,
1263 inputrec, nrnb, wcycle, gstat,
1264 vsite, constr, fcd, graph, mdatoms, fr,
1265 mu_tot, enerd, vir, pres, -1, FALSE);
1267 /* Calc derivative along line */
1268 p = s_c->s.cg_p;
1269 sf = s_c->f;
1270 gpc = 0;
1271 for (i = 0; i < mdatoms->homenr; i++)
1273 for (m = 0; m < DIM; m++)
1275 gpc -= p[i][m]*sf[i][m]; /* f is negative gradient, thus the sign */
1278 /* Sum the gradient along the line across CPUs */
1279 if (PAR(cr))
1281 gmx_sumd(1, &gpc, cr);
1284 /* This is the max amount of increase in energy we tolerate */
1285 tmp = sqrt(GMX_REAL_EPS)*fabs(s_a->epot);
1287 /* Accept the step if the energy is lower, or if it is not significantly higher
1288 * and the line derivative is still negative.
1290 if (s_c->epot < s_a->epot || (gpc < 0 && s_c->epot < (s_a->epot + tmp)))
1292 foundlower = TRUE;
1293 /* Great, we found a better energy. Increase step for next iteration
1294 * if we are still going down, decrease it otherwise
1296 if (gpc < 0)
1298 stepsize *= 1.618034; /* The golden section */
1300 else
1302 stepsize *= 0.618034; /* 1/golden section */
1305 else
1307 /* New energy is the same or higher. We will have to do some work
1308 * to find a smaller value in the interval. Take smaller step next time!
1310 foundlower = FALSE;
1311 stepsize *= 0.618034;
1317 /* OK, if we didn't find a lower value we will have to locate one now - there must
1318 * be one in the interval [a=0,c].
1319 * The same thing is valid here, though: Don't spend dozens of iterations to find
1320 * the line minimum. We try to interpolate based on the derivative at the endpoints,
1321 * and only continue until we find a lower value. In most cases this means 1-2 iterations.
1323 * I also have a safeguard for potentially really pathological functions so we never
1324 * take more than 20 steps before we give up ...
1326 * If we already found a lower value we just skip this step and continue to the update.
1328 if (!foundlower)
1330 nminstep = 0;
1334 /* Select a new trial point.
1335 * If the derivatives at points a & c have different sign we interpolate to zero,
1336 * otherwise just do a bisection.
1338 if (gpa < 0 && gpc > 0)
1340 b = a + gpa*(a-c)/(gpc-gpa);
1342 else
1344 b = 0.5*(a+c);
1347 /* safeguard if interpolation close to machine accuracy causes errors:
1348 * never go outside the interval
1350 if (b <= a || b >= c)
1352 b = 0.5*(a+c);
1355 if (DOMAINDECOMP(cr) && s_min->s.ddp_count != cr->dd->ddp_count)
1357 /* Reload the old state */
1358 em_dd_partition_system(fplog, -1, cr, top_global, inputrec,
1359 s_min, top, mdatoms, fr, vsite, constr,
1360 nrnb, wcycle);
1363 /* Take a trial step to this new point - new coords in s_b */
1364 do_em_step(cr, inputrec, mdatoms, fr->bMolPBC, s_min, b, s_min->s.cg_p, s_b,
1365 constr, top, nrnb, wcycle, -1);
1367 neval++;
1368 /* Calculate energy for the trial step */
1369 evaluate_energy(fplog, cr,
1370 top_global, s_b, top,
1371 inputrec, nrnb, wcycle, gstat,
1372 vsite, constr, fcd, graph, mdatoms, fr,
1373 mu_tot, enerd, vir, pres, -1, FALSE);
1375 /* p does not change within a step, but since the domain decomposition
1376 * might change, we have to use cg_p of s_b here.
1378 p = s_b->s.cg_p;
1379 sf = s_b->f;
1380 gpb = 0;
1381 for (i = 0; i < mdatoms->homenr; i++)
1383 for (m = 0; m < DIM; m++)
1385 gpb -= p[i][m]*sf[i][m]; /* f is negative gradient, thus the sign */
1388 /* Sum the gradient along the line across CPUs */
1389 if (PAR(cr))
1391 gmx_sumd(1, &gpb, cr);
1394 if (debug)
1396 fprintf(debug, "CGE: EpotA %f EpotB %f EpotC %f gpb %f\n",
1397 s_a->epot, s_b->epot, s_c->epot, gpb);
1400 epot_repl = s_b->epot;
1402 /* Keep one of the intervals based on the value of the derivative at the new point */
1403 if (gpb > 0)
1405 /* Replace c endpoint with b */
1406 swap_em_state(s_b, s_c);
1407 c = b;
1408 gpc = gpb;
1410 else
1412 /* Replace a endpoint with b */
1413 swap_em_state(s_b, s_a);
1414 a = b;
1415 gpa = gpb;
1419 * Stop search as soon as we find a value smaller than the endpoints.
1420 * Never run more than 20 steps, no matter what.
1422 nminstep++;
1424 while ((epot_repl > s_a->epot || epot_repl > s_c->epot) &&
1425 (nminstep < 20));
1427 if (fabs(epot_repl - s_min->epot) < fabs(s_min->epot)*GMX_REAL_EPS ||
1428 nminstep >= 20)
1430 /* OK. We couldn't find a significantly lower energy.
1431 * If beta==0 this was steepest descent, and then we give up.
1432 * If not, set beta=0 and restart with steepest descent before quitting.
1434 if (beta == 0.0)
1436 /* Converged */
1437 converged = TRUE;
1438 break;
1440 else
1442 /* Reset memory before giving up */
1443 beta = 0.0;
1444 continue;
1448 /* Select min energy state of A & C, put the best in B.
1450 if (s_c->epot < s_a->epot)
1452 if (debug)
1454 fprintf(debug, "CGE: C (%f) is lower than A (%f), moving C to B\n",
1455 s_c->epot, s_a->epot);
1457 swap_em_state(s_b, s_c);
1458 gpb = gpc;
1460 else
1462 if (debug)
1464 fprintf(debug, "CGE: A (%f) is lower than C (%f), moving A to B\n",
1465 s_a->epot, s_c->epot);
1467 swap_em_state(s_b, s_a);
1468 gpb = gpa;
1472 else
1474 if (debug)
1476 fprintf(debug, "CGE: Found a lower energy %f, moving C to B\n",
1477 s_c->epot);
1479 swap_em_state(s_b, s_c);
1480 gpb = gpc;
1483 /* new search direction */
1484 /* beta = 0 means forget all memory and restart with steepest descents. */
1485 if (nstcg && ((step % nstcg) == 0))
1487 beta = 0.0;
1489 else
1491 /* s_min->fnorm cannot be zero, because then we would have converged
1492 * and broken out.
1495 /* Polak-Ribiere update.
1496 * Change to fnorm2/fnorm2_old for Fletcher-Reeves
1498 beta = pr_beta(cr, &inputrec->opts, mdatoms, top_global, s_min, s_b);
1500 /* Limit beta to prevent oscillations */
1501 if (fabs(beta) > 5.0)
1503 beta = 0.0;
1507 /* update positions */
1508 swap_em_state(s_min, s_b);
1509 gpa = gpb;
1511 /* Print it if necessary */
1512 if (MASTER(cr))
1514 if (bVerbose)
1516 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
1517 fprintf(stderr, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n",
1518 step, s_min->epot, s_min->fnorm/sqrtNumAtoms,
1519 s_min->fmax, s_min->a_fmax+1);
1521 /* Store the new (lower) energies */
1522 upd_mdebin(mdebin, FALSE, FALSE, (double)step,
1523 mdatoms->tmass, enerd, &s_min->s, inputrec->fepvals, inputrec->expandedvals, s_min->s.box,
1524 NULL, NULL, vir, pres, NULL, mu_tot, constr);
1526 do_log = do_per_step(step, inputrec->nstlog);
1527 do_ene = do_per_step(step, inputrec->nstenergy);
1529 /* Prepare IMD energy record, if bIMD is TRUE. */
1530 IMD_fill_energy_record(inputrec->bIMD, inputrec->imd, enerd, step, TRUE);
1532 if (do_log)
1534 print_ebin_header(fplog, step, step);
1536 print_ebin(mdoutf_get_fp_ene(outf), do_ene, FALSE, FALSE,
1537 do_log ? fplog : NULL, step, step, eprNORMAL,
1538 mdebin, fcd, &(top_global->groups), &(inputrec->opts));
1541 /* Send energies and positions to the IMD client if bIMD is TRUE. */
1542 if (do_IMD(inputrec->bIMD, step, cr, TRUE, state_global->box, state_global->x, inputrec, 0, wcycle) && MASTER(cr))
1544 IMD_send_positions(inputrec->imd);
1547 /* Stop when the maximum force lies below tolerance.
1548 * If we have reached machine precision, converged is already set to true.
1550 converged = converged || (s_min->fmax < inputrec->em_tol);
1552 } /* End of the loop */
1554 /* IMD cleanup, if bIMD is TRUE. */
1555 IMD_finalize(inputrec->bIMD, inputrec->imd);
1557 if (converged)
1559 step--; /* we never took that last step in this case */
1562 if (s_min->fmax > inputrec->em_tol)
1564 if (MASTER(cr))
1566 warn_step(stderr, inputrec->em_tol, step-1 == number_steps, FALSE);
1567 warn_step(fplog, inputrec->em_tol, step-1 == number_steps, FALSE);
1569 converged = FALSE;
1572 if (MASTER(cr))
1574 /* If we printed energy and/or logfile last step (which was the last step)
1575 * we don't have to do it again, but otherwise print the final values.
1577 if (!do_log)
1579 /* Write final value to log since we didn't do anything the last step */
1580 print_ebin_header(fplog, step, step);
1582 if (!do_ene || !do_log)
1584 /* Write final energy file entries */
1585 print_ebin(mdoutf_get_fp_ene(outf), !do_ene, FALSE, FALSE,
1586 !do_log ? fplog : NULL, step, step, eprNORMAL,
1587 mdebin, fcd, &(top_global->groups), &(inputrec->opts));
1591 /* Print some stuff... */
1592 if (MASTER(cr))
1594 fprintf(stderr, "\nwriting lowest energy coordinates.\n");
1597 /* IMPORTANT!
1598 * For accurate normal mode calculation it is imperative that we
1599 * store the last conformation into the full precision binary trajectory.
1601 * However, we should only do it if we did NOT already write this step
1602 * above (which we did if do_x or do_f was true).
1604 do_x = !do_per_step(step, inputrec->nstxout);
1605 do_f = (inputrec->nstfout > 0 && !do_per_step(step, inputrec->nstfout));
1607 write_em_traj(fplog, cr, outf, do_x, do_f, ftp2fn(efSTO, nfile, fnm),
1608 top_global, inputrec, step,
1609 s_min, state_global, f_global);
1612 if (MASTER(cr))
1614 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
1615 fnormn = s_min->fnorm/sqrtNumAtoms;
1616 print_converged(stderr, CG, inputrec->em_tol, step, converged, number_steps,
1617 s_min->epot, s_min->fmax, s_min->a_fmax, fnormn);
1618 print_converged(fplog, CG, inputrec->em_tol, step, converged, number_steps,
1619 s_min->epot, s_min->fmax, s_min->a_fmax, fnormn);
1621 fprintf(fplog, "\nPerformed %d energy evaluations in total.\n", neval);
1624 finish_em(cr, outf, walltime_accounting, wcycle);
1626 /* To print the actual number of steps we needed somewhere */
1627 walltime_accounting_set_nsteps_done(walltime_accounting, step);
1629 return 0;
1630 } /* That's all folks */
1633 /*! \brief Do L-BFGS conjugate gradients minimization
1634 \copydoc integrator_t(FILE *fplog, t_commrec *cr,
1635 int nfile, const t_filenm fnm[],
1636 const gmx_output_env_t *oenv, gmx_bool bVerbose,
1637 int nstglobalcomm,
1638 gmx_vsite_t *vsite, gmx_constr_t constr,
1639 int stepout,
1640 t_inputrec *inputrec,
1641 gmx_mtop_t *top_global, t_fcdata *fcd,
1642 t_state *state_global,
1643 t_mdatoms *mdatoms,
1644 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
1645 gmx_edsam_t ed,
1646 t_forcerec *fr,
1647 int repl_ex_nst, int repl_ex_nex, int repl_ex_seed,
1648 gmx_membed_t *membed,
1649 real cpt_period, real max_hours,
1650 int imdport,
1651 unsigned long Flags,
1652 gmx_walltime_accounting_t walltime_accounting)
1654 double do_lbfgs(FILE *fplog, t_commrec *cr,
1655 int nfile, const t_filenm fnm[],
1656 const gmx_output_env_t gmx_unused *oenv, gmx_bool bVerbose,
1657 int gmx_unused nstglobalcomm,
1658 gmx_vsite_t *vsite, gmx_constr_t constr,
1659 int gmx_unused stepout,
1660 t_inputrec *inputrec,
1661 gmx_mtop_t *top_global, t_fcdata *fcd,
1662 t_state *state_global,
1663 t_mdatoms *mdatoms,
1664 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
1665 gmx_edsam_t gmx_unused ed,
1666 t_forcerec *fr,
1667 int gmx_unused repl_ex_nst, int gmx_unused repl_ex_nex, int gmx_unused repl_ex_seed,
1668 gmx_membed_t * /*membed*/,
1669 real gmx_unused cpt_period, real gmx_unused max_hours,
1670 int imdport,
1671 unsigned long gmx_unused Flags,
1672 gmx_walltime_accounting_t walltime_accounting)
1674 static const char *LBFGS = "Low-Memory BFGS Minimizer";
1675 em_state_t ems;
1676 gmx_localtop_t *top;
1677 gmx_enerdata_t *enerd;
1678 rvec *f;
1679 gmx_global_stat_t gstat;
1680 t_graph *graph;
1681 rvec *f_global;
1682 int ncorr, nmaxcorr, point, cp, neval, nminstep;
1683 double stepsize, step_taken, gpa, gpb, gpc, tmp, minstep;
1684 real *rho, *alpha, *ff, *xx, *p, *s, *lastx, *lastf, **dx, **dg;
1685 real *xa, *xb, *xc, *fa, *fb, *fc, *xtmp, *ftmp;
1686 real a, b, c, maxdelta, delta;
1687 real diag, Epot0, Epot, EpotA, EpotB, EpotC;
1688 real dgdx, dgdg, sq, yr, beta;
1689 t_mdebin *mdebin;
1690 gmx_bool converged;
1691 rvec mu_tot;
1692 real fnorm, fmax;
1693 gmx_bool do_log, do_ene, do_x, do_f, foundlower, *frozen;
1694 tensor vir, pres;
1695 int start, end, number_steps;
1696 gmx_mdoutf_t outf;
1697 int i, k, m, n, nfmax, gf, step;
1698 int mdof_flags;
1700 if (PAR(cr))
1702 gmx_fatal(FARGS, "Cannot do parallel L-BFGS Minimization - yet.\n");
1705 if (NULL != constr)
1707 gmx_fatal(FARGS, "The combination of constraints and L-BFGS minimization is not implemented. Either do not use constraints, or use another minimizer (e.g. steepest descent).");
1710 n = 3*state_global->natoms;
1711 nmaxcorr = inputrec->nbfgscorr;
1713 /* Allocate memory */
1714 /* Use pointers to real so we dont have to loop over both atoms and
1715 * dimensions all the time...
1716 * x/f are allocated as rvec *, so make new x0/f0 pointers-to-real
1717 * that point to the same memory.
1719 snew(xa, n);
1720 snew(xb, n);
1721 snew(xc, n);
1722 snew(fa, n);
1723 snew(fb, n);
1724 snew(fc, n);
1725 snew(frozen, n);
1727 snew(p, n);
1728 snew(lastx, n);
1729 snew(lastf, n);
1730 snew(rho, nmaxcorr);
1731 snew(alpha, nmaxcorr);
1733 snew(dx, nmaxcorr);
1734 for (i = 0; i < nmaxcorr; i++)
1736 snew(dx[i], n);
1739 snew(dg, nmaxcorr);
1740 for (i = 0; i < nmaxcorr; i++)
1742 snew(dg[i], n);
1745 step = 0;
1746 neval = 0;
1748 /* Init em */
1749 init_em(fplog, LBFGS, cr, inputrec,
1750 state_global, top_global, &ems, &top, &f, &f_global,
1751 nrnb, mu_tot, fr, &enerd, &graph, mdatoms, &gstat, vsite, constr,
1752 nfile, fnm, &outf, &mdebin, imdport, Flags, wcycle);
1753 /* Do_lbfgs is not completely updated like do_steep and do_cg,
1754 * so we free some memory again.
1756 sfree(ems.s.x);
1757 sfree(ems.f);
1759 xx = (real *)state_global->x;
1760 ff = (real *)f;
1762 start = 0;
1763 end = mdatoms->homenr;
1765 /* Print to log file */
1766 print_em_start(fplog, cr, walltime_accounting, wcycle, LBFGS);
1768 do_log = do_ene = do_x = do_f = TRUE;
1770 /* Max number of steps */
1771 number_steps = inputrec->nsteps;
1773 /* Create a 3*natoms index to tell whether each degree of freedom is frozen */
1774 gf = 0;
1775 for (i = start; i < end; i++)
1777 if (mdatoms->cFREEZE)
1779 gf = mdatoms->cFREEZE[i];
1781 for (m = 0; m < DIM; m++)
1783 frozen[3*i+m] = inputrec->opts.nFreeze[gf][m];
1786 if (MASTER(cr))
1788 sp_header(stderr, LBFGS, inputrec->em_tol, number_steps);
1790 if (fplog)
1792 sp_header(fplog, LBFGS, inputrec->em_tol, number_steps);
1795 if (vsite)
1797 construct_vsites(vsite, state_global->x, 1, NULL,
1798 top->idef.iparams, top->idef.il,
1799 fr->ePBC, fr->bMolPBC, cr, state_global->box);
1802 /* Call the force routine and some auxiliary (neighboursearching etc.) */
1803 /* do_force always puts the charge groups in the box and shifts again
1804 * We do not unshift, so molecules are always whole
1806 neval++;
1807 ems.s.x = state_global->x;
1808 ems.f = f;
1809 evaluate_energy(fplog, cr,
1810 top_global, &ems, top,
1811 inputrec, nrnb, wcycle, gstat,
1812 vsite, constr, fcd, graph, mdatoms, fr,
1813 mu_tot, enerd, vir, pres, -1, TRUE);
1814 where();
1816 if (MASTER(cr))
1818 /* Copy stuff to the energy bin for easy printing etc. */
1819 upd_mdebin(mdebin, FALSE, FALSE, (double)step,
1820 mdatoms->tmass, enerd, state_global, inputrec->fepvals, inputrec->expandedvals, state_global->box,
1821 NULL, NULL, vir, pres, NULL, mu_tot, constr);
1823 print_ebin_header(fplog, step, step);
1824 print_ebin(mdoutf_get_fp_ene(outf), TRUE, FALSE, FALSE, fplog, step, step, eprNORMAL,
1825 mdebin, fcd, &(top_global->groups), &(inputrec->opts));
1827 where();
1829 /* This is the starting energy */
1830 Epot = enerd->term[F_EPOT];
1832 fnorm = ems.fnorm;
1833 fmax = ems.fmax;
1834 nfmax = ems.a_fmax;
1836 /* Set the initial step.
1837 * since it will be multiplied by the non-normalized search direction
1838 * vector (force vector the first time), we scale it by the
1839 * norm of the force.
1842 if (MASTER(cr))
1844 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
1845 fprintf(stderr, "Using %d BFGS correction steps.\n\n", nmaxcorr);
1846 fprintf(stderr, " F-max = %12.5e on atom %d\n", fmax, nfmax+1);
1847 fprintf(stderr, " F-Norm = %12.5e\n", fnorm/sqrtNumAtoms);
1848 fprintf(stderr, "\n");
1849 /* and copy to the log file too... */
1850 fprintf(fplog, "Using %d BFGS correction steps.\n\n", nmaxcorr);
1851 fprintf(fplog, " F-max = %12.5e on atom %d\n", fmax, nfmax+1);
1852 fprintf(fplog, " F-Norm = %12.5e\n", fnorm/sqrtNumAtoms);
1853 fprintf(fplog, "\n");
1856 // Point is an index to the memory of search directions, where 0 is the first one.
1857 point = 0;
1859 // Set initial search direction to the force (-gradient), or 0 for frozen particles.
1860 for (i = 0; i < n; i++)
1862 if (!frozen[i])
1864 dx[point][i] = ff[i]; /* Initial search direction */
1866 else
1868 dx[point][i] = 0;
1872 // Stepsize will be modified during the search, and actually it is not critical
1873 // (the main efficiency in the algorithm comes from changing directions), but
1874 // we still need an initial value, so estimate it as the inverse of the norm
1875 // so we take small steps where the potential fluctuates a lot.
1876 stepsize = 1.0/fnorm;
1878 /* Start the loop over BFGS steps.
1879 * Each successful step is counted, and we continue until
1880 * we either converge or reach the max number of steps.
1883 ncorr = 0;
1885 /* Set the gradient from the force */
1886 converged = FALSE;
1887 for (step = 0; (number_steps < 0 || (number_steps >= 0 && step <= number_steps)) && !converged; step++)
1890 /* Write coordinates if necessary */
1891 do_x = do_per_step(step, inputrec->nstxout);
1892 do_f = do_per_step(step, inputrec->nstfout);
1894 mdof_flags = 0;
1895 if (do_x)
1897 mdof_flags |= MDOF_X;
1900 if (do_f)
1902 mdof_flags |= MDOF_F;
1905 if (inputrec->bIMD)
1907 mdof_flags |= MDOF_IMD;
1910 mdoutf_write_to_trajectory_files(fplog, cr, outf, mdof_flags,
1911 top_global, step, (real)step, state_global, state_global, f, f);
1913 /* Do the linesearching in the direction dx[point][0..(n-1)] */
1915 /* make s a pointer to current search direction - point=0 first time we get here */
1916 s = dx[point];
1918 // calculate line gradient in position A
1919 for (gpa = 0, i = 0; i < n; i++)
1921 gpa -= s[i]*ff[i];
1924 /* Calculate minimum allowed stepsize along the line, before the average (norm)
1925 * relative change in coordinate is smaller than precision
1927 for (minstep = 0, i = 0; i < n; i++)
1929 tmp = fabs(xx[i]);
1930 if (tmp < 1.0)
1932 tmp = 1.0;
1934 tmp = s[i]/tmp;
1935 minstep += tmp*tmp;
1937 minstep = GMX_REAL_EPS/sqrt(minstep/n);
1939 if (stepsize < minstep)
1941 converged = TRUE;
1942 break;
1945 // Before taking any steps along the line, store the old position
1946 for (i = 0; i < n; i++)
1948 lastx[i] = xx[i];
1949 lastf[i] = ff[i];
1951 Epot0 = Epot;
1953 for (i = 0; i < n; i++)
1955 xa[i] = xx[i];
1958 /* Take a step downhill.
1959 * In theory, we should find the actual minimum of the function in this
1960 * direction, somewhere along the line.
1961 * That is quite possible, but it turns out to take 5-10 function evaluations
1962 * for each line. However, we dont really need to find the exact minimum -
1963 * it is much better to start a new BFGS step in a modified direction as soon
1964 * as we are close to it. This will save a lot of energy evaluations.
1966 * In practice, we just try to take a single step.
1967 * If it worked (i.e. lowered the energy), we increase the stepsize but
1968 * continue straight to the next BFGS step without trying to find any minimum,
1969 * i.e. we change the search direction too. If the line was smooth, it is
1970 * likely we are in a smooth region, and then it makes sense to take longer
1971 * steps in the modified search direction too.
1973 * If it didn't work (higher energy), there must be a minimum somewhere between
1974 * the old position and the new one. Then we need to start by finding a lower
1975 * value before we change search direction. Since the energy was apparently
1976 * quite rough, we need to decrease the step size.
1978 * Due to the finite numerical accuracy, it turns out that it is a good idea
1979 * to accept a SMALL increase in energy, if the derivative is still downhill.
1980 * This leads to lower final energies in the tests I've done. / Erik
1983 // State "A" is the first position along the line.
1984 // reference position along line is initially zero
1985 EpotA = Epot0;
1986 a = 0.0;
1988 // Check stepsize first. We do not allow displacements
1989 // larger than emstep.
1993 // Pick a new position C by adding stepsize to A.
1994 c = a + stepsize;
1996 // Calculate what the largest change in any individual coordinate
1997 // would be (translation along line * gradient along line)
1998 maxdelta = 0;
1999 for (i = 0; i < n; i++)
2001 delta = c*s[i];
2002 if (delta > maxdelta)
2004 maxdelta = delta;
2007 // If any displacement is larger than the stepsize limit, reduce the step
2008 if (maxdelta > inputrec->em_stepsize)
2010 stepsize *= 0.1;
2013 while (maxdelta > inputrec->em_stepsize);
2015 // Take a trial step and move the coordinate array xc[] to position C
2016 for (i = 0; i < n; i++)
2018 xc[i] = lastx[i] + c*s[i];
2021 neval++;
2022 // Calculate energy for the trial step in position C
2023 ems.s.x = (rvec *)xc;
2024 ems.f = (rvec *)fc;
2025 evaluate_energy(fplog, cr,
2026 top_global, &ems, top,
2027 inputrec, nrnb, wcycle, gstat,
2028 vsite, constr, fcd, graph, mdatoms, fr,
2029 mu_tot, enerd, vir, pres, step, FALSE);
2030 EpotC = ems.epot;
2032 // Calc line gradient in position C
2033 for (gpc = 0, i = 0; i < n; i++)
2035 gpc -= s[i]*fc[i]; /* f is negative gradient, thus the sign */
2037 /* Sum the gradient along the line across CPUs */
2038 if (PAR(cr))
2040 gmx_sumd(1, &gpc, cr);
2043 // This is the max amount of increase in energy we tolerate.
2044 // By allowing VERY small changes (close to numerical precision) we
2045 // frequently find even better (lower) final energies.
2046 tmp = sqrt(GMX_REAL_EPS)*fabs(EpotA);
2048 // Accept the step if the energy is lower in the new position C (compared to A),
2049 // or if it is not significantly higher and the line derivative is still negative.
2050 if (EpotC < EpotA || (gpc < 0 && EpotC < (EpotA+tmp)))
2052 // Great, we found a better energy. We no longer try to alter the
2053 // stepsize, but simply accept this new better position. The we select a new
2054 // search direction instead, which will be much more efficient than continuing
2055 // to take smaller steps along a line. Set fnorm based on the new C position,
2056 // which will be used to update the stepsize to 1/fnorm further down.
2057 foundlower = TRUE;
2058 fnorm = ems.fnorm;
2060 else
2062 // If we got here, the energy is NOT lower in point C, i.e. it will be the same
2063 // or higher than in point A. In this case it is pointless to move to point C,
2064 // so we will have to do more iterations along the same line to find a smaller
2065 // value in the interval [A=0.0,C].
2066 // Here, A is still 0.0, but that will change when we do a search in the interval
2067 // [0.0,C] below. That search we will do by interpolation or bisection rather
2068 // than with the stepsize, so no need to modify it. For the next search direction
2069 // it will be reset to 1/fnorm anyway.
2070 foundlower = FALSE;
2073 if (!foundlower)
2075 // OK, if we didn't find a lower value we will have to locate one now - there must
2076 // be one in the interval [a,c].
2077 // The same thing is valid here, though: Don't spend dozens of iterations to find
2078 // the line minimum. We try to interpolate based on the derivative at the endpoints,
2079 // and only continue until we find a lower value. In most cases this means 1-2 iterations.
2080 // I also have a safeguard for potentially really pathological functions so we never
2081 // take more than 20 steps before we give up.
2082 // If we already found a lower value we just skip this step and continue to the update.
2083 nminstep = 0;
2086 // Select a new trial point B in the interval [A,C].
2087 // If the derivatives at points a & c have different sign we interpolate to zero,
2088 // otherwise just do a bisection since there might be multiple minima/maxima
2089 // inside the interval.
2090 if (gpa < 0 && gpc > 0)
2092 b = a + gpa*(a-c)/(gpc-gpa);
2094 else
2096 b = 0.5*(a+c);
2099 /* safeguard if interpolation close to machine accuracy causes errors:
2100 * never go outside the interval
2102 if (b <= a || b >= c)
2104 b = 0.5*(a+c);
2107 // Take a trial step to point B
2108 for (i = 0; i < n; i++)
2110 xb[i] = lastx[i] + b*s[i];
2113 neval++;
2114 // Calculate energy for the trial step in point B
2115 ems.s.x = (rvec *)xb;
2116 ems.f = (rvec *)fb;
2117 evaluate_energy(fplog, cr,
2118 top_global, &ems, top,
2119 inputrec, nrnb, wcycle, gstat,
2120 vsite, constr, fcd, graph, mdatoms, fr,
2121 mu_tot, enerd, vir, pres, step, FALSE);
2122 EpotB = ems.epot;
2123 fnorm = ems.fnorm;
2125 // Calculate gradient in point B
2126 for (gpb = 0, i = 0; i < n; i++)
2128 gpb -= s[i]*fb[i]; /* f is negative gradient, thus the sign */
2131 /* Sum the gradient along the line across CPUs */
2132 if (PAR(cr))
2134 gmx_sumd(1, &gpb, cr);
2137 // Keep one of the intervals [A,B] or [B,C] based on the value of the derivative
2138 // at the new point B, and rename the endpoints of this new interval A and C.
2139 if (gpb > 0)
2141 /* Replace c endpoint with b */
2142 EpotC = EpotB;
2143 c = b;
2144 gpc = gpb;
2145 /* swap coord pointers b/c */
2146 xtmp = xb;
2147 ftmp = fb;
2148 xb = xc;
2149 fb = fc;
2150 xc = xtmp;
2151 fc = ftmp;
2153 else
2155 /* Replace a endpoint with b */
2156 EpotA = EpotB;
2157 a = b;
2158 gpa = gpb;
2159 /* swap coord pointers a/b */
2160 xtmp = xb;
2161 ftmp = fb;
2162 xb = xa;
2163 fb = fa;
2164 xa = xtmp;
2165 fa = ftmp;
2169 * Stop search as soon as we find a value smaller than the endpoints,
2170 * or if the tolerance is below machine precision.
2171 * Never run more than 20 steps, no matter what.
2173 nminstep++;
2175 while ((EpotB > EpotA || EpotB > EpotC) && (nminstep < 20));
2177 if (fabs(EpotB-Epot0) < GMX_REAL_EPS || nminstep >= 20)
2179 /* OK. We couldn't find a significantly lower energy.
2180 * If ncorr==0 this was steepest descent, and then we give up.
2181 * If not, reset memory to restart as steepest descent before quitting.
2183 if (ncorr == 0)
2185 /* Converged */
2186 converged = TRUE;
2187 break;
2189 else
2191 /* Reset memory */
2192 ncorr = 0;
2193 /* Search in gradient direction */
2194 for (i = 0; i < n; i++)
2196 dx[point][i] = ff[i];
2198 /* Reset stepsize */
2199 stepsize = 1.0/fnorm;
2200 continue;
2204 /* Select min energy state of A & C, put the best in xx/ff/Epot
2206 if (EpotC < EpotA)
2208 Epot = EpotC;
2209 /* Use state C */
2210 for (i = 0; i < n; i++)
2212 xx[i] = xc[i];
2213 ff[i] = fc[i];
2215 step_taken = c;
2217 else
2219 Epot = EpotA;
2220 /* Use state A */
2221 for (i = 0; i < n; i++)
2223 xx[i] = xa[i];
2224 ff[i] = fa[i];
2226 step_taken = a;
2230 else
2232 /* found lower */
2233 Epot = EpotC;
2234 /* Use state C */
2235 for (i = 0; i < n; i++)
2237 xx[i] = xc[i];
2238 ff[i] = fc[i];
2240 step_taken = c;
2243 /* Update the memory information, and calculate a new
2244 * approximation of the inverse hessian
2247 /* Have new data in Epot, xx, ff */
2248 if (ncorr < nmaxcorr)
2250 ncorr++;
2253 for (i = 0; i < n; i++)
2255 dg[point][i] = lastf[i]-ff[i];
2256 dx[point][i] *= step_taken;
2259 dgdg = 0;
2260 dgdx = 0;
2261 for (i = 0; i < n; i++)
2263 dgdg += dg[point][i]*dg[point][i];
2264 dgdx += dg[point][i]*dx[point][i];
2267 diag = dgdx/dgdg;
2269 rho[point] = 1.0/dgdx;
2270 point++;
2272 if (point >= nmaxcorr)
2274 point = 0;
2277 /* Update */
2278 for (i = 0; i < n; i++)
2280 p[i] = ff[i];
2283 cp = point;
2285 /* Recursive update. First go back over the memory points */
2286 for (k = 0; k < ncorr; k++)
2288 cp--;
2289 if (cp < 0)
2291 cp = ncorr-1;
2294 sq = 0;
2295 for (i = 0; i < n; i++)
2297 sq += dx[cp][i]*p[i];
2300 alpha[cp] = rho[cp]*sq;
2302 for (i = 0; i < n; i++)
2304 p[i] -= alpha[cp]*dg[cp][i];
2308 for (i = 0; i < n; i++)
2310 p[i] *= diag;
2313 /* And then go forward again */
2314 for (k = 0; k < ncorr; k++)
2316 yr = 0;
2317 for (i = 0; i < n; i++)
2319 yr += p[i]*dg[cp][i];
2322 beta = rho[cp]*yr;
2323 beta = alpha[cp]-beta;
2325 for (i = 0; i < n; i++)
2327 p[i] += beta*dx[cp][i];
2330 cp++;
2331 if (cp >= ncorr)
2333 cp = 0;
2337 for (i = 0; i < n; i++)
2339 if (!frozen[i])
2341 dx[point][i] = p[i];
2343 else
2345 dx[point][i] = 0;
2349 /* Test whether the convergence criterion is met */
2350 get_f_norm_max(cr, &(inputrec->opts), mdatoms, f, &fnorm, &fmax, &nfmax);
2352 /* Print it if necessary */
2353 if (MASTER(cr))
2355 if (bVerbose)
2357 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
2358 fprintf(stderr, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n",
2359 step, Epot, fnorm/sqrtNumAtoms, fmax, nfmax+1);
2361 /* Store the new (lower) energies */
2362 upd_mdebin(mdebin, FALSE, FALSE, (double)step,
2363 mdatoms->tmass, enerd, state_global, inputrec->fepvals, inputrec->expandedvals, state_global->box,
2364 NULL, NULL, vir, pres, NULL, mu_tot, constr);
2365 do_log = do_per_step(step, inputrec->nstlog);
2366 do_ene = do_per_step(step, inputrec->nstenergy);
2367 if (do_log)
2369 print_ebin_header(fplog, step, step);
2371 print_ebin(mdoutf_get_fp_ene(outf), do_ene, FALSE, FALSE,
2372 do_log ? fplog : NULL, step, step, eprNORMAL,
2373 mdebin, fcd, &(top_global->groups), &(inputrec->opts));
2376 /* Send x and E to IMD client, if bIMD is TRUE. */
2377 if (do_IMD(inputrec->bIMD, step, cr, TRUE, state_global->box, state_global->x, inputrec, 0, wcycle) && MASTER(cr))
2379 IMD_send_positions(inputrec->imd);
2382 // Reset stepsize in we are doing more iterations
2383 stepsize = 1.0/fnorm;
2385 /* Stop when the maximum force lies below tolerance.
2386 * If we have reached machine precision, converged is already set to true.
2388 converged = converged || (fmax < inputrec->em_tol);
2390 } /* End of the loop */
2392 /* IMD cleanup, if bIMD is TRUE. */
2393 IMD_finalize(inputrec->bIMD, inputrec->imd);
2395 if (converged)
2397 step--; /* we never took that last step in this case */
2400 if (fmax > inputrec->em_tol)
2402 if (MASTER(cr))
2404 warn_step(stderr, inputrec->em_tol, step-1 == number_steps, FALSE);
2405 warn_step(fplog, inputrec->em_tol, step-1 == number_steps, FALSE);
2407 converged = FALSE;
2410 /* If we printed energy and/or logfile last step (which was the last step)
2411 * we don't have to do it again, but otherwise print the final values.
2413 if (!do_log) /* Write final value to log since we didn't do anythin last step */
2415 print_ebin_header(fplog, step, step);
2417 if (!do_ene || !do_log) /* Write final energy file entries */
2419 print_ebin(mdoutf_get_fp_ene(outf), !do_ene, FALSE, FALSE,
2420 !do_log ? fplog : NULL, step, step, eprNORMAL,
2421 mdebin, fcd, &(top_global->groups), &(inputrec->opts));
2424 /* Print some stuff... */
2425 if (MASTER(cr))
2427 fprintf(stderr, "\nwriting lowest energy coordinates.\n");
2430 /* IMPORTANT!
2431 * For accurate normal mode calculation it is imperative that we
2432 * store the last conformation into the full precision binary trajectory.
2434 * However, we should only do it if we did NOT already write this step
2435 * above (which we did if do_x or do_f was true).
2437 do_x = !do_per_step(step, inputrec->nstxout);
2438 do_f = !do_per_step(step, inputrec->nstfout);
2439 write_em_traj(fplog, cr, outf, do_x, do_f, ftp2fn(efSTO, nfile, fnm),
2440 top_global, inputrec, step,
2441 &ems, state_global, f);
2443 if (MASTER(cr))
2445 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
2446 print_converged(stderr, LBFGS, inputrec->em_tol, step, converged,
2447 number_steps, Epot, fmax, nfmax, fnorm/sqrtNumAtoms);
2448 print_converged(fplog, LBFGS, inputrec->em_tol, step, converged,
2449 number_steps, Epot, fmax, nfmax, fnorm/sqrtNumAtoms);
2451 fprintf(fplog, "\nPerformed %d energy evaluations in total.\n", neval);
2454 finish_em(cr, outf, walltime_accounting, wcycle);
2456 /* To print the actual number of steps we needed somewhere */
2457 walltime_accounting_set_nsteps_done(walltime_accounting, step);
2459 return 0;
2460 } /* That's all folks */
2462 /*! \brief Do steepest descents minimization
2463 \copydoc integrator_t(FILE *fplog, t_commrec *cr,
2464 int nfile, const t_filenm fnm[],
2465 const gmx_output_env_t *oenv, gmx_bool bVerbose,
2466 int nstglobalcomm,
2467 gmx_vsite_t *vsite, gmx_constr_t constr,
2468 int stepout,
2469 t_inputrec *inputrec,
2470 gmx_mtop_t *top_global, t_fcdata *fcd,
2471 t_state *state_global,
2472 t_mdatoms *mdatoms,
2473 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
2474 gmx_edsam_t ed,
2475 t_forcerec *fr,
2476 int repl_ex_nst, int repl_ex_nex, int repl_ex_seed,
2477 gmx_membed_t *membed,
2478 real cpt_period, real max_hours,
2479 int imdport,
2480 unsigned long Flags,
2481 gmx_walltime_accounting_t walltime_accounting)
2483 double do_steep(FILE *fplog, t_commrec *cr,
2484 int nfile, const t_filenm fnm[],
2485 const gmx_output_env_t gmx_unused *oenv, gmx_bool bVerbose,
2486 int gmx_unused nstglobalcomm,
2487 gmx_vsite_t *vsite, gmx_constr_t constr,
2488 int gmx_unused stepout,
2489 t_inputrec *inputrec,
2490 gmx_mtop_t *top_global, t_fcdata *fcd,
2491 t_state *state_global,
2492 t_mdatoms *mdatoms,
2493 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
2494 gmx_edsam_t gmx_unused ed,
2495 t_forcerec *fr,
2496 int gmx_unused repl_ex_nst, int gmx_unused repl_ex_nex, int gmx_unused repl_ex_seed,
2497 gmx_membed_t * /*membed*/,
2498 real gmx_unused cpt_period, real gmx_unused max_hours,
2499 int imdport,
2500 unsigned long gmx_unused Flags,
2501 gmx_walltime_accounting_t walltime_accounting)
2503 const char *SD = "Steepest Descents";
2504 em_state_t *s_min, *s_try;
2505 rvec *f_global;
2506 gmx_localtop_t *top;
2507 gmx_enerdata_t *enerd;
2508 rvec *f;
2509 gmx_global_stat_t gstat;
2510 t_graph *graph;
2511 real stepsize;
2512 real ustep, fnormn;
2513 gmx_mdoutf_t outf;
2514 t_mdebin *mdebin;
2515 gmx_bool bDone, bAbort, do_x, do_f;
2516 tensor vir, pres;
2517 rvec mu_tot;
2518 int nsteps;
2519 int count = 0;
2520 int steps_accepted = 0;
2522 s_min = init_em_state();
2523 s_try = init_em_state();
2525 /* Init em and store the local state in s_try */
2526 init_em(fplog, SD, cr, inputrec,
2527 state_global, top_global, s_try, &top, &f, &f_global,
2528 nrnb, mu_tot, fr, &enerd, &graph, mdatoms, &gstat, vsite, constr,
2529 nfile, fnm, &outf, &mdebin, imdport, Flags, wcycle);
2531 /* Print to log file */
2532 print_em_start(fplog, cr, walltime_accounting, wcycle, SD);
2534 /* Set variables for stepsize (in nm). This is the largest
2535 * step that we are going to make in any direction.
2537 ustep = inputrec->em_stepsize;
2538 stepsize = 0;
2540 /* Max number of steps */
2541 nsteps = inputrec->nsteps;
2543 if (MASTER(cr))
2545 /* Print to the screen */
2546 sp_header(stderr, SD, inputrec->em_tol, nsteps);
2548 if (fplog)
2550 sp_header(fplog, SD, inputrec->em_tol, nsteps);
2553 /**** HERE STARTS THE LOOP ****
2554 * count is the counter for the number of steps
2555 * bDone will be TRUE when the minimization has converged
2556 * bAbort will be TRUE when nsteps steps have been performed or when
2557 * the stepsize becomes smaller than is reasonable for machine precision
2559 count = 0;
2560 bDone = FALSE;
2561 bAbort = FALSE;
2562 while (!bDone && !bAbort)
2564 bAbort = (nsteps >= 0) && (count == nsteps);
2566 /* set new coordinates, except for first step */
2567 if (count > 0)
2569 do_em_step(cr, inputrec, mdatoms, fr->bMolPBC,
2570 s_min, stepsize, s_min->f, s_try,
2571 constr, top, nrnb, wcycle, count);
2574 evaluate_energy(fplog, cr,
2575 top_global, s_try, top,
2576 inputrec, nrnb, wcycle, gstat,
2577 vsite, constr, fcd, graph, mdatoms, fr,
2578 mu_tot, enerd, vir, pres, count, count == 0);
2580 if (MASTER(cr))
2582 print_ebin_header(fplog, count, count);
2585 if (count == 0)
2587 s_min->epot = s_try->epot;
2590 /* Print it if necessary */
2591 if (MASTER(cr))
2593 if (bVerbose)
2595 fprintf(stderr, "Step=%5d, Dmax= %6.1e nm, Epot= %12.5e Fmax= %11.5e, atom= %d%c",
2596 count, ustep, s_try->epot, s_try->fmax, s_try->a_fmax+1,
2597 ( (count == 0) || (s_try->epot < s_min->epot) ) ? '\n' : '\r');
2600 if ( (count == 0) || (s_try->epot < s_min->epot) )
2602 /* Store the new (lower) energies */
2603 upd_mdebin(mdebin, FALSE, FALSE, (double)count,
2604 mdatoms->tmass, enerd, &s_try->s, inputrec->fepvals, inputrec->expandedvals,
2605 s_try->s.box, NULL, NULL, vir, pres, NULL, mu_tot, constr);
2607 /* Prepare IMD energy record, if bIMD is TRUE. */
2608 IMD_fill_energy_record(inputrec->bIMD, inputrec->imd, enerd, count, TRUE);
2610 print_ebin(mdoutf_get_fp_ene(outf), TRUE,
2611 do_per_step(steps_accepted, inputrec->nstdisreout),
2612 do_per_step(steps_accepted, inputrec->nstorireout),
2613 fplog, count, count, eprNORMAL,
2614 mdebin, fcd, &(top_global->groups), &(inputrec->opts));
2615 fflush(fplog);
2619 /* Now if the new energy is smaller than the previous...
2620 * or if this is the first step!
2621 * or if we did random steps!
2624 if ( (count == 0) || (s_try->epot < s_min->epot) )
2626 steps_accepted++;
2628 /* Test whether the convergence criterion is met... */
2629 bDone = (s_try->fmax < inputrec->em_tol);
2631 /* Copy the arrays for force, positions and energy */
2632 /* The 'Min' array always holds the coords and forces of the minimal
2633 sampled energy */
2634 swap_em_state(s_min, s_try);
2635 if (count > 0)
2637 ustep *= 1.2;
2640 /* Write to trn, if necessary */
2641 do_x = do_per_step(steps_accepted, inputrec->nstxout);
2642 do_f = do_per_step(steps_accepted, inputrec->nstfout);
2643 write_em_traj(fplog, cr, outf, do_x, do_f, NULL,
2644 top_global, inputrec, count,
2645 s_min, state_global, f_global);
2647 else
2649 /* If energy is not smaller make the step smaller... */
2650 ustep *= 0.5;
2652 if (DOMAINDECOMP(cr) && s_min->s.ddp_count != cr->dd->ddp_count)
2654 /* Reload the old state */
2655 em_dd_partition_system(fplog, count, cr, top_global, inputrec,
2656 s_min, top, mdatoms, fr, vsite, constr,
2657 nrnb, wcycle);
2661 /* Determine new step */
2662 stepsize = ustep/s_min->fmax;
2664 /* Check if stepsize is too small, with 1 nm as a characteristic length */
2665 #ifdef GMX_DOUBLE
2666 if (count == nsteps || ustep < 1e-12)
2667 #else
2668 if (count == nsteps || ustep < 1e-6)
2669 #endif
2671 if (MASTER(cr))
2673 warn_step(stderr, inputrec->em_tol, count == nsteps, constr != NULL);
2674 warn_step(fplog, inputrec->em_tol, count == nsteps, constr != NULL);
2676 bAbort = TRUE;
2679 /* Send IMD energies and positions, if bIMD is TRUE. */
2680 if (do_IMD(inputrec->bIMD, count, cr, TRUE, state_global->box, state_global->x, inputrec, 0, wcycle) && MASTER(cr))
2682 IMD_send_positions(inputrec->imd);
2685 count++;
2686 } /* End of the loop */
2688 /* IMD cleanup, if bIMD is TRUE. */
2689 IMD_finalize(inputrec->bIMD, inputrec->imd);
2691 /* Print some data... */
2692 if (MASTER(cr))
2694 fprintf(stderr, "\nwriting lowest energy coordinates.\n");
2696 write_em_traj(fplog, cr, outf, TRUE, inputrec->nstfout, ftp2fn(efSTO, nfile, fnm),
2697 top_global, inputrec, count,
2698 s_min, state_global, f_global);
2700 if (MASTER(cr))
2702 double sqrtNumAtoms = sqrt(static_cast<double>(state_global->natoms));
2703 fnormn = s_min->fnorm/sqrtNumAtoms;
2705 print_converged(stderr, SD, inputrec->em_tol, count, bDone, nsteps,
2706 s_min->epot, s_min->fmax, s_min->a_fmax, fnormn);
2707 print_converged(fplog, SD, inputrec->em_tol, count, bDone, nsteps,
2708 s_min->epot, s_min->fmax, s_min->a_fmax, fnormn);
2711 finish_em(cr, outf, walltime_accounting, wcycle);
2713 /* To print the actual number of steps we needed somewhere */
2714 inputrec->nsteps = count;
2716 walltime_accounting_set_nsteps_done(walltime_accounting, count);
2718 return 0;
2719 } /* That's all folks */
2721 /*! \brief Do normal modes analysis
2722 \copydoc integrator_t(FILE *fplog, t_commrec *cr,
2723 int nfile, const t_filenm fnm[],
2724 const gmx_output_env_t *oenv, gmx_bool bVerbose,
2725 int nstglobalcomm,
2726 gmx_vsite_t *vsite, gmx_constr_t constr,
2727 int stepout,
2728 t_inputrec *inputrec,
2729 gmx_mtop_t *top_global, t_fcdata *fcd,
2730 t_state *state_global,
2731 t_mdatoms *mdatoms,
2732 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
2733 gmx_edsam_t ed,
2734 t_forcerec *fr,
2735 int repl_ex_nst, int repl_ex_nex, int repl_ex_seed,
2736 gmx_membed_t *membed,
2737 real cpt_period, real max_hours,
2738 int imdport,
2739 unsigned long Flags,
2740 gmx_walltime_accounting_t walltime_accounting)
2742 double do_nm(FILE *fplog, t_commrec *cr,
2743 int nfile, const t_filenm fnm[],
2744 const gmx_output_env_t gmx_unused *oenv, gmx_bool bVerbose,
2745 int gmx_unused nstglobalcomm,
2746 gmx_vsite_t *vsite, gmx_constr_t constr,
2747 int gmx_unused stepout,
2748 t_inputrec *inputrec,
2749 gmx_mtop_t *top_global, t_fcdata *fcd,
2750 t_state *state_global,
2751 t_mdatoms *mdatoms,
2752 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
2753 gmx_edsam_t gmx_unused ed,
2754 t_forcerec *fr,
2755 int gmx_unused repl_ex_nst, int gmx_unused repl_ex_nex, int gmx_unused repl_ex_seed,
2756 gmx_membed_t * /*membed*/,
2757 real gmx_unused cpt_period, real gmx_unused max_hours,
2758 int imdport,
2759 unsigned long gmx_unused Flags,
2760 gmx_walltime_accounting_t walltime_accounting)
2762 const char *NM = "Normal Mode Analysis";
2763 gmx_mdoutf_t outf;
2764 int natoms, atom, d;
2765 int nnodes, node;
2766 rvec *f_global;
2767 gmx_localtop_t *top;
2768 gmx_enerdata_t *enerd;
2769 rvec *f;
2770 gmx_global_stat_t gstat;
2771 t_graph *graph;
2772 tensor vir, pres;
2773 rvec mu_tot;
2774 rvec *fneg, *dfdx;
2775 gmx_bool bSparse; /* use sparse matrix storage format */
2776 size_t sz = 0;
2777 gmx_sparsematrix_t * sparse_matrix = NULL;
2778 real * full_matrix = NULL;
2779 em_state_t * state_work;
2781 /* added with respect to mdrun */
2782 int i, j, k, row, col;
2783 real der_range = 10.0*sqrt(GMX_REAL_EPS);
2784 real x_min;
2785 bool bIsMaster = MASTER(cr);
2787 if (constr != NULL)
2789 gmx_fatal(FARGS, "Constraints present with Normal Mode Analysis, this combination is not supported");
2792 state_work = init_em_state();
2794 /* Init em and store the local state in state_minimum */
2795 init_em(fplog, NM, cr, inputrec,
2796 state_global, top_global, state_work, &top,
2797 &f, &f_global,
2798 nrnb, mu_tot, fr, &enerd, &graph, mdatoms, &gstat, vsite, constr,
2799 nfile, fnm, &outf, NULL, imdport, Flags, wcycle);
2801 natoms = top_global->natoms;
2802 snew(fneg, natoms);
2803 snew(dfdx, natoms);
2805 #ifndef GMX_DOUBLE
2806 if (bIsMaster)
2808 fprintf(stderr,
2809 "NOTE: This version of GROMACS has been compiled in single precision,\n"
2810 " which MIGHT not be accurate enough for normal mode analysis.\n"
2811 " GROMACS now uses sparse matrix storage, so the memory requirements\n"
2812 " are fairly modest even if you recompile in double precision.\n\n");
2814 #endif
2816 /* Check if we can/should use sparse storage format.
2818 * Sparse format is only useful when the Hessian itself is sparse, which it
2819 * will be when we use a cutoff.
2820 * For small systems (n<1000) it is easier to always use full matrix format, though.
2822 if (EEL_FULL(fr->eeltype) || fr->rlist == 0.0)
2824 md_print_info(cr, fplog, "Non-cutoff electrostatics used, forcing full Hessian format.\n");
2825 bSparse = FALSE;
2827 else if (top_global->natoms < 1000)
2829 md_print_info(cr, fplog, "Small system size (N=%d), using full Hessian format.\n", top_global->natoms);
2830 bSparse = FALSE;
2832 else
2834 md_print_info(cr, fplog, "Using compressed symmetric sparse Hessian format.\n");
2835 bSparse = TRUE;
2838 if (bIsMaster)
2840 sz = DIM*top_global->natoms;
2842 fprintf(stderr, "Allocating Hessian memory...\n\n");
2844 if (bSparse)
2846 sparse_matrix = gmx_sparsematrix_init(sz);
2847 sparse_matrix->compressed_symmetric = TRUE;
2849 else
2851 snew(full_matrix, sz*sz);
2855 init_nrnb(nrnb);
2857 where();
2859 /* Write start time and temperature */
2860 print_em_start(fplog, cr, walltime_accounting, wcycle, NM);
2862 /* fudge nr of steps to nr of atoms */
2863 inputrec->nsteps = natoms*2;
2865 if (bIsMaster)
2867 fprintf(stderr, "starting normal mode calculation '%s'\n%d steps.\n\n",
2868 *(top_global->name), (int)inputrec->nsteps);
2871 nnodes = cr->nnodes;
2873 /* Make evaluate_energy do a single node force calculation */
2874 cr->nnodes = 1;
2875 evaluate_energy(fplog, cr,
2876 top_global, state_work, top,
2877 inputrec, nrnb, wcycle, gstat,
2878 vsite, constr, fcd, graph, mdatoms, fr,
2879 mu_tot, enerd, vir, pres, -1, TRUE);
2880 cr->nnodes = nnodes;
2882 /* if forces are not small, warn user */
2883 get_state_f_norm_max(cr, &(inputrec->opts), mdatoms, state_work);
2885 md_print_info(cr, fplog, "Maximum force:%12.5e\n", state_work->fmax);
2886 if (state_work->fmax > 1.0e-3)
2888 md_print_info(cr, fplog,
2889 "The force is probably not small enough to "
2890 "ensure that you are at a minimum.\n"
2891 "Be aware that negative eigenvalues may occur\n"
2892 "when the resulting matrix is diagonalized.\n\n");
2895 /***********************************************************
2897 * Loop over all pairs in matrix
2899 * do_force called twice. Once with positive and
2900 * once with negative displacement
2902 ************************************************************/
2904 /* Steps are divided one by one over the nodes */
2905 for (atom = cr->nodeid; atom < natoms; atom += nnodes)
2908 for (d = 0; d < DIM; d++)
2910 x_min = state_work->s.x[atom][d];
2912 state_work->s.x[atom][d] = x_min - der_range;
2914 /* Make evaluate_energy do a single node force calculation */
2915 cr->nnodes = 1;
2916 evaluate_energy(fplog, cr,
2917 top_global, state_work, top,
2918 inputrec, nrnb, wcycle, gstat,
2919 vsite, constr, fcd, graph, mdatoms, fr,
2920 mu_tot, enerd, vir, pres, atom*2, FALSE);
2922 for (i = 0; i < natoms; i++)
2924 copy_rvec(state_work->f[i], fneg[i]);
2927 state_work->s.x[atom][d] = x_min + der_range;
2929 evaluate_energy(fplog, cr,
2930 top_global, state_work, top,
2931 inputrec, nrnb, wcycle, gstat,
2932 vsite, constr, fcd, graph, mdatoms, fr,
2933 mu_tot, enerd, vir, pres, atom*2+1, FALSE);
2934 cr->nnodes = nnodes;
2936 /* x is restored to original */
2937 state_work->s.x[atom][d] = x_min;
2939 for (j = 0; j < natoms; j++)
2941 for (k = 0; (k < DIM); k++)
2943 dfdx[j][k] =
2944 -(state_work->f[j][k] - fneg[j][k])/(2*der_range);
2948 if (!bIsMaster)
2950 #ifdef GMX_MPI
2951 #ifdef GMX_DOUBLE
2952 #define mpi_type MPI_DOUBLE
2953 #else
2954 #define mpi_type MPI_FLOAT
2955 #endif
2956 MPI_Send(dfdx[0], natoms*DIM, mpi_type, MASTER(cr), cr->nodeid,
2957 cr->mpi_comm_mygroup);
2958 #endif
2960 else
2962 for (node = 0; (node < nnodes && atom+node < natoms); node++)
2964 if (node > 0)
2966 #ifdef GMX_MPI
2967 MPI_Status stat;
2968 MPI_Recv(dfdx[0], natoms*DIM, mpi_type, node, node,
2969 cr->mpi_comm_mygroup, &stat);
2970 #undef mpi_type
2971 #endif
2974 row = (atom + node)*DIM + d;
2976 for (j = 0; j < natoms; j++)
2978 for (k = 0; k < DIM; k++)
2980 col = j*DIM + k;
2982 if (bSparse)
2984 if (col >= row && dfdx[j][k] != 0.0)
2986 gmx_sparsematrix_increment_value(sparse_matrix,
2987 row, col, dfdx[j][k]);
2990 else
2992 full_matrix[row*sz+col] = dfdx[j][k];
2999 if (bVerbose && fplog)
3001 fflush(fplog);
3004 /* write progress */
3005 if (bIsMaster && bVerbose)
3007 fprintf(stderr, "\rFinished step %d out of %d",
3008 std::min(atom+nnodes, natoms), natoms);
3009 fflush(stderr);
3013 if (bIsMaster)
3015 fprintf(stderr, "\n\nWriting Hessian...\n");
3016 gmx_mtxio_write(ftp2fn(efMTX, nfile, fnm), sz, sz, full_matrix, sparse_matrix);
3019 finish_em(cr, outf, walltime_accounting, wcycle);
3021 walltime_accounting_set_nsteps_done(walltime_accounting, natoms*2);
3023 return 0;
3026 } // namespace gmx